Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Vaccine Development Against Middle East Respiratory Syndrome

Identifieur interne : 000508 ( Pmc/Corpus ); précédent : 000507; suivant : 000509

Vaccine Development Against Middle East Respiratory Syndrome

Auteurs : Hai Yen Lee ; Mun Peak Nyon ; Ulrich Strych

Source :

RBID : PMC:7099997

Abstract

Various types of vaccines are under pre-clinical and clinical development to address the recent appearance of Middle East respiratory syndrome or MERS, an emerging infectious disease that has already caused over 600 deaths and remains a threat to world health. The causative agent for this respiratory disease is a member of the betacoronavirus genus, phylogenetically closely related to the SARS coronavirus that caused an international health emergency in 2002. With lessons learned from the outbreak of severe acute respiratory syndrome, and with undeniable technological advances, vaccine development against MERS was initially fast-paced and has produced several DNA and protein vaccine candidates with promising results during early pre-clinical testing. At least one vaccine candidate has even entered first-in-humans clinical trials now. With the number of MERS cases declining though and other infectious diseases attracting increased attention, the question remains, whether, similar to the situation after the SARS pandemic, vaccine development is halted or remains the priority it rightfully should.


Url:
DOI: 10.1007/s40475-016-0084-0
PubMed: 32226714
PubMed Central: 7099997

Links to Exploration step

PMC:7099997

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Vaccine Development Against Middle East Respiratory Syndrome</title>
<author>
<name sortKey="Lee, Hai Yen" sort="Lee, Hai Yen" uniqKey="Lee H" first="Hai Yen" last="Lee">Hai Yen Lee</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10347.31</institution-id>
<institution-id institution-id-type="ISNI">0000000123085949</institution-id>
<institution>Tropical Infectious Diseases Research and Education Centre (TIDREC),</institution>
<institution>University of Malaya,</institution>
</institution-wrap>
Kuala Lumpur, Malaysia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nyon, Mun Peak" sort="Nyon, Mun Peak" uniqKey="Nyon M" first="Mun Peak" last="Nyon">Mun Peak Nyon</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10347.31</institution-id>
<institution-id institution-id-type="ISNI">0000000123085949</institution-id>
<institution>Tropical Infectious Diseases Research and Education Centre (TIDREC),</institution>
<institution>University of Malaya,</institution>
</institution-wrap>
Kuala Lumpur, Malaysia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Strych, Ulrich" sort="Strych, Ulrich" uniqKey="Strych U" first="Ulrich" last="Strych">Ulrich Strych</name>
<affiliation>
<nlm:aff id="Aff2">Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32226714</idno>
<idno type="pmc">7099997</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099997</idno>
<idno type="RBID">PMC:7099997</idno>
<idno type="doi">10.1007/s40475-016-0084-0</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000508</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000508</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Vaccine Development Against Middle East Respiratory Syndrome</title>
<author>
<name sortKey="Lee, Hai Yen" sort="Lee, Hai Yen" uniqKey="Lee H" first="Hai Yen" last="Lee">Hai Yen Lee</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10347.31</institution-id>
<institution-id institution-id-type="ISNI">0000000123085949</institution-id>
<institution>Tropical Infectious Diseases Research and Education Centre (TIDREC),</institution>
<institution>University of Malaya,</institution>
</institution-wrap>
Kuala Lumpur, Malaysia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nyon, Mun Peak" sort="Nyon, Mun Peak" uniqKey="Nyon M" first="Mun Peak" last="Nyon">Mun Peak Nyon</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10347.31</institution-id>
<institution-id institution-id-type="ISNI">0000000123085949</institution-id>
<institution>Tropical Infectious Diseases Research and Education Centre (TIDREC),</institution>
<institution>University of Malaya,</institution>
</institution-wrap>
Kuala Lumpur, Malaysia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff2">Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Strych, Ulrich" sort="Strych, Ulrich" uniqKey="Strych U" first="Ulrich" last="Strych">Ulrich Strych</name>
<affiliation>
<nlm:aff id="Aff2">Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Tropical Medicine Reports</title>
<idno type="eISSN">2196-3045</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Various types of vaccines are under pre-clinical and clinical development to address the recent appearance of Middle East respiratory syndrome or MERS, an emerging infectious disease that has already caused over 600 deaths and remains a threat to world health. The causative agent for this respiratory disease is a member of the betacoronavirus genus, phylogenetically closely related to the SARS coronavirus that caused an international health emergency in 2002. With lessons learned from the outbreak of severe acute respiratory syndrome, and with undeniable technological advances, vaccine development against MERS was initially fast-paced and has produced several DNA and protein vaccine candidates with promising results during early pre-clinical testing. At least one vaccine candidate has even entered
<italic>first-in-humans</italic>
clinical trials now. With the number of MERS cases declining though and other infectious diseases attracting increased attention, the question remains, whether, similar to the situation after the SARS pandemic, vaccine development is halted or remains the priority it rightfully should.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl></listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Trop Med Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr Trop Med Rep</journal-id>
<journal-title-group>
<journal-title>Current Tropical Medicine Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2196-3045</issn>
<publisher>
<publisher-name>Springer International Publishing</publisher-name>
<publisher-loc>Cham</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32226714</article-id>
<article-id pub-id-type="pmc">7099997</article-id>
<article-id pub-id-type="publisher-id">84</article-id>
<article-id pub-id-type="doi">10.1007/s40475-016-0084-0</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Viral Tropical Medicine (CM Beaumier, Section Editor)</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Vaccine Development Against Middle East Respiratory Syndrome</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Lee</surname>
<given-names>Hai Yen</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nyon</surname>
<given-names>Mun Peak</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Strych</surname>
<given-names>Ulrich</given-names>
</name>
<address>
<email>Strych@bcm.edu</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.10347.31</institution-id>
<institution-id institution-id-type="ISNI">0000000123085949</institution-id>
<institution>Tropical Infectious Diseases Research and Education Centre (TIDREC),</institution>
<institution>University of Malaya,</institution>
</institution-wrap>
Kuala Lumpur, Malaysia</aff>
<aff id="Aff2">
<label>2</label>
Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, Houston, TX USA</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.39382.33</institution-id>
<institution-id institution-id-type="ISNI">000000012160926X</institution-id>
<institution>Department of Pediatrics,</institution>
<institution>National School of Tropical Medicine, Baylor College of Medicine,</institution>
</institution-wrap>
Houston, TX USA</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>11</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2016</year>
</pub-date>
<volume>3</volume>
<issue>3</issue>
<fpage>80</fpage>
<lpage>86</lpage>
<permissions>
<copyright-statement>© Springer International Publishing AG 2016</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Various types of vaccines are under pre-clinical and clinical development to address the recent appearance of Middle East respiratory syndrome or MERS, an emerging infectious disease that has already caused over 600 deaths and remains a threat to world health. The causative agent for this respiratory disease is a member of the betacoronavirus genus, phylogenetically closely related to the SARS coronavirus that caused an international health emergency in 2002. With lessons learned from the outbreak of severe acute respiratory syndrome, and with undeniable technological advances, vaccine development against MERS was initially fast-paced and has produced several DNA and protein vaccine candidates with promising results during early pre-clinical testing. At least one vaccine candidate has even entered
<italic>first-in-humans</italic>
clinical trials now. With the number of MERS cases declining though and other infectious diseases attracting increased attention, the question remains, whether, similar to the situation after the SARS pandemic, vaccine development is halted or remains the priority it rightfully should.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>MERS</kwd>
<kwd>SARS</kwd>
<kwd>RBD</kwd>
<kwd>Vaccines</kwd>
<kwd>Coronavirus</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer International Publishing AG 2016</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Introduction</title>
<p id="Par2">Originating in Guangdong Province, China, in 2002, severe acute respiratory syndrome (SARS) became the first pandemic outbreak of the twenty first century. The disease caused over 8000 infections and was responsible for almost 800 deaths. Most remarkably, SARS quickly became a disease of global importance, impacting air travel, commerce, and tourism. While the outbreak was eventually contained using an impressive joint global public health effort, 10 years later, another human coronavirus (CoV) has emerged as the causative agent of Middle East respiratory syndrome (MERS). As of May 2016, there have already been 1728 laboratory confirmed cases of MERS in 27 countries worldwide, with 624 related deaths, 86 of which recorded during an ongoing outbreak in Buraydah, Saudi Arabia [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Recurrent episodes like this have impressed upon the scientific community the need to advance development, licensure, manufacture, stockpiling, and deployment of vaccines to combat these emerging infectious coronavirus infections [
<xref ref-type="bibr" rid="CR2">2</xref>
]. In this review, the progress in the area of vaccine development for MERS-CoV is appraised, with an assessment of lessons learned from the response to the earlier SARS-CoV pandemic.</p>
</sec>
<sec id="Sec2">
<title>Vaccine Development for Coronaviruses</title>
<p id="Par3">The Coronavirus family received global attention in November 2002 when the first case of SARS-CoV infection was reported in Guangdong Province, China. Within 3 months, 305 cases with five deaths from respiratory failure had been recorded. This subsequently led to the notification of the World Health Organization (WHO) and the issuance of a global health alert as well as travel advisory. In retrospect, there probably was an initial delay in the identification of this etiological agent of unknown origin which consequently allowed the worldwide spread of the disease [
<xref ref-type="bibr" rid="CR3">3</xref>
]. The scientific community though was subsequently quick to respond and begin the race towards vaccine development [
<xref ref-type="bibr" rid="CR4">4</xref>
]. The full characterization and genome sequencing of SARS-CoV was published within only 2 months after the WHO had started to coordinate the efforts to determine the epidemiology, pathogenesis, and transmission of the disease. Vaccine studies quickly identified the virus’ spike (S) protein as a possible recombinant antigen component of a future vaccine, and the C-terminal portion of the SARS-CoV nucleocapsid protein was identified as a likely candidate for improved diagnostics tools. A candidate DNA vaccine showing efficacy in neutralization and protective immunity in mice had been identified within 1 year of the outbreak [
<xref ref-type="bibr" rid="CR5">5</xref>
]. Vaccine development was fueled by the daunting possibility of a re-emergence of the disease when additional isolated cases of a suspected SARS infection scare were reported in China in 2004 [
<xref ref-type="bibr" rid="CR6">6</xref>
]. At that point, there were ten human vaccine trials planned, using inactivated virus, recombinant proteins, adenovirus platforms, or plasmid DNA. The trials were planned to take place in various countries, including China, Canada, France, Austria, the USA, and Italy [
<xref ref-type="bibr" rid="CR7">7</xref>
]. The major hurdle, however, was the lack of an appropriate animal challenge model that could reproduce an infection similar to what was observed in humans. Then, with the identification of virus reservoirs and mechanisms of transmission, the SARS outbreaks ended in July 2003, only 4 months after the issuance of the global alert. The outcomes of this vaccine development race were summarized in a phase I clinical trial report published several years later. Two vaccine candidates were developed and analyzed by Sinovac and the NIH/NIAID, respectively. The earliest live-attenuated vaccine clinical trial that took place under a fast track designation approval from regulatory authorities in China was conducted in 2004 [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. Results indicated that serum conversion was observed in 100 % of the volunteers who received a low dosage vaccine. In the other study, a plasmid DNA vaccine candidate developed by the NIAID’s Vaccine Research Centre was well tolerated and produced the desired immune responses, including neutralizing antibodies [
<xref ref-type="bibr" rid="CR10">10</xref>
]. None of the candidates though proceeded into phase II. More recently, a recombinant subunit-based SARS-CoV vaccine was produced by the Sabin Vaccine Institute Product Development Partnership, based on the virus receptor-binding domain [
<xref ref-type="bibr" rid="CR11">11</xref>
]. The goal here was to improve safety of the vaccine and cost efficiency of the vaccine development process [
<xref ref-type="bibr" rid="CR12">12</xref>
]. The vaccine is being produced under cGMP conditions, but no clinical trials are immediately scheduled.</p>
</sec>
<sec id="Sec3">
<title>MERS</title>
<p id="Par4">For the Middle East respiratory syndrome (MERS), the first case was reported in June 2012 in Saudi Arabia. This isolate was initially named hCoV-EMC1 and was traced back to a cluster of pneumonia cases in the Zarqa hospital (Jordan) in March/April 2012. In September 2012, a report from the UK about a novel coronavirus (London1) was published, involving a patient with a travel history to Qatar. Shortly thereafter, both isolates were found to be similar, and were named Middle East respiratory syndrome coronavirus (MERS-CoV), a betacoronavirus phylogenetically closely related to SARS-CoV. By October 2013, there had been 144 laboratory confirmed cases with 17 probable cases affecting nine countries.</p>
<p id="Par5">Despite increased global vigilance, in part certainly due to the prior experience with SARS-CoV, cases of MERS-CoV were still reported outside the Middle East 3 years after its first emergence. The largest of these was reported in South Korea in June 2015 [
<xref ref-type="bibr" rid="CR13">13</xref>
] and was traced back to a single traveler that visited four various Middle Eastern countries. Within a month, this outbreak involved 160 confirmed patients and placed thousands of individuals under close observation [
<xref ref-type="bibr" rid="CR14">14</xref>
]. Overall, it is speculated that the lower number of cases of MERS in comparison to SARS may be due to the better coordination of notifications, early travel advisories, the implementation of improved hospital containment measures, the issuance of a global alert by the WHO, and better compliance with International Health Provisions, originally drafted in 2007 [
<xref ref-type="bibr" rid="CR3">3</xref>
].</p>
<p id="Par6">Although there is the possibility that MERS could potentially follow the pandemic path of SARS based on the similarity in phylogenetics, the difference in the biology of the virus and its adaptation to human beings are distinct. While MERS-CoV was found to be already circulating in human populations without mutating into a pandemic form, SARS-CoV adapted to human beings within several months showing the complexity of the virus biology. The affinity of the MERS-CoV spike protein for the human DPP4 receptor is lower than that of the SARS-CoV RBD towards the human ACE-2 receptor and thus the pandemic potential of MERS-CoV has been considered to be lower than that of SARS, likely not reaching epidemic potential [
<xref ref-type="bibr" rid="CR15">15</xref>
]. Nevertheless, there remains valid concern especially since its fatality rate of ~36 % is much higher than that for SARS (~10 %).</p>
</sec>
<sec id="Sec4">
<title>Approaches to MERS Vaccine Development</title>
<p id="Par7">In Table
<xref rid="Tab1" ref-type="table">1</xref>
, we summarize the various approaches to developing a MERS-CoV vaccine.
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Status of vaccine development approaches against MERS-CoV</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Candidate</th>
<th>Developer</th>
<th>Platform/antigen</th>
<th>Pre-clinical/clinical</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLS-5300</td>
<td>Inovio Pharmaceuticals and GeneOne Life Science Inc</td>
<td>Plasmid DNA/full-length S protein</td>
<td>Mouse, NHP, and camel, phase I started</td>
<td>[
<xref ref-type="bibr" rid="CR38">38</xref>
•]</td>
</tr>
<tr>
<td>MVA-MERS-S</td>
<td>German Center for Infection Research (DIFZ)</td>
<td>Viral vector modified vaccinia virus Ankara/full-length S protein</td>
<td>Mouse, planning for phase I</td>
<td>[
<xref ref-type="bibr" rid="CR44">44</xref>
]</td>
</tr>
<tr>
<td>S protein trimer in 40 nm particles</td>
<td>Novavax and University of Maryland</td>
<td>Nanoparticles with Matrix M1 adjuvant</td>
<td>Mouse</td>
<td>[
<xref ref-type="bibr" rid="CR46">46</xref>
]</td>
</tr>
<tr>
<td>Combined DNA and protein vaccine</td>
<td>Vaccine Research Center, NIAID</td>
<td>DNA S prime-S1 protein boost and S1 prime-S1 boost</td>
<td>Mouse and NHP</td>
<td>[
<xref ref-type="bibr" rid="CR41">41</xref>
]</td>
</tr>
<tr>
<td>Receptor-binding domain</td>
<td>New York Blood Center, UTMB, BCM</td>
<td>S377-588 RBD fragment</td>
<td>Mouse, hDPP4 transgenic mouse and rabbit</td>
<td>[
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
•,
<xref ref-type="bibr" rid="CR61">61</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<sec id="Sec5">
<title>Inactivated and Live-Attenuated Virus</title>
<p id="Par8">SARS-CoV, inactivated by means of formaldehyde, UV light, or beta-propiolactone, was able to protect mice from infection in challenge studies [
<xref ref-type="bibr" rid="CR16">16</xref>
<xref ref-type="bibr" rid="CR18">18</xref>
]. In analogy, for MERS, a recombinant, propagation-defective live virus lacking the structural envelope protein gene has been proposed as a vaccine candidate to prevent MERS-CoV infection [
<xref ref-type="bibr" rid="CR19">19</xref>
].</p>
</sec>
<sec id="Sec6">
<title>MERS-CoV Candidate Vaccine Antigens</title>
<p id="Par9">The MERS-CoV genome is approximately 30 kb in size [
<xref ref-type="bibr" rid="CR20">20</xref>
] and encodes several unique accessory proteins and four major structural proteins: the receptor-binding spike (S) protein, a nucleocapsid (N) protein, an envelope (E) protein, and the membrane (M) protein [
<xref ref-type="bibr" rid="CR21">21</xref>
]. The initial expectation that the host cell entry point for MERS-CoV would be similar to the angiotensin-converting enzyme 2 (ACE2) receptor used by SARS-CoV was not confirmed. Instead, the dipeptidyl peptidase-4 (DPP4) receptor was identified as the critical receptor for entry of MERS-CoV into its host cell [
<xref ref-type="bibr" rid="CR22">22</xref>
]. DPP4 does not share any structural similarities to ACE2 and has a more diverse cellular tropism as it is expressed on the surface of several types of cells [
<xref ref-type="bibr" rid="CR23">23</xref>
]. While SARS-CoV specifically targets ACE2-expressing ciliated epithelial cells in the lungs [
<xref ref-type="bibr" rid="CR24">24</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
], DPP4 plays a more diverse role including in the regulation of peptide hormone metabolism, T cell activation, neurotransmitter function, and glucose homeostasis [
<xref ref-type="bibr" rid="CR26">26</xref>
]. Notably, the MERS-CoV spike protein exhibits a high affinity for DPP4 receptors from a wide range of hosts, including human, camel, and horse [
<xref ref-type="bibr" rid="CR27">27</xref>
].</p>
</sec>
<sec id="Sec7">
<title>Receptor-Binding Domain-Based Vaccine Candidates</title>
<p id="Par10">The 193 amino acid residue receptor-binding domain (RBD) fragment of the S1 subunit of the SARS-CoV spike protein was able to induce neutralizing antibodies and protect against SARS-CoV infection in animal models [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
]. Using homology modeling, the corresponding MERS-CoV RBD was located between residues 377 to 662 in the S protein [
<xref ref-type="bibr" rid="CR30">30</xref>
•]. Several variants of the RBD have since been investigated as vaccine candidates with the S377-588 fragment (fused to human IgG Fc) demonstrating the highest DPP4-binding affinity and inducing the highest titers of neutralizing antibodies in immunized mice and rabbits [
<xref ref-type="bibr" rid="CR31">31</xref>
]. Another RBD fragment, S367-606, formulated with aluminum hydroxide (alum) has been investigated in a rhesus macaque model [
<xref ref-type="bibr" rid="CR32">32</xref>
]. Animals immunized with a higher dose of the vaccine (200/100/100 μg rRBD admixed with 1 mg of alum adjuvant) showed less severe pneumonia and decreased viral loads upon challenge with MERS-CoV, compared to a lower dose group [
<xref ref-type="bibr" rid="CR32">32</xref>
].</p>
<p id="Par11">Recently though, a group in Korea observed a high mutation rate in isolates of the MERS-CoV from several patients. It was seen that these mutations in the RBD of the S protein displayed reduced binding affinity to their host cell receptor, making the virus less virulent than the wild-type, but possibly also contributing to the virus evading the host immune system. [
<xref ref-type="bibr" rid="CR33">33</xref>
]. Therefore, Shi et al. suggested epitope-based vaccine design to identify highly conserved region that can produce neutralizing antibodies and cellular immunity against MERS-CoV. Based on the in silico protein antigenic prediction and structure analysis, nucleocapsid (N) protein of MERS-CoV was the most probable antigenic protein and a number of putative lymphocytes epitope peptides were identified from the N protein [
<xref ref-type="bibr" rid="CR34">34</xref>
]. Nevertheless, these suggested epitopes have to undergo comprehensive in vitro and in vivo studies for their efficient use as vaccines against MERS-CoV.</p>
</sec>
<sec id="Sec8">
<title>DNA Vaccines</title>
<p id="Par12">The use of DNA vaccines is based on the transfection of plasmid DNA that encodes antigenic proteins into host cells and the subsequent expression of these foreign genes in order to induce a potent immune response against the disease of interest. Undoubtedly, at first glance, nucleic acid immunization appears to be an attractive vaccine platform: fast vaccine development, a clean safety profile, and low production costs [
<xref ref-type="bibr" rid="CR35">35</xref>
]. However, in spite of the promising data from pre-clinical animal studies, DNA vaccines have not yet been fully successful in humans. For example, the dengue DNA vaccine D1ME
<sup>100</sup>
showed excellent anti-dengue cellular and humoral immune responses in non-human primates; however, it failed to produce neutralizing antibody in human subjects [
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
]. Research and development on MERS-CoV DNA vaccines has been focused on the S protein by engineering plasmid DNA that encoded full-length S protein sequences [
<xref ref-type="bibr" rid="CR38">38</xref>
•]. A synthetic DNA vaccine against MERS-CoV was studied in mice and large animal models (non-human primates—NHPs and camels), and the results showed that the vaccine is capable of inducing S protein-specific neutralizing antibodies in these animals. Intriguingly, the study revealed that vaccinated NHPs were protected and failed to demonstrate any clinical or radiographic signs of pneumonia post MERS viral challenge [
<xref ref-type="bibr" rid="CR38">38</xref>
•]. In early 2016, the first-in-human trial of MERS vaccine has begun [
<xref ref-type="bibr" rid="CR39">39</xref>
], where 75 participants will receive the MERS DNA vaccine, GLS-5300, co-developed by Inovio Pharmaceuticals and GeneOne Life Science Inc. [
<xref ref-type="bibr" rid="CR40">40</xref>
]. In an alternative approach, Graham and co-workers proposed to combine a DNA vaccine and the S1 subunit protein in a prime-boost scheme. Rhesus macaques immunized with spike DNA vaccine followed by the S1 protein (adjuvanted with aluminum phosphate) yielded more neutralizing antibodies, showed fewer signs of pulmonary disease than animals vaccinated with the S1 protein only [
<xref ref-type="bibr" rid="CR41">41</xref>
].</p>
</sec>
<sec id="Sec9">
<title>Viral Vector-Based Vaccines</title>
<p id="Par13">A MERS-CoV vaccine that targets camels has been developed using viral vector vaccine technology, with adenoviral vectors encoding the full-length MERS-CoV S protein or the S1 extracellular domain of S protein. Pre-clinical studies showed vaccinated dromedary camels had mounted a neutralizing antibody response against MERS-CoV in vitro [
<xref ref-type="bibr" rid="CR42">42</xref>
]. Guo et al. highlighted that the intramuscular route for administering adenovirus-based vaccines (with MERS-CoV S protein) could affect the antigen-specific T cell response in immunized mice [
<xref ref-type="bibr" rid="CR43">43</xref>
•]. Lately, viral vector vaccines against MERS-CoV have been constructed using modified vaccinia virus Ankara (MVA). The MVA-MERS-S recombinant virus, which is genetically stable in primary chicken embryo fibroblasts (CEF) without the need for additional animal-derived components, was able to protect human DPP4-transduced mice against MERS-CoV challenge [
<xref ref-type="bibr" rid="CR44">44</xref>
]. The phase I clinical trial in humans of this vaccine has been announced and is supported by the German Center for Infection Research, DIFZ [
<xref ref-type="bibr" rid="CR45">45</xref>
].</p>
</sec>
<sec id="Sec10">
<title>Nanoparticle Vaccines</title>
<p id="Par14">Novavax, in collaboration with a team from the University of Maryland, has produced MERS-CoV full-length nanosized, amphiphilic spike protein aggregates using a recombinant baculovirus construct in Sf9 cells. When formulated with alum, or, to an even greater extent, Novavax’ saponin-based matrix-M1 adjuvant, high titers of neutralizing antibodies against MERS-CoV (but the related SARS-CoV) were observed [
<xref ref-type="bibr" rid="CR46">46</xref>
]. However, no plans for clinical trials have been made public yet [
<xref ref-type="bibr" rid="CR47">47</xref>
].</p>
</sec>
<sec id="Sec11">
<title>A Vaccine for Camels</title>
<p id="Par15">Another approach towards a MERS vaccine is targeting camels, one of the reservoirs of the virus. According to a cross-sectional serological survey in all 13 provinces of Saudi Arabia (~10,000 individuals), the seroprevalence of MERS-CoV antibodies was significantly higher in camel-exposed individuals than in the general population [
<xref ref-type="bibr" rid="CR48">48</xref>
]. Scientists from The Netherlands, Germany, and Spain have shown that a modified vaccinia virus Ankara vaccine expressing the MERS-CoV spike protein (MVA-S) conferred mucosal immunity in dromedary camels. Using a prime-boost approach, dromedary camels were immunized intranasally as well as intramuscularly, and, after 3 weeks, challenged intranasally with MERS-CoV virus. While the animals showed the typical mild clinical symptoms of a MERS infection in this species, a significant reduction of excreted infectious virus particles, as well as a reduction of viral RNA in immunized camels was observed [
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
•]. However, there is concern that this reduction might not be sufficient to disrupt the spread of the virus, or that the vaccination might not provide long-lasting immunity. In addition, since the disease does not cause any significant morbidity in camels, there is perceived reluctance among camel owners to have their animals vaccinated in the first place [
<xref ref-type="bibr" rid="CR51">51</xref>
]. As an added benefit of the MVA-S vaccine though, it was observed that the vaccination provided cross-protection against camelpox virus, which might the treatment more attractive to the animal owners.</p>
</sec>
</sec>
<sec id="Sec12">
<title>Animal Models for MERS Vaccine Testing</title>
<p id="Par16">In order to characterize the viral pathogenesis and evaluate therapeutic options for MERS-CoV, researchers rely on an animal model mimicking the clinical course and pathology observed in humans. In contrast to the SARS animal model, where aged mice displayed pathological changes post-infection [
<xref ref-type="bibr" rid="CR52">52</xref>
], mice infected with MERS-CoV did not show any clinical signs of infections, such as weight loss [
<xref ref-type="bibr" rid="CR53">53</xref>
]. In addition, Syrian hamsters and ferrets, which are known to be susceptible to SARS-CoV, failed to be infected by MERS-CoV [
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
]. Non-human primates (NHP) and common marmoset models have been tested for their suitability as MERS-CoV models. Upon a combination of various inoculation routes (intratracheal, ocular, oral, and intranasal) using an infectious dose of MERS-CoV, rhesus macaques developed a transient lower respiratory tract infection and mild clinical disease without mortality [
<xref ref-type="bibr" rid="CR55">55</xref>
]. On the other hand, MERS-CoV infected common marmosets developed progressive, severe pneumonia [
<xref ref-type="bibr" rid="CR56">56</xref>
]. Although NHPs are sufficiently good models to study MERS at different severity, working with NHPs is costly. Hence, establishing transgenic rodent animal models is crucial to move forward in the development of vaccines and therapeutic methods against MERS-CoV. By comparing small animal cell lines transfected with human and hamster
<italic>dpp4</italic>
genes, it was observed that only humanized cell lines enabled MERS-CoV replication [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Therefore, researchers have now developed a hDPP4 transgenic mouse model [
<xref ref-type="bibr" rid="CR58">58</xref>
•,
<xref ref-type="bibr" rid="CR59">59</xref>
]. Agrawal et al. cloned hCD26/DPP4 in an expression vector with the ubiquitous cytomegalovirus immediate early enhancer and chicken beta-actin promoter and microinjected the DNA into mice zygotes. After lineage screening, hDPP4 transgenic mice that expressed hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in weight loss and an acute inflammatory response within the lungs and brains of the animal [
<xref ref-type="bibr" rid="CR58">58</xref>
•]. When these hCD26/DPP4 transgenic mice were immunized with MF59-adjuvanted RBD fragment (S377-588), fused to the Fc fragment, they were protected after challenge with a high dose (100× LD
<sub>50</sub>
) of the virus [
<xref ref-type="bibr" rid="CR60">60</xref>
]. Another hDPP4 transgenic mouse was recently created using an expression vector with either cytokeratin 18 (K18) or surfactant protein C (SPC) promoters, with the SPC-DPP4 transgenic mice exhibiting a milder disease phenotype [
<xref ref-type="bibr" rid="CR59">59</xref>
].</p>
</sec>
<sec id="Sec13">
<title>Conclusion</title>
<p id="Par17">Emerging and re-emerging diseases with pandemic potential are a major driving force for vaccine development. For human coronaviruses, the pandemic outbreak of SARS-CoV necessitated the development of a blueprint for a global response to this type of threat. As MERS-CoV reaches the fourth year of its emergence, initial technological advances have enabled one DNA-based vaccine to quickly enter phase I human trials. The process was arguably accelerated by key information for strategic vaccine development obtained during the prior SARS-CoV outbreak. Nevertheless, the process of bringing a vaccine to the clinic remains lengthy and cumbersome, and with new infectious diseases shifting the focus away from MERS, there is the risk that, just as before, the vaccine development process remains unfinished and is only picked up again when the next coronavirus emerges.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>Hai Yen Lee and Mun Peak Nyon are joint first authors.</p>
</fn>
<fn>
<p>This article is part of the Topical Collection on
<italic>Viral Tropical Medicine</italic>
</p>
</fn>
</fn-group>
<notes>
<title>Compliance with Ethical Standards</title>
<notes notes-type="COI-statement">
<title>Conflict of Interest</title>
<p id="Par18">The authors declare that they have no conflict of interest.</p>
</notes>
<notes>
<title>Human and Animal Rights and Informed Consent</title>
<p id="Par19">This article does not contain any studies with human or animal subjects performed by any of the authors.</p>
</notes>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref-list id="BSec1">
<title>Papers of particular interest, published recently, have been highlighted as: • Of importance</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="other">WHO. Middle East Respiratory syndrome coronavirus (MERS-CoV)—Saudi Arabia. 2016.
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/23-march-2016-mers-saudi-arabia/en/">http://www.who.int/csr/don/23-march-2016-mers-saudi-arabia/en/</ext-link>
<bold>. Accessed 13 May 2016</bold>
.</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Groot</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Einck</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Moise</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chambers</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ballantyne</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Malone</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Making vaccines “on demand”: a potential solution for emerging pathogens and biodefense?</article-title>
<source>Human vaccines & immunotherapeutics</source>
<year>2013</year>
<volume>9</volume>
<issue>9</issue>
<fpage>1877</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.4161/hv.25611</pub-id>
<pub-id pub-id-type="pmid">23877094</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="other">Heymann DL, Mackenzie JS, Peiris M. SARS legacy: outbreak reporting is expected and respected. The Lancet. 381(9869):779–81. doi:10.1016/s0140-6736(13)60185-3.</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Viret</surname>
<given-names>J-F</given-names>
</name>
<name>
<surname>Glück</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Moser</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Development of a SARS vaccine: an industrial perspective on the global race against a global disease</article-title>
<source>Expert review of vaccines</source>
<year>2003</year>
<volume>2</volume>
<issue>4</issue>
<fpage>465</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1586/14760584.2.4.465</pub-id>
<pub-id pub-id-type="pmid">14711331</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Z-y</given-names>
</name>
<name>
<surname>Kong</surname>
<given-names>W-p</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Murphy</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice</article-title>
<source>Nature</source>
<year>2004</year>
<volume>428</volume>
<issue>6982</issue>
<fpage>561</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1038/nature02463</pub-id>
<pub-id pub-id-type="pmid">15024391</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fleck</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>SARS virus returns to China as scientists race to find effective vaccine</article-title>
<source>Bulletin of the World Health Organization.</source>
<year>2004</year>
<volume>82</volume>
<fpage>152</fpage>
<lpage>3</lpage>
<pub-id pub-id-type="pmid">15042239</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marshall</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Enserink</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Caution urged on SARS vaccines</article-title>
<source>Science</source>
<year>2004</year>
<volume>303</volume>
<issue>5660</issue>
<fpage>944</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1126/science.303.5660.944</pub-id>
<pub-id pub-id-type="pmid">14963300</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<mixed-citation publication-type="other">Wire B. Sinovac Biotech Ltd releases further results from SARS vaccine phase I human clinical trial. 2004.
<ext-link ext-link-type="uri" xlink:href="http://www.businesswire.com/news/home/20041213005499/en/Sinovac-Biotech-Ltd.-Releases-Results-SARS-Vaccine">http://www.businesswire.com/news/home/20041213005499/en/Sinovac-Biotech-Ltd.-Releases-Results-SARS-Vaccine</ext-link>
<bold>. Accessed 20 April 2016</bold>
.</mixed-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>JG</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>JT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine</article-title>
<source>Antiviral therapy</source>
<year>2007</year>
<volume>12</volume>
<issue>7</issue>
<fpage>1107</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="pmid">18018769</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martin</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Louder</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Holman</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Gordon</surname>
<given-names>IJ</given-names>
</name>
<name>
<surname>Enama</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Larkin</surname>
<given-names>BD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a phase I clinical trial</article-title>
<source>Vaccine</source>
<year>2008</year>
<volume>26</volume>
<issue>50</issue>
<fpage>6338</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2008.09.026</pub-id>
<pub-id pub-id-type="pmid">18824060</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>W-H</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chag</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Tricoche</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Yeast-expressed recombinant protein of the receptor-binding domain in SARS-CoV spike protein with deglycosylated forms as a SARS vaccine candidate</article-title>
<source>Human vaccines & immunotherapeutics</source>
<year>2014</year>
<volume>10</volume>
<issue>3</issue>
<fpage>648</fpage>
<lpage>58</lpage>
<pub-id pub-id-type="doi">10.4161/hv.27464</pub-id>
<pub-id pub-id-type="pmid">24355931</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bottazzi</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Lustigman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C-TK</given-names>
</name>
<name>
<surname>Curti</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome</article-title>
<source>Expert review of vaccines</source>
<year>2012</year>
<volume>11</volume>
<issue>12</issue>
<fpage>1405</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1586/erv.12.126</pub-id>
<pub-id pub-id-type="pmid">23252385</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<mixed-citation publication-type="other">WHO. MERS-CoV outbreak largest outside Kingdom of Saudi Arabia assessed on June 2, 2015. 2015.
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/mediacentre/news/situation-assessments/2-june-2015-republic-of-korea/en/">http://www.who.int/mediacentre/news/situation-assessments/2-june-2015-republic-of-korea/en/</ext-link>
<bold>. Accessed 29 March 2016</bold>
.</mixed-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>JI</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>Y-J</given-names>
</name>
<name>
<surname>Lemey</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bae</surname>
<given-names>J-Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination</article-title>
<source>Scientific Reports.</source>
<year>2016</year>
<volume>6</volume>
<fpage>18825</fpage>
<pub-id pub-id-type="doi">10.1038/srep18825</pub-id>
<pub-id pub-id-type="pmid">26732651</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<mixed-citation publication-type="other">Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. The Lancet. 382(9893):694–9. doi:10.1016/s0140-6736(13)61492-0.</mixed-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bolles</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Deming</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Long</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Whitmore</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ferris</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge</article-title>
<source>Journal of virology</source>
<year>2011</year>
<volume>85</volume>
<issue>23</issue>
<fpage>12201</fpage>
<lpage>15</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.06048-11</pub-id>
<pub-id pub-id-type="pmid">21937658</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>SARS vaccine development</article-title>
<source>Emerging infectious diseases</source>
<year>2005</year>
<volume>11</volume>
<issue>7</issue>
<fpage>1016</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.3201/1107.050219</pub-id>
<pub-id pub-id-type="pmid">16022774</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jimenez-Guardeno</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Regla-Nava</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Nieto-Torres</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>DeDiego</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Castano-Rodriguez</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Fernandez-Delgado</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of the mechanisms causing reversion to virulence in an attenuated SARS-CoV for the design of a genetically stable vaccine</article-title>
<source>PLoS pathogens</source>
<year>2015</year>
<volume>11</volume>
<issue>10</issue>
<fpage>e1005215</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1005215</pub-id>
<pub-id pub-id-type="pmid">26513244</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Almazan</surname>
<given-names>F</given-names>
</name>
<name>
<surname>DeDiego</surname>
<given-names>ML</given-names>
</name>
<name>
<surname>Sola</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Zuniga</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Nieto-Torres</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Marquez-Jurado</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate</article-title>
<source>mBio</source>
<year>2013</year>
<volume>4</volume>
<issue>5</issue>
<fpage>e00650</fpage>
<lpage>13</lpage>
<pub-id pub-id-type="doi">10.1128/mBio.00650-13</pub-id>
<pub-id pub-id-type="pmid">24023385</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boheemen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Graaf</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lauber</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans</article-title>
<source>mBio</source>
<year>2012</year>
<volume>3</volume>
<issue>6</issue>
<fpage>e00473</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="pmid">23170002</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Geng</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists</article-title>
<source>Protein & cell</source>
<year>2013</year>
<volume>4</volume>
<issue>12</issue>
<fpage>951</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1007/s13238-013-3096-8</pub-id>
<pub-id pub-id-type="pmid">24318862</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>van den Brand</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Wiersma</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ouwendijk</surname>
<given-names>WJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus</article-title>
<source>Journal of virology</source>
<year>2014</year>
<volume>88</volume>
<issue>3</issue>
<fpage>1834</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02935-13</pub-id>
<pub-id pub-id-type="pmid">24257613</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gallagher</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Public health: broad reception for coronavirus</article-title>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<issue>7440</issue>
<fpage>176</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1038/495176a</pub-id>
<pub-id pub-id-type="pmid">23486053</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kuba</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Imai</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Guan</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury</article-title>
<source>Nature medicine</source>
<year>2005</year>
<volume>11</volume>
<issue>8</issue>
<fpage>875</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1038/nm1267</pub-id>
<pub-id pub-id-type="pmid">16007097</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Vasilieva</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Sui</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Berne</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus</article-title>
<source>Nature</source>
<year>2003</year>
<volume>426</volume>
<issue>6965</issue>
<fpage>450</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1038/nature02145</pub-id>
<pub-id pub-id-type="pmid">14647384</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hildebrandt</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reutter</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Arck</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Rose</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klapp</surname>
<given-names>BF</given-names>
</name>
</person-group>
<article-title>A guardian angel: the involvement of dipeptidyl peptidase IV in psychoneuroendocrine function, nutrition and immune defence</article-title>
<source>Clinical Science</source>
<year>2000</year>
<volume>99</volume>
<issue>2</issue>
<fpage>93</fpage>
<lpage>104</lpage>
<pub-id pub-id-type="doi">10.1042/cs0990093</pub-id>
<pub-id pub-id-type="pmid">10918042</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barlan</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
<name>
<surname>McCray</surname>
<given-names>PB</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection</article-title>
<source>Journal of virology</source>
<year>2014</year>
<volume>88</volume>
<issue>9</issue>
<fpage>4953</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00161-14</pub-id>
<pub-id pub-id-type="pmid">24554656</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Choe</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Farzan</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2</article-title>
<source>The Journal of biological chemistry</source>
<year>2004</year>
<volume>279</volume>
<issue>5</issue>
<fpage>3197</fpage>
<lpage>201</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.C300520200</pub-id>
<pub-id pub-id-type="pmid">14670965</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>He</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zheng</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model</article-title>
<source>Vaccine</source>
<year>2007</year>
<volume>25</volume>
<issue>15</issue>
<fpage>2832</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2006.10.031</pub-id>
<pub-id pub-id-type="pmid">17092615</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.•</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>VK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development</article-title>
<source>Journal of virology</source>
<year>2013</year>
<volume>87</volume>
<issue>17</issue>
<fpage>9939</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01048-13</pub-id>
<pub-id pub-id-type="pmid">23824801</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>CT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments—the importance of immunofocusing in subunit vaccine design</article-title>
<source>Vaccine</source>
<year>2014</year>
<volume>32</volume>
<issue>46</issue>
<fpage>6170</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2014.08.086</pub-id>
<pub-id pub-id-type="pmid">25240756</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Recombinant receptor binding domain protein induces partial protective immunity in rhesus macaques against Middle East respiratory syndrome coronavirus challenge</article-title>
<source>EBioMedicine</source>
<year>2015</year>
<volume>2</volume>
<issue>10</issue>
<fpage>1438</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/j.ebiom.2015.08.031</pub-id>
<pub-id pub-id-type="pmid">26629538</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<mixed-citation publication-type="other">Kim Y, Cheon S, Min CK, Sohn KM, Kang YJ, Cha YJ, et al. Spread of mutant Middle East respiratory syndrome coronavirus with reduced affinity to human CD26 during the South Korean outbreak. mBio. 2016;7(2): doi:10.1128/mBio.00019-16.</mixed-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shi</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Teng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epitope-based vaccine target screening against highly pathogenic MERS-CoV: an in silico approach applied to emerging infectious diseases</article-title>
<source>PloS one</source>
<year>2015</year>
<volume>10</volume>
<issue>12</issue>
<fpage>e0144475</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0144475</pub-id>
<pub-id pub-id-type="pmid">26641892</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<mixed-citation publication-type="other">Tregoning JS, Kinnear E. Using plasmids as DNA vaccines for infectious diseases. Microbiology spectrum. 2014;2(6): doi:10.1128/microbiolspec.PLAS-0028-2014.</mixed-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beckett</surname>
<given-names>CG</given-names>
</name>
<name>
<surname>Tjaden</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Burgess</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Danko</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Tamminga</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Simmons</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of a prototype dengue-1 DNA vaccine in a phase 1 clinical trial</article-title>
<source>Vaccine</source>
<year>2011</year>
<volume>29</volume>
<issue>5</issue>
<fpage>960</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2010.11.050</pub-id>
<pub-id pub-id-type="pmid">21111785</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Porter</surname>
<given-names>KR</given-names>
</name>
<name>
<surname>Raviprakash</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Nucleic acid (DNA) immunization as a platform for dengue vaccine development</article-title>
<source>Vaccine</source>
<year>2015</year>
<volume>33</volume>
<issue>50</issue>
<fpage>7135</fpage>
<lpage>40</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2015.09.102</pub-id>
<pub-id pub-id-type="pmid">26458805</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.•</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muthumani</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Reuschel</surname>
<given-names>EL</given-names>
</name>
<name>
<surname>Tingey</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Flingai</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Villarreal</surname>
<given-names>DO</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A synthetic consensus anti-spike protein DNA vaccine induces protective immunity against Middle East respiratory syndrome coronavirus in nonhuman primates</article-title>
<source>Science translational medicine</source>
<year>2015</year>
<volume>7</volume>
<issue>301</issue>
<fpage>301ra132</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.aac7462</pub-id>
<pub-id pub-id-type="pmid">26290414</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<mixed-citation publication-type="other">Clinical_Trials.gov. Phase I, open label dose ranging safety study of GLS-5300 in healthy volunteers. 2016.
<ext-link ext-link-type="uri" xlink:href="https://clinicaltrials.gov/ct2/show/NCT02670187?term=GLS-5300&rank=1">https://clinicaltrials.gov/ct2/show/NCT02670187?term=GLS-5300&rank=1</ext-link>
.</mixed-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<mixed-citation publication-type="other">First-in-man trial of MERS vaccine begins. Medical Express. 2016.
<ext-link ext-link-type="uri" xlink:href="http://medicalxpress.com/news/2016-02-first-in-man-trial-mers-vaccine.html">http://medicalxpress.com/news/2016-02-first-in-man-trial-mers-vaccine.html</ext-link>
. Accessed 10 March 2016 2016.</mixed-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Joyce</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Modjarrad</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Evaluation of candidate vaccine approaches for MERS-CoV</article-title>
<source>Nature communications.</source>
<year>2015</year>
<volume>6</volume>
<fpage>7712</fpage>
<pub-id pub-id-type="doi">10.1038/ncomms8712</pub-id>
<pub-id pub-id-type="pmid">26218507</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Kenniston</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>AlHajri</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Farag</surname>
<given-names>EA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunogenicity of an adenoviral-based Middle East respiratory syndrome coronavirus vaccine in BALB/c mice</article-title>
<source>Vaccine</source>
<year>2014</year>
<volume>32</volume>
<issue>45</issue>
<fpage>5975</fpage>
<lpage>82</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2014.08.058</pub-id>
<pub-id pub-id-type="pmid">25192975</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.•</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Zou</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Systemic and mucosal immunity in mice elicited by a single immunization with human adenovirus type 5 or 41 vector-based vaccines carrying the spike protein of Middle East respiratory syndrome coronavirus</article-title>
<source>Immunology</source>
<year>2015</year>
<volume>145</volume>
<issue>4</issue>
<fpage>476</fpage>
<lpage>84</lpage>
<pub-id pub-id-type="doi">10.1111/imm.12462</pub-id>
<pub-id pub-id-type="pmid">25762305</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Volz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kupke</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Song</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Jany</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fux</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Shams-Eldin</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Protective efficacy of recombinant modified vaccinia virus Ankara delivering middle east respiratory syndrome coronavirus spike glycoprotein</article-title>
<source>Journal of virology</source>
<year>2015</year>
<volume>89</volume>
<issue>16</issue>
<fpage>8651</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00614-15</pub-id>
<pub-id pub-id-type="pmid">26018172</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<mixed-citation publication-type="other">Planning for first clinical trial of MERS-CoV vaccine candidate now underway. News Medical. 2015.
<ext-link ext-link-type="uri" xlink:href="http://www.news-medical.net/news/20150622/Planning-for-first-clinical-trial-of-MERS-CoV-vaccine-candidate-now-underway.aspx">http://www.news-medical.net/news/20150622/Planning-for-first-clinical-trial-of-MERS-CoV-vaccine-candidate-now-underway.aspx</ext-link>
. Accessed 16 March 2016.</mixed-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>YV</given-names>
</name>
<name>
<surname>Mu</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Taylor</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Massare</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Flyer</surname>
<given-names>DC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice</article-title>
<source>Vaccine</source>
<year>2014</year>
<volume>32</volume>
<issue>26</issue>
<fpage>3169</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="doi">10.1016/j.vaccine.2014.04.016</pub-id>
<pub-id pub-id-type="pmid">24736006</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<mixed-citation publication-type="other">Novavax. Clinical stage pipeline. 2016.
<ext-link ext-link-type="uri" xlink:href="http://novavax.com/page/11/clinical-stage-pipeline">http://novavax.com/page/11/clinical-stage-pipeline</ext-link>
<bold>. Accessed 03/22/2016</bold>
.</mixed-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Al-Masri</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Turkestani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ritz</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study</article-title>
<source>The Lancet Infectious diseases</source>
<year>2015</year>
<volume>15</volume>
<issue>6</issue>
<fpage>629</fpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(15)00030-4</pub-id>
<pub-id pub-id-type="pmid">26008827</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Fux</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
<name>
<surname>Volz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Eickmann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies</article-title>
<source>Journal of virology</source>
<year>2013</year>
<volume>87</volume>
<issue>21</issue>
<fpage>11950</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01672-13</pub-id>
<pub-id pub-id-type="pmid">23986586</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.•</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>van den Brand</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Volz</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wohlsein</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels</article-title>
<source>Science</source>
<year>2016</year>
<volume>351</volume>
<issue>6268</issue>
<fpage>77</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1126/science.aad1283</pub-id>
<pub-id pub-id-type="pmid">26678878</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kupferschmidt</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Infectious disease. Camel vaccine offers hope to stop MERS</article-title>
<source>Science</source>
<year>2015</year>
<volume>350</volume>
<issue>6267</issue>
<fpage>1453</fpage>
<pub-id pub-id-type="doi">10.1126/science.350.6267.1453</pub-id>
<pub-id pub-id-type="pmid">26680169</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roberts</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Paddock</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Vogel</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Subbarao</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans</article-title>
<source>Journal of virology</source>
<year>2005</year>
<volume>79</volume>
<issue>9</issue>
<fpage>5833</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.79.9.5833-5838.2005</pub-id>
<pub-id pub-id-type="pmid">15827197</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Goicochea</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus</article-title>
<source>The Journal of general virology</source>
<year>2014</year>
<volume>95</volume>
<issue>Pt 2</issue>
<fpage>408</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1099/vir.0.060640-0</pub-id>
<pub-id pub-id-type="pmid">24197535</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baseler</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Thomas</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Lackemeyer</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters</article-title>
<source>PloS one</source>
<year>2013</year>
<volume>8</volume>
<issue>7</issue>
<fpage>e69127</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0069127</pub-id>
<pub-id pub-id-type="pmid">23844250</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Brining</surname>
<given-names>DL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques</article-title>
<source>Proceedings of the National Academy of Sciences of the United States of America</source>
<year>2013</year>
<volume>110</volume>
<issue>41</issue>
<fpage>16598</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1310744110</pub-id>
<pub-id pub-id-type="pmid">24062443</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Okumura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Infection with MERS-CoV causes lethal pneumonia in the common marmoset</article-title>
<source>PLoS pathogens</source>
<year>2014</year>
<volume>10</volume>
<issue>8</issue>
<fpage>e1004250</fpage>
<pub-id pub-id-type="doi">10.1371/journal.ppat.1004250</pub-id>
<pub-id pub-id-type="pmid">25144235</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Miazgowicz</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Milne-Price</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bushmaker</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Scott</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4</article-title>
<source>Journal of virology</source>
<year>2014</year>
<volume>88</volume>
<issue>16</issue>
<fpage>9220</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00676-14</pub-id>
<pub-id pub-id-type="pmid">24899185</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.•</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Agrawal</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Wakamiya</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>TS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease</article-title>
<source>Journal of virology.</source>
<year>2015</year>
<volume>89</volume>
<issue>7</issue>
<fpage>3659</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03427-14</pub-id>
<pub-id pub-id-type="pmid">25589660</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jewell</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Reznikov</surname>
<given-names>LR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4</article-title>
<source>The Journal of infectious diseases</source>
<year>2016</year>
<volume>213</volume>
<issue>5</issue>
<fpage>712</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jiv499</pub-id>
<pub-id pub-id-type="pmid">26486634</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Algaissi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Wakamiya</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease</article-title>
<source>Journal of virology</source>
<year>2016</year>
<volume>90</volume>
<issue>1</issue>
<fpage>57</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02009-15</pub-id>
<pub-id pub-id-type="pmid">26446606</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tao</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Garron</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Agrawal</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Algaissi</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>BH</given-names>
</name>
<name>
<surname>Wakamiya</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease</article-title>
<source>Journal of virology</source>
<year>2015</year>
<volume>90</volume>
<issue>1</issue>
<fpage>57</fpage>
<lpage>67</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02009-15</pub-id>
<pub-id pub-id-type="pmid">26446606</pub-id>
</element-citation>
</ref>
</ref-list>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000508 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000508 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7099997
   |texte=   Vaccine Development Against Middle East Respiratory Syndrome
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32226714" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021