Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000507 ( Pmc/Corpus ); précédent : 0005069; suivant : 0005080 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection: How Close Are We?</title>
<author>
<name sortKey="Omrani, Ali S" sort="Omrani, Ali S" uniqKey="Omrani A" first="Ali S." last="Omrani">Ali S. Omrani</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.415310.2</institution-id>
<institution-id institution-id-type="ISNI">0000000121914301</institution-id>
<institution>Department of Medicine, Section of Infectious Diseases,</institution>
<institution>King Faisal Specialist Hospital and Research Centre,</institution>
</institution-wrap>
Riyadh, Kingdom of Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Memish, Ziad A" sort="Memish, Ziad A" uniqKey="Memish Z" first="Ziad A." last="Memish">Ziad A. Memish</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.415696.9</institution-id>
<institution>College of Medicine,</institution>
<institution>Alfaisal University & Ministry of Health,</institution>
</institution-wrap>
P.O. Box 54146, Riyadh, 11514 Kingdom of Saudi Arabia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32226324</idno>
<idno type="pmc">7100761</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100761</idno>
<idno type="RBID">PMC:7100761</idno>
<idno type="doi">10.1007/s40506-015-0048-2</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000507</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000507</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection: How Close Are We?</title>
<author>
<name sortKey="Omrani, Ali S" sort="Omrani, Ali S" uniqKey="Omrani A" first="Ali S." last="Omrani">Ali S. Omrani</name>
<affiliation>
<nlm:aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.415310.2</institution-id>
<institution-id institution-id-type="ISNI">0000000121914301</institution-id>
<institution>Department of Medicine, Section of Infectious Diseases,</institution>
<institution>King Faisal Specialist Hospital and Research Centre,</institution>
</institution-wrap>
Riyadh, Kingdom of Saudi Arabia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Memish, Ziad A" sort="Memish, Ziad A" uniqKey="Memish Z" first="Ziad A." last="Memish">Ziad A. Memish</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.415696.9</institution-id>
<institution>College of Medicine,</institution>
<institution>Alfaisal University & Ministry of Health,</institution>
</institution-wrap>
P.O. Box 54146, Riyadh, 11514 Kingdom of Saudi Arabia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current Treatment Options in Infectious Diseases</title>
<idno type="ISSN">1523-3820</idno>
<idno type="eISSN">1534-6250</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Over 1100 cases of MERS-CoV have been reported since it was first identified in June 2012. Clinical presentation ranges from asymptomatic or mild illness to rapidly progressive disease with multi-organ failure and high mortality. Treatment has been largely supportive. A large number of compounds have been shown to have significant in vitro inhibitory activity against MERS-CoV. Until recently, macaques were the only suitable animal models for animal studies, hindering further clinical development of MERS-CoV therapy. However, the recent successful development of MERS-CoV infection model in transduced mice offers opportunities to accelerate clinical development of therapeutic agents for MERS-CoV infection. Currently available evidence supports further clinical investigation of interferon-based treatment regimens for patients with MERS-CoV. Combining interferon with mycophenolate and/or high-dose ribavirin appears especially promising. Monoclonal antibodies against various targets within MERS-CoV Spike protein have yielded encouraging in-vitro results. However, their safety and efficacy require confirmation in animal models and exploratory clinical trials.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, Am" uniqKey="Zaki A">AM Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, Tm" uniqKey="Bestebroer T">TM Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, Adme" uniqKey="Osterhaus A">ADME Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, Ram" uniqKey="Fouchier R">RAM Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hijawi, B" uniqKey="Hijawi B">B Hijawi</name>
</author>
<author>
<name sortKey="Abdallat, M" uniqKey="Abdallat M">M Abdallat</name>
</author>
<author>
<name sortKey="Sayaydeh, A" uniqKey="Sayaydeh A">A Sayaydeh</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Seilmaier, M" uniqKey="Seilmaier M">M Seilmaier</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guery, B" uniqKey="Guery B">B Guery</name>
</author>
<author>
<name sortKey="Poissy, J" uniqKey="Poissy J">J Poissy</name>
</author>
<author>
<name sortKey="El Mansouf, L" uniqKey="El Mansouf L">L el Mansouf</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abroug, F" uniqKey="Abroug F">F Abroug</name>
</author>
<author>
<name sortKey="Slim, A" uniqKey="Slim A">A Slim</name>
</author>
<author>
<name sortKey="Ouanes Besbes, L" uniqKey="Ouanes Besbes L">L Ouanes-Besbes</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
<author>
<name sortKey="Mcgeer, A" uniqKey="Mcgeer A">A McGeer</name>
</author>
<author>
<name sortKey="Perl, Tm" uniqKey="Perl T">TM Perl</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cotten, M" uniqKey="Cotten M">M Cotten</name>
</author>
<author>
<name sortKey="Watson, Sj" uniqKey="Watson S">SJ Watson</name>
</author>
<author>
<name sortKey="Kellam, P" uniqKey="Kellam P">P Kellam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breban, R" uniqKey="Breban R">R Breban</name>
</author>
<author>
<name sortKey="Riou, J" uniqKey="Riou J">J Riou</name>
</author>
<author>
<name sortKey="Fontanet, A" uniqKey="Fontanet A">A Fontanet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Van Kerkhove, Md" uniqKey="Van Kerkhove M">MD Van Kerkhove</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexandersen, S" uniqKey="Alexandersen S">S Alexandersen</name>
</author>
<author>
<name sortKey="Kobinger, Gp" uniqKey="Kobinger G">GP Kobinger</name>
</author>
<author>
<name sortKey="Soule, G" uniqKey="Soule G">G Soule</name>
</author>
<author>
<name sortKey="Wernery, U" uniqKey="Wernery U">U Wernery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Woo, Pc" uniqKey="Woo P">PC Woo</name>
</author>
<author>
<name sortKey="Lau, Sk" uniqKey="Lau S">SK Lau</name>
</author>
<author>
<name sortKey="Wernery, U" uniqKey="Wernery U">U Wernery</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Jores, J" uniqKey="Jores J">J Jores</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
<author>
<name sortKey="Messadi, L" uniqKey="Messadi L">L Messadi</name>
</author>
<author>
<name sortKey="Feyisa, A" uniqKey="Feyisa A">A Feyisa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alagaili, An" uniqKey="Alagaili A">AN Alagaili</name>
</author>
<author>
<name sortKey="Briese, T" uniqKey="Briese T">T Briese</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chu, Dk" uniqKey="Chu D">DK Chu</name>
</author>
<author>
<name sortKey="Poon, Ll" uniqKey="Poon L">LL Poon</name>
</author>
<author>
<name sortKey="Gomaa, Mm" uniqKey="Gomaa M">MM Gomaa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Cotten, M" uniqKey="Cotten M">M Cotten</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
<author>
<name sortKey="Al Dhahiry, Sh" uniqKey="Al Dhahiry S">SH Al Dhahiry</name>
</author>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller, Ma" uniqKey="Muller M">MA Muller</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Mishra, N" uniqKey="Mishra N">N Mishra</name>
</author>
<author>
<name sortKey="Olival, Kj" uniqKey="Olival K">KJ Olival</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ithete, Nl" uniqKey="Ithete N">NL Ithete</name>
</author>
<author>
<name sortKey="Stoffberg, S" uniqKey="Stoffberg S">S Stoffberg</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drexler, Jf" uniqKey="Drexler J">JF Drexler</name>
</author>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oboho, Ik" uniqKey="Oboho I">IK Oboho</name>
</author>
<author>
<name sortKey="Tomczyk, Sm" uniqKey="Tomczyk S">SM Tomczyk</name>
</author>
<author>
<name sortKey="Al Asmari, Am" uniqKey="Al Asmari A">AM Al-Asmari</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
<author>
<name sortKey="Zumla, Ai" uniqKey="Zumla A">AI Zumla</name>
</author>
<author>
<name sortKey="Al Hakeem, Rf" uniqKey="Al Hakeem R">RF Al-Hakeem</name>
</author>
<author>
<name sortKey="Al Rabeeah, Aa" uniqKey="Al Rabeeah A">AA Al-Rabeeah</name>
</author>
<author>
<name sortKey="Stephens, Gm" uniqKey="Stephens G">GM Stephens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
<author>
<name sortKey="Al Tawfiq, Ja" uniqKey="Al Tawfiq J">JA Al-Tawfiq</name>
</author>
<author>
<name sortKey="Al Rabeeah, Aa" uniqKey="Al Rabeeah A">AA Al-Rabeeah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Omrani, As" uniqKey="Omrani A">AS Omrani</name>
</author>
<author>
<name sortKey="Saad, Mm" uniqKey="Saad M">MM Saad</name>
</author>
<author>
<name sortKey="Baig, K" uniqKey="Baig K">K Baig</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rha, B" uniqKey="Rha B">B Rha</name>
</author>
<author>
<name sortKey="Rudd, J" uniqKey="Rudd J">J Rudd</name>
</author>
<author>
<name sortKey="Feikin, D" uniqKey="Feikin D">D Feikin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hart, Bj" uniqKey="Hart B">BJ Hart</name>
</author>
<author>
<name sortKey="Dyall, J" uniqKey="Dyall J">J Dyall</name>
</author>
<author>
<name sortKey="Postnikova, E" uniqKey="Postnikova E">E Postnikova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Jf" uniqKey="Chan J">JF Chan</name>
</author>
<author>
<name sortKey="Chan, Kh" uniqKey="Chan K">KH Chan</name>
</author>
<author>
<name sortKey="Kao, Ry" uniqKey="Kao R">RY Kao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wilde, Ah" uniqKey="De Wilde A">AH de Wilde</name>
</author>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Oudshoorn, D" uniqKey="Oudshoorn D">D Oudshoorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Martellaro, C" uniqKey="Martellaro C">C Martellaro</name>
</author>
<author>
<name sortKey="Callison, J" uniqKey="Callison J">J Callison</name>
</author>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dyall, J" uniqKey="Dyall J">J Dyall</name>
</author>
<author>
<name sortKey="Coleman, Cm" uniqKey="Coleman C">CM Coleman</name>
</author>
<author>
<name sortKey="Hart, Bj" uniqKey="Hart B">BJ Hart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
<author>
<name sortKey="Michaelis, M" uniqKey="Michaelis M">M Michaelis</name>
</author>
<author>
<name sortKey="Scholz, M" uniqKey="Scholz M">M Scholz</name>
</author>
<author>
<name sortKey="Doerr, Hw" uniqKey="Doerr H">HW Doerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shah, Nr" uniqKey="Shah N">NR Shah</name>
</author>
<author>
<name sortKey="Sunderland, A" uniqKey="Sunderland A">A Sunderland</name>
</author>
<author>
<name sortKey="Grdzelishvili, Vz" uniqKey="Grdzelishvili V">VZ Grdzelishvili</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, F" uniqKey="Chen F">F Chen</name>
</author>
<author>
<name sortKey="Chan, Kh" uniqKey="Chan K">KH Chan</name>
</author>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morgenstern, B" uniqKey="Morgenstern B">B Morgenstern</name>
</author>
<author>
<name sortKey="Michaelis, M" uniqKey="Michaelis M">M Michaelis</name>
</author>
<author>
<name sortKey="Baer, Pc" uniqKey="Baer P">PC Baer</name>
</author>
<author>
<name sortKey="Doerr, Hw" uniqKey="Doerr H">HW Doerr</name>
</author>
<author>
<name sortKey="Cinatl, J" uniqKey="Cinatl J">J Cinatl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pan, Q" uniqKey="Pan Q">Q Pan</name>
</author>
<author>
<name sortKey="De Ruiter, Pe" uniqKey="De Ruiter P">PE de Ruiter</name>
</author>
<author>
<name sortKey="Metselaar, Hj" uniqKey="Metselaar H">HJ Metselaar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Kw" uniqKey="Cheng K">KW Cheng</name>
</author>
<author>
<name sortKey="Cheng, Sc" uniqKey="Cheng S">SC Cheng</name>
</author>
<author>
<name sortKey="Chen, Wy" uniqKey="Chen W">WY Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wilde, Ah" uniqKey="De Wilde A">AH de Wilde</name>
</author>
<author>
<name sortKey="Zevenhoven Dobbe, Jc" uniqKey="Zevenhoven Dobbe J">JC Zevenhoven-Dobbe</name>
</author>
<author>
<name sortKey="Van Der Meer, Y" uniqKey="Van Der Meer Y">Y van der Meer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, Cy" uniqKey="Wu C">CY Wu</name>
</author>
<author>
<name sortKey="Jan, Jt" uniqKey="Jan J">JT Jan</name>
</author>
<author>
<name sortKey="Ma, Sh" uniqKey="Ma S">SH Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H Mou</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bosch, Bj" uniqKey="Bosch B">BJ Bosch</name>
</author>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xia, S" uniqKey="Xia S">S Xia</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
<author>
<name sortKey="Kou, Z" uniqKey="Kou Z">Z Kou</name>
</author>
<author>
<name sortKey="Ma, C" uniqKey="Ma C">C Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H Mou</name>
</author>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Van Kuppeveld, Fj" uniqKey="Van Kuppeveld F">FJ van Kuppeveld</name>
</author>
<author>
<name sortKey="Rottier, Pj" uniqKey="Rottier P">PJ Rottier</name>
</author>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
<author>
<name sortKey="Bosch, Bj" uniqKey="Bosch B">BJ Bosch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
<author>
<name sortKey="Zhao, G" uniqKey="Zhao G">G Zhao</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L Jiang</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Zuo, T" uniqKey="Zuo T">T Zuo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Xc" uniqKey="Tang X">XC Tang</name>
</author>
<author>
<name sortKey="Agnihothram, Ss" uniqKey="Agnihothram S">SS Agnihothram</name>
</author>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y Jiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T Ying</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
<author>
<name sortKey="Ju, Tw" uniqKey="Ju T">TW Ju</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reinhold, D" uniqKey="Reinhold D">D Reinhold</name>
</author>
<author>
<name sortKey="Brocke, S" uniqKey="Brocke S">S Brocke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
<author>
<name sortKey="Smits, Sl" uniqKey="Smits S">SL Smits</name>
</author>
<author>
<name sortKey="Provacia, Lb" uniqKey="Provacia L">LB Provacia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ohnuma, K" uniqKey="Ohnuma K">K Ohnuma</name>
</author>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
<author>
<name sortKey="Hatano, R" uniqKey="Hatano R">R Hatano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Doremalen, N" uniqKey="Van Doremalen N">N van Doremalen</name>
</author>
<author>
<name sortKey="Miazgowicz, Kl" uniqKey="Miazgowicz K">KL Miazgowicz</name>
</author>
<author>
<name sortKey="Milne Price, S" uniqKey="Milne Price S">S Milne-Price</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L Lu</name>
</author>
<author>
<name sortKey="Liu, Q" uniqKey="Liu Q">Q Liu</name>
</author>
<author>
<name sortKey="Zhu, Y" uniqKey="Zhu Y">Y Zhu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fung, Hb" uniqKey="Fung H">HB Fung</name>
</author>
<author>
<name sortKey="Guo, Y" uniqKey="Guo Y">Y Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ying, T" uniqKey="Ying T">T Ying</name>
</author>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L Lu</name>
</author>
<author>
<name sortKey="Dimitrov, Ds" uniqKey="Dimitrov D">DS Dimitrov</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S Jiang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cockrell, As" uniqKey="Cockrell A">AS Cockrell</name>
</author>
<author>
<name sortKey="Peck, Km" uniqKey="Peck K">KM Peck</name>
</author>
<author>
<name sortKey="Yount, Bl" uniqKey="Yount B">BL Yount</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coleman, Cm" uniqKey="Coleman C">CM Coleman</name>
</author>
<author>
<name sortKey="Matthews, Kl" uniqKey="Matthews K">KL Matthews</name>
</author>
<author>
<name sortKey="Goicochea, L" uniqKey="Goicochea L">L Goicochea</name>
</author>
<author>
<name sortKey="Frieman, Mb" uniqKey="Frieman M">MB Frieman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Prescott, J" uniqKey="Prescott J">J Prescott</name>
</author>
<author>
<name sortKey="Baseler, L" uniqKey="Baseler L">L Baseler</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Rasmussen, Al" uniqKey="Rasmussen A">AL Rasmussen</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H Feldmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y Yao</name>
</author>
<author>
<name sortKey="Bao, L" uniqKey="Bao L">L Bao</name>
</author>
<author>
<name sortKey="Deng, W" uniqKey="Deng W">W Deng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D Falzarano</name>
</author>
<author>
<name sortKey="De Wit, E" uniqKey="De Wit E">E de Wit</name>
</author>
<author>
<name sortKey="Rasmussen, Al" uniqKey="Rasmussen A">AL Rasmussen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J Zhao</name>
</author>
<author>
<name sortKey="Li, K" uniqKey="Li K">K Li</name>
</author>
<author>
<name sortKey="Wohlford Lenane, C" uniqKey="Wohlford Lenane C">C Wohlford-Lenane</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalid, M" uniqKey="Khalid M">M Khalid</name>
</author>
<author>
<name sortKey="Khan, B" uniqKey="Khan B">B Khan</name>
</author>
<author>
<name sortKey="Rabiah, Fa" uniqKey="Rabiah F">FA Rabiah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Spanakis, N" uniqKey="Spanakis N">N Spanakis</name>
</author>
<author>
<name sortKey="Tsiodras, S" uniqKey="Tsiodras S">S Tsiodras</name>
</author>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alghamdi, M" uniqKey="Alghamdi M">M AlGhamdi</name>
</author>
<author>
<name sortKey="Mushtaq, F" uniqKey="Mushtaq F">F Mushtaq</name>
</author>
<author>
<name sortKey="Awn, N" uniqKey="Awn N">N Awn</name>
</author>
<author>
<name sortKey="Shalhoub, S" uniqKey="Shalhoub S">S Shalhoub</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shalhoub, S" uniqKey="Shalhoub S">S Shalhoub</name>
</author>
<author>
<name sortKey="Alzahrani, A" uniqKey="Alzahrani A">A AlZahrani</name>
</author>
<author>
<name sortKey="Simhairi, R" uniqKey="Simhairi R">R Simhairi</name>
</author>
<author>
<name sortKey="Mushtaq, A" uniqKey="Mushtaq A">A Mushtaq</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Curr Treat Options Infect Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">Curr Treat Options Infect Dis</journal-id>
<journal-title-group>
<journal-title>Current Treatment Options in Infectious Diseases</journal-title>
</journal-title-group>
<issn pub-type="ppub">1523-3820</issn>
<issn pub-type="epub">1534-6250</issn>
<publisher>
<publisher-name>Springer US</publisher-name>
<publisher-loc>New York</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32226324</article-id>
<article-id pub-id-type="pmc">7100761</article-id>
<article-id pub-id-type="publisher-id">48</article-id>
<article-id pub-id-type="doi">10.1007/s40506-015-0048-2</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Viral Infections (J Tang, Section Editor)</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Therapeutic Options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection: How Close Are We?</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Omrani</surname>
<given-names>Ali S.</given-names>
</name>
<degrees>MBBCh, MSc, FRCP, FRCPath</degrees>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Memish</surname>
<given-names>Ziad A.</given-names>
</name>
<degrees>MD, FRCPC, FRCPL, FRCPE, FACP</degrees>
<address>
<phone>+966505483515</phone>
<email>zmemish@yahoo.com</email>
</address>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.415310.2</institution-id>
<institution-id institution-id-type="ISNI">0000000121914301</institution-id>
<institution>Department of Medicine, Section of Infectious Diseases,</institution>
<institution>King Faisal Specialist Hospital and Research Centre,</institution>
</institution-wrap>
Riyadh, Kingdom of Saudi Arabia</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.415696.9</institution-id>
<institution>College of Medicine,</institution>
<institution>Alfaisal University & Ministry of Health,</institution>
</institution-wrap>
P.O. Box 54146, Riyadh, 11514 Kingdom of Saudi Arabia</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>12</day>
<month>6</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="ppub">
<year>2015</year>
</pub-date>
<volume>7</volume>
<issue>3</issue>
<fpage>202</fpage>
<lpage>216</lpage>
<permissions>
<copyright-statement>© Springer Science+Business Media New York 2015</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Over 1100 cases of MERS-CoV have been reported since it was first identified in June 2012. Clinical presentation ranges from asymptomatic or mild illness to rapidly progressive disease with multi-organ failure and high mortality. Treatment has been largely supportive. A large number of compounds have been shown to have significant in vitro inhibitory activity against MERS-CoV. Until recently, macaques were the only suitable animal models for animal studies, hindering further clinical development of MERS-CoV therapy. However, the recent successful development of MERS-CoV infection model in transduced mice offers opportunities to accelerate clinical development of therapeutic agents for MERS-CoV infection. Currently available evidence supports further clinical investigation of interferon-based treatment regimens for patients with MERS-CoV. Combining interferon with mycophenolate and/or high-dose ribavirin appears especially promising. Monoclonal antibodies against various targets within MERS-CoV Spike protein have yielded encouraging in-vitro results. However, their safety and efficacy require confirmation in animal models and exploratory clinical trials.</p>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>MERS-CoV</kwd>
<kwd>Coronavirus</kwd>
<kwd>Middle East</kwd>
<kwd>Therapy</kwd>
<kwd>Interferon</kwd>
<kwd>Ribavirin</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Science+Business Media New York 2015</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was first identified from a 60-year patient who died in a hospital in Jeddah, Saudi Arabia in June 2012 with severe pneumonia complicated by multi-organ failure [
<xref ref-type="bibr" rid="CR1">1</xref>
]. Thereafter, retrospective testing of respiratory and serum samples identified MERS-CoV as the cause of a hospital-based outbreak of undiagnosed respiratory infections in Zarga, Jordan in April 2012 [
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
]. Up to 16 April 2015, a global total of 1106 cases of MERS-CoV infection has been reported to the World Health Organization (WHO) [
<xref ref-type="bibr" rid="CR4">4</xref>
]. The majority of infections have been reported from countries in the Arabian Peninsula and the Middle East, including Saudi Arabia, United Arab Emirates, Qatar, Oman, Kuwait, Yemen, Jordan, Egypt, Lebanon, and Iran [
<xref ref-type="bibr" rid="CR5">5</xref>
]. Cases have also been reported from countries outside this region, including the UK [
<xref ref-type="bibr" rid="CR6">6</xref>
], Germany [
<xref ref-type="bibr" rid="CR7">7</xref>
], France [
<xref ref-type="bibr" rid="CR8">8</xref>
], Italy [
<xref ref-type="bibr" rid="CR9">9</xref>
], Greece [
<xref ref-type="bibr" rid="CR10">10</xref>
], the Netherlands [
<xref ref-type="bibr" rid="CR11">11</xref>
], Austria [
<xref ref-type="bibr" rid="CR12">12</xref>
], Turkey [
<xref ref-type="bibr" rid="CR13">13</xref>
], Tunisia [
<xref ref-type="bibr" rid="CR14">14</xref>
], Algeria [
<xref ref-type="bibr" rid="CR15">15</xref>
], The Philippines [
<xref ref-type="bibr" rid="CR16">16</xref>
], Malaysia [
<xref ref-type="bibr" rid="CR17">17</xref>
], and the USA [
<xref ref-type="bibr" rid="CR18">18</xref>
]. All such cases involved individuals who were either recently in the Arabian Peninsula or the Middle East, or someone who had recent contact with such individuals.</p>
<p id="Par3">MERS-CoV infections occur in the community sporadically or in small clusters [
<xref ref-type="bibr" rid="CR19">19</xref>
]. However, larger MERS-CoV outbreaks have mostly been associated with nosocomial transmission, mostly resulting in high rates of morbidity and mortality [
<xref ref-type="bibr" rid="CR20">20</xref>
<xref ref-type="bibr" rid="CR22">22</xref>
]. Human-to-human transmission is well documented [
<xref ref-type="bibr" rid="CR19">19</xref>
<xref ref-type="bibr" rid="CR21">21</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
,
<xref ref-type="bibr" rid="CR24">24</xref>
]. However, once effective infection control measures are implemented, the virus’ potential to cause self-sustained epidemics appears low at present [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
].</p>
<p id="Par4">Dromedary camels have emerged as important hosts of MERS-CoV [
<xref ref-type="bibr" rid="CR27">27</xref>
]. MERS-CoV neutralizing antibodies were detected in dromedary camels from Saudi Arabia [
<xref ref-type="bibr" rid="CR28">28</xref>
], Oman [
<xref ref-type="bibr" rid="CR29">29</xref>
,
<xref ref-type="bibr" rid="CR30">30</xref>
], United Arab Emirates [
<xref ref-type="bibr" rid="CR31">31</xref>
<xref ref-type="bibr" rid="CR33">33</xref>
], Jordan [
<xref ref-type="bibr" rid="CR34">34</xref>
], and even Egypt [
<xref ref-type="bibr" rid="CR35">35</xref>
], Eastern Africa [
<xref ref-type="bibr" rid="CR36">36</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
], Nigeria [
<xref ref-type="bibr" rid="CR37">37</xref>
], Tunisia [
<xref ref-type="bibr" rid="CR37">37</xref>
], and the Canary Islands [
<xref ref-type="bibr" rid="CR29">29</xref>
] where primary human MERS-CoV infections have never been reported. Moreover, MERS-CoV genome and viable virus were isolated from dromedary camels from different parts of the Arabian Peninsula [
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
]. The strongest available evidence of a link between camels and human MERS-CoV infection was the simultaneous isolation of nearly identical MERS-CoV strains from camels and epidemiologically linked human cases in Saudi Arabia [
<xref ref-type="bibr" rid="CR40">40</xref>
] and in Qatar [
<xref ref-type="bibr" rid="CR41">41</xref>
]. MERS-CoV is more commonly detected in juvenile than older camels, suggesting that younger dromedary camels may have a particularly important role in the virus’ epidemiology [
<xref ref-type="bibr" rid="CR42">42</xref>
]. Interestingly, recently published results of a large, nationwide sero-survey in Saudi Arabia showed that the prevalence of MERS-CoV antibodies was significantly higher in individuals with frequent contact with animals; 15 times higher in shepherds (
<italic>P</italic>
 = 0.0004) and 23 times higher in slaughterhouse workers (
<italic>P</italic>
 < 0.0001), compared with the general population [
<xref ref-type="bibr" rid="CR43">43</xref>
].</p>
<p id="Par5">MERS-CoV was also isolated from a single bat in Saudi Arabia [
<xref ref-type="bibr" rid="CR44">44</xref>
]. Moreover, a closely related coronavirus was isolated from bats in South Africa [
<xref ref-type="bibr" rid="CR45">45</xref>
]. Phylogenetic analysis of the latter suggested that, like many other human coronaviruses, MERS-CoV ancestors might exist in Old World bats [
<xref ref-type="bibr" rid="CR46">46</xref>
]. It is therefore possible, although hitherto unconfirmed, that the epidemiology of MERS-CoV involves bats as natural reservoirs and dromedary camels as intermediate or co-hosts [
<xref ref-type="bibr" rid="CR47">47</xref>
,
<xref ref-type="bibr" rid="CR48">48</xref>
].</p>
<p id="Par6">The clinical spectrum of MERS-CoV ranges from a completely asymptomatic illness to rapidly progressive and fatal disease [
<xref ref-type="bibr" rid="CR49">49</xref>
<xref ref-type="bibr" rid="CR51">51</xref>
]. The majority of hospitalized patients have fever, cough, and shortness of breath, with radiological evidence of a lower respiratory tract infection. Gastrointestinal symptoms, headache, and generalized fatigue are also common [
<xref ref-type="bibr" rid="CR7">7</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
]. Respiratory, renal, and other organ failure are frequent complications of severe MERS-CoV infection, and many patients require admission to an intensive care unit [
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR53">53</xref>
]. Although overall mortality is around 38.1 %, mortality is considerable higher in patients with severe MERS-CoV infection [
<xref ref-type="bibr" rid="CR4">4</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
,
<xref ref-type="bibr" rid="CR55">55</xref>
].</p>
<p id="Par7">Supportive care has been the mainstay of management for patients with MERS-CoV infection [
<xref ref-type="bibr" rid="CR5">5</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
]. However, a number of pre-clinical and investigational therapeutic approaches have been described. We herein review potential therapeutic options for patients with MERS-CoV infection.</p>
</sec>
<sec id="Sec2">
<title>In vitro studies</title>
<p id="Par8">In vitro testing of agents already approved for anti-viral or other clinical indications for anti-MERS-CoV activity has the obvious advantages of having established pharmacokinetics properties and safety profiles. Numerous such agents have been tested in cell culture and several have been found to have some inhibitory activity against MERS-CoV (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Summary of in vitro anti-MERS-CoV activity of selected agents</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Agent</th>
<th>In vitro model</th>
<th>Findings</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interferon beta</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>IC
<sub>50,</sub>
1.37 U/mL, IC
<sub>90</sub>
39 U/mL</td>
<td>Hart et al. [
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td>Interferon alfa-2a</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>IC
<sub>50</sub>
160.8 U/mL</td>
<td>Hart et al. [
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td>Interferon alfa-2b</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>IC
<sub>50</sub>
21.4 U/mL</td>
<td>Hart et al.[
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td>Interferon gamma</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>IC
<sub>50</sub>
56.5 U/mL</td>
<td>Hart et al. [
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td>Interferon alfa-2b</td>
<td>CPE in Vero cells</td>
<td>EC
<sub>50</sub>
6709 U/mL, EC
<sub>90</sub>
184,015 U/mL</td>
<td>Chan et al. [
<xref ref-type="bibr" rid="CR58">58</xref>
]</td>
</tr>
<tr>
<td>Interferon beta-1a</td>
<td>CPE in Vero cells</td>
<td>EC
<sub>50</sub>
480 U/mL, EC
<sub>90</sub>
2473 U/mL</td>
<td>Chan et al. [
<xref ref-type="bibr" rid="CR58">58</xref>
]</td>
</tr>
<tr>
<td>Interferon beta-1b</td>
<td>CPE in Vero cells</td>
<td>EC
<sub>50</sub>
17.64 U/mL, EC
<sub>90</sub>
93.31 U/mL</td>
<td>Chan et al. [
<xref ref-type="bibr" rid="CR58">58</xref>
]</td>
</tr>
<tr>
<td>Interferon alfa</td>
<td>CPE in Vero cells</td>
<td>Profound inhibition of MERS-CoV CPE</td>
<td>de Wilde et al. [
<xref ref-type="bibr" rid="CR59">59</xref>
]</td>
</tr>
<tr>
<td>Interferon alfa-2b</td>
<td>CPE in Vero cells</td>
<td>IC
<sub>50</sub>
58.08 U/mL, IC
<sub>90</sub>
320.11 U/mL</td>
<td>Falzarano et al. [
<xref ref-type="bibr" rid="CR60">60</xref>
]</td>
</tr>
<tr>
<td>Interferon alfa-2b</td>
<td>CPE in LLC-MK2 cells</td>
<td>IC
<sub>50</sub>
13.26 U/mL, IC
<sub>90</sub>
44.24 U/mL</td>
<td>Falzarano et al. [
<xref ref-type="bibr" rid="CR60">60</xref>
]</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>Inhibitory MERS-CoV effect at concentrations ≥250 μM</td>
<td>Hart et al. [
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>CPE in Vero cells</td>
<td>EC
<sub>50</sub>
9.99 μg/mL, EC
<sub>90</sub>
107 μg/mL</td>
<td>Chan et al. [
<xref ref-type="bibr" rid="CR58">58</xref>
]</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>CPE in Vero cells</td>
<td>IC
<sub>50</sub>
41.45 μg/mL, IC
<sub>90</sub>
92.15 μg/mL</td>
<td>Falzarano et al. [
<xref ref-type="bibr" rid="CR60">60</xref>
]</td>
</tr>
<tr>
<td>Ribavirin</td>
<td>CPE in LLC-MK2 cells</td>
<td>IC
<sub>50</sub>
16.33 μg/mL, IC
<sub>90</sub>
21.15 μg/mL</td>
<td>Falzarano et al. [
<xref ref-type="bibr" rid="CR60">60</xref>
]</td>
</tr>
<tr>
<td>Ribavirin plus interferon alfa-2b</td>
<td>CPE in Vero cells</td>
<td>Ribavirin IC
<sub>50</sub>
12 μg/mL; interferon IC
<sub>50</sub>
62 u/mL</td>
<td>Falzarano et al. [
<xref ref-type="bibr" rid="CR60">60</xref>
]</td>
</tr>
<tr>
<td>Mycophenolic acid</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>IC
<sub>50</sub>
2.87 μM</td>
<td>Hart et al. [
<xref ref-type="bibr" rid="CR57">57</xref>
]</td>
</tr>
<tr>
<td>Mycophenolic acid</td>
<td>CPE in Vero cells</td>
<td>EC
<sub>50</sub>
0.17 U/mL, EC
<sub>90</sub>
2.61 U/mL</td>
<td>Chan et al. [
<xref ref-type="bibr" rid="CR58">58</xref>
]</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>CPE in Vero and Huh7 cells</td>
<td>Treatment with 9–15 μM Cyclosporin A inhibited MERS-CoV CPE</td>
<td>de Wilde et al. [
<xref ref-type="bibr" rid="CR59">59</xref>
]</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>CPE in Vero or Huh7 cells</td>
<td>EC
<sub>50</sub>
8.0 μM, CC
<sub>50</sub>
24.4 μM</td>
<td>de Wilde et al. [
<xref ref-type="bibr" rid="CR61">61</xref>
]</td>
</tr>
<tr>
<td>Loperamide</td>
<td>CPE in Vero or Huh7 cells</td>
<td>EC
<sub>50</sub>
4.8 μM, CC
<sub>50</sub>
15.5 μM</td>
<td>de Wilde et al. [
<xref ref-type="bibr" rid="CR61">61</xref>
]</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>CPE in Vero or Huh7 cells</td>
<td>EC
<sub>50</sub>
3.0 μM, CC
<sub>50</sub>
58.1 μM</td>
<td>de Wilde et al.[
<xref ref-type="bibr" rid="CR61">61</xref>
]</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
6.275 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>CPE in Vero or Huh7 cells</td>
<td>EC
<sub>50</sub>
4.9 μM, CC
<sub>50</sub>
21.3 μM</td>
<td>de Wilde et al. [
<xref ref-type="bibr" rid="CR61">61</xref>
]</td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
9.51 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Triflupromazine</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
5.76 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Dasatinib</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
5.47 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Imatinib</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
17.69 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
1.22 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
<tr>
<td>Toremifene</td>
<td>Cell-based ELISA in Vero E6 cells</td>
<td>EC
<sub>50</sub>
12.92 μM</td>
<td>Dyall et al. [
<xref ref-type="bibr" rid="CR62">62</xref>
]</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>CC</italic>
<sub>
<italic>50</italic>
</sub>
50 % cytotoxic concentration,
<italic>EC</italic>
<sub>
<italic>50</italic>
</sub>
50 % effective concentration,
<italic>CPE</italic>
cytopathic effect,
<italic>IC</italic>
<sub>
<italic>50</italic>
</sub>
50 % inhibitory concentration,
<italic>IC</italic>
<sub>
<italic>90</italic>
</sub>
90 % inhibitory concentration,
<italic>INF</italic>
interferon</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par9">Interferon products have significant in vitro MERS-CoV inhibitory activity. However, interferon beta is most potent in vitro demonstrating in vitro activity that is 16-fold higher than interferon alfa-2b, 41-fold higher than interferon gamma, and 117-fold higher than interferon alfa-2a [
<xref ref-type="bibr" rid="CR57">57</xref>
]. Even more, interferon gamma showed no useful in vitro MERS-CoV inhibitory activities in some studies [
<xref ref-type="bibr" rid="CR58">58</xref>
]. Of note, MERS-CoV is 50–100 times more sensitive in vitro to interferon alfa than severe acute respiratory syndrome coronavirus (SARS-CoV) [
<xref ref-type="bibr" rid="CR59">59</xref>
]. Therefore, the clinical experience gained with interferon therapy during SARS outbreak may not be directly applicable to MERS-CoV [
<xref ref-type="bibr" rid="CR63">63</xref>
].</p>
<p id="Par10">Falzarano et al. assessed in vitro activity of interferon alfa-2b alone or in combination with ribavirin using Vero and LLC-MK2 cell lines [
<xref ref-type="bibr" rid="CR60">60</xref>
]. They noted that both compounds demonstrated useful anti-MERS-CoV activity in Vero cells only at concentrations higher than those than can be achieved clinically (Table 
<xref rid="Tab1" ref-type="table">1</xref>
). However, their activity was several folds higher in LLC-MK2 cells [
<xref ref-type="bibr" rid="CR60">60</xref>
]. Vero cells are known to be relatively resistant to ribavirin; an observation that might explain the consistently high 50 % inhibitory concentration (IC
<sub>50</sub>
) values reported in assays utilizing this cell type [
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
,
<xref ref-type="bibr" rid="CR64">64</xref>
]. Moreover, when both interferon alfa-2b and ribavirin were applied as a combination, significant synergism was observed with eightfold reduction in IC
<sub>50</sub>
for interferon alfa-2b and 16-fold reduction in that of ribavirin (Table 
<xref rid="Tab1" ref-type="table">1</xref>
) [
<xref ref-type="bibr" rid="CR60">60</xref>
]. Similar synergism was previously demonstrated for interferon plus ribavirin against SARS-CoV [
<xref ref-type="bibr" rid="CR65">65</xref>
,
<xref ref-type="bibr" rid="CR66">66</xref>
].</p>
<p id="Par11">Mycophenolic acid consistently demonstrated potent in vitro MERS-CoV inhibitory activity (Table 
<xref rid="Tab1" ref-type="table">1</xref>
) [
<xref ref-type="bibr" rid="CR57">57</xref>
,
<xref ref-type="bibr" rid="CR58">58</xref>
]. It is thought to exert its antiviral effects through modulation of interferon-stimulated gene expression [
<xref ref-type="bibr" rid="CR67">67</xref>
,
<xref ref-type="bibr" rid="CR68">68</xref>
]. Mycophenolic acid is widely used as an immune suppressive agent of recipients of organ transplantation and other clinical indications; further clinical evaluation of its potential role in the treatment of patients with MERS-CoV infection is warranted.</p>
<p id="Par12">Cyclosporin A appears to function through blocking of interactions between viral proteins and cellular cyclophilin [
<xref ref-type="bibr" rid="CR69">69</xref>
]. It has been shown to prevent MERS-CoV cytopathic effects and prevent cell death in cell culture [
<xref ref-type="bibr" rid="CR59">59</xref>
]. However, some cells continued to support low-level MERS-CoV replication, raising concerns over the possible emergence of resistance to cyclosporine during clinical treatment.</p>
<p id="Par13">Other anti-MERS-CoV compounds have been identified through in vitro screening of large libraries. Using a cytopathic effect assay, a library of 348 FDA-approved agents was tested for in vitro MERS-CoV activity [
<xref ref-type="bibr" rid="CR61">61</xref>
]. Chloroquine, chlorpromazine, loperamide, and lopinavir were found to inhibit MERS-CoV replication at low concentrations. Lopinavir had previously been shown to inhibit SARS-CoV replication in vitro and was suggested as a possible therapeutic option for MERS-CoV [
<xref ref-type="bibr" rid="CR70">70</xref>
,
<xref ref-type="bibr" rid="CR71">71</xref>
]. However, in another large in vitro study, out of 1280 compounds that were screened for in vitro MERS-CoV activity, only mycophenolic acid, ribavirin, interferon alfa-2a, interferon beta-1a, and interferon beta-1b showed anti-MERS-CoV activity, while lopinavir, nelfinavir, and interferon gamma demonstrated suboptimal activity [
<xref ref-type="bibr" rid="CR58">58</xref>
].</p>
<p id="Par14">Dyall et al. used cell-based ELISA assay to screen 290 compounds, all either FDA-approved or in advanced stages development, for anti-MERS-CoV activity [
<xref ref-type="bibr" rid="CR62">62</xref>
]. Sixty agents were found to be active against MERS-CoV. These included neurotransmitter inhibitors (e.g., chlorpromazine, triflupromazine), estrogen receptor antagonists (e.g., tamoxifen), kinase signaling inhibitors (e.g., imatinib, dasatinib), inhibitors of lipid or sterol metabolism (e.g., terconazole, triparanol), protein processing inhibitors (e.g., anisomycin, homoharringtonine), inhibitors of DNA synthesis or repair (e.g., Gemcitabine), and anti-malarial agents (e.g., chloroquine, mefloquine) [
<xref ref-type="bibr" rid="CR62">62</xref>
].</p>
<p id="Par15">Most of the agents described above are readily available for clinical use in their respective licensed indications. Although their optimal use needs confirmation in appropriately conducted clinical trials, they may be used off-label at the discretion of physicians treating patients with MERS-CoV infection.</p>
</sec>
<sec id="Sec3">
<title>Pre-clinical, in vitro studies</title>
<p id="Par16">MERS-CoV carry Spike (S) proteins on their envelope through which they bind to specific receptors on its host cells; dipeptidyl peptidase (DPP4), also known as CD26 [
<xref ref-type="bibr" rid="CR72">72</xref>
]. S protein is composed of S1 and S2 subunits (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). S protein binds to DPP4 at a receptor-binding domain (RBD) on S1 subunit. S2 subunit mediates membrane fusion and includes in its structure two heptad repeat domains (HR1 and HR2), in addition to a fusion protein (FP), and trans-membrane (TM) and cytoplasmic (CD) domains [
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR73">73</xref>
,
<xref ref-type="bibr" rid="CR74">74</xref>
].
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>MERS-CoV Spike protein structure and selected therapeutic targets. CD, cytoplasmic domain; DPP4, dipeptidyl peptidase 4; FP, fusion peptide; HR, heptad repeat; MAb, monocolonal antibodies; RBD, receptor binding domain; SP, signal peptide; S, spike; TM, trans-membrane domain.</p>
</caption>
<graphic xlink:href="40506_2015_48_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p id="Par17">RBD of MERS-CoV S1 glycoprotein can induce significant neutralizing antibody response [
<xref ref-type="bibr" rid="CR75">75</xref>
,
<xref ref-type="bibr" rid="CR76">76</xref>
]. A monoclonal antibody, designated Mersmab1, was produced in mice immunized with recombinant MERS-CoV S1 fused to IgG1 Fc. Mersmab1 blocks MERS-CoV entry and inhibits cytopathic effects in cell culture [
<xref ref-type="bibr" rid="CR77">77</xref>
]. Screening large non-immune human antibody libraries for MERS-CoV1 RBD neutralizing activity resulted in the identification of several potent monoclonal antibodies (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) [
<xref ref-type="bibr" rid="CR78">78</xref>
<xref ref-type="bibr" rid="CR80">80</xref>
]. For example, three highly potent human monoclonal antibodies, m336, m337, and m338, neutralized pseudo-typed MERS-CoV in cell culture with IC
<sub>50</sub>
ranging between 0.005 and 0.017 μg/mL; m336, which is the most potent of the three, had an IC
<sub>90</sub>
of 0.039 μg/mL [
<xref ref-type="bibr" rid="CR80">80</xref>
].</p>
<p id="Par18">Inhibition of MERS-CoV through DPP4 is another potential target for anti-MERS-CoV therapeutics [
<xref ref-type="bibr" rid="CR81">81</xref>
]. Adenosine deaminase is a natural antagonist for DPP4 and has been shown to prevent MERS-CoV infection in DPP4-transfected cells [
<xref ref-type="bibr" rid="CR82">82</xref>
]. Anti-CD26 monoclonal antibodies such as 2F9 and YS110 inhibited binding of MERS-CoV to DPP4 and prevented MERS-CoV infection in Huh-7 cells [
<xref ref-type="bibr" rid="CR83">83</xref>
]. However, DPP4 is expressed on the epithelial and endothelial cell of most human organs and is involved in many important functions including glucose metabolism, T-cell activation, chemotaxis modulation, cell adhesion, and apoptosis [
<xref ref-type="bibr" rid="CR84">84</xref>
]. Therefore, non-selective DPP4 inhibition in humans may result in pleiotropic effects on the host and trigger unexpected adverse events.</p>
<p id="Par19">Another entry mechanism for MERS-CoV is through S2-mediated membrane fusion [
<xref ref-type="bibr" rid="CR48">48</xref>
,
<xref ref-type="bibr" rid="CR74">74</xref>
,
<xref ref-type="bibr" rid="CR85">85</xref>
]. HR2P, a synthetic peptide, blocks HR1 domain on MERS-CoV S protein and exhibits potent anti-viral effect in vitro (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
) [
<xref ref-type="bibr" rid="CR85">85</xref>
]. The HIV-1 fusion inhibitor Enfuvirtide (T-20), which is licensed for the treatment of patients with HIV infection, is an HR2 peptide [
<xref ref-type="bibr" rid="CR86">86</xref>
]. MERS-CoV HR2P analogs are therefore realistic potential options for MERS-CoV therapy that require further ex vivo and in vivo assessment.</p>
<p id="Par20">These monoclonal antibodies and investigational peptides are promising candidates for further evaluation. Their exceptionally high neutralization activity renders them potential options for prevention or treatment of MERS-CoV infection. Non-immune antibody libraries have thus far been used to identify those potent MERS-CoV human monoclonal antibodies. It would be of great interest to investigate sera from immune individuals for the presence of these antibodies as well as screen them for any others with significant neutralization activity. It should be emphasized that despite their potent in vitro activity, the safety and efficacy of all monoclonal antibodies and peptides will need to be confirmed in animal models followed by human clinical trials [
<xref ref-type="bibr" rid="CR87">87</xref>
]. Other potential concern over the clinical application of monoclonal antibodies in MERS-CoV therapy is the emergence of escape mutants and development of resistance [
<xref ref-type="bibr" rid="CR87">87</xref>
]. At least in one study, escape mutations from one epitope did not have a major impact on neutralization with antibodies directed against other epitopes [
<xref ref-type="bibr" rid="CR79">79</xref>
]. It may there be preferable that MERS-CoV monoclonal antibodies are used in combinations [
<xref ref-type="bibr" rid="CR87">87</xref>
].</p>
</sec>
<sec id="Sec4">
<title>Animal studies</title>
<p id="Par21">One of the major earlier challenges in any emerging infectious disease is the development of successful animal models to facilitate experimental investigations to understand the pathogenesis and identify potential therapeutic targets and interventions. DPP4 of wild-type mice does not support MERS-CoV target binding, and hence, no viral replication in lung tissue or infection was evident in experimentally exposed mice [
<xref ref-type="bibr" rid="CR88">88</xref>
,
<xref ref-type="bibr" rid="CR89">89</xref>
]. Similarly, MERS-CoV failed to replicate in inoculated small animals such as ferrets or Syrian hamsters [
<xref ref-type="bibr" rid="CR82">82</xref>
,
<xref ref-type="bibr" rid="CR90">90</xref>
,
<xref ref-type="bibr" rid="CR91">91</xref>
]. However, following intra-tracheal, ocular, oral, or intra-nasal inoculation with infectious doses of the MERS-CoV, rhesus macaques developed clinical signs of lower respiratory tract infection in addition to compatible histological changes, evidence of virus replication in lung tissue, gene expression, production of neutralizing antibodies, and cytokine and chemokine production [
<xref ref-type="bibr" rid="CR92">92</xref>
<xref ref-type="bibr" rid="CR94">94</xref>
].</p>
<p id="Par22">Following on from their ex vivo demonstration of antiviral effect of interferon alfa-2b and ribavirin against MERS-CoV [
<xref ref-type="bibr" rid="CR60">60</xref>
], Falzarano et al. used macaques to study the clinical efficacy of the combination in experimental MERS-CoV infection [
<xref ref-type="bibr" rid="CR95">95</xref>
]. Two sets of three rhesus macaques were infected with MERS-CoV. One set of macaques was commenced 8 h after infection on subcutaneous interferon alfa-2b 5 million units per kg every 16 h with intra-muscular ribavirin 10 mg per kg every 8 h. All animals were put down after 72 h of infection. Unlike treated animals, untreated macaques showed signs of respiratory distress, had decreased oxygen saturation, and developed interstitial infiltrates in their chest radiographs. Necropsy showed that lungs of untreated macaques were firm and edematous with multi-focal consolidation whereas treated animals had normal-looking lungs. Mean viral load in lung tissue from treated animals was significantly lower than untreated animals (
<italic>P</italic>
 = 0.04). Moreover, treated animals showed reduced systemic and local production of pro-inflammatory cytokines indicating a moderated host response to infection. These findings provide strong support for the potential role of early interferon plus ribavirin therapy in MERS-CoV infected humans. However, administration of therapy as early as 8 h of human infection is probably not feasible in most clinical settings.</p>
<p id="Par23">One remarkable recent development has been the successful development of an experimental MERS-CoV infection model using mice transduced with recombinant, non-replicating adenovirus expressing hDPP4 receptors [
<xref ref-type="bibr" rid="CR96">96</xref>
]. The investigators demonstrated that adenovirus-hDPP4 transduced C57BL/6 and BALB/c mice infected with MERS-CoV failed to gain weight and had viral replication in their lung tissues with pathological evidence of interstitial pneumonia. Furthermore, it was shown that hDPP4-transduced mice without RIG-I-like receptors (RLRs) and Toll-like receptors (TLRs), both required for interferon induction in coronavirus infections, had a more severe MERS-CoV infection and delayed viral clearance. These findings suggest that TLR-dependent and IFN signaling pathways are required for MERS-CoV control. To further investigate the role of interferon in MERS-CoV, Zhao et al. treated adenovirus hDPP4-transduced mice with polyinosinic-polycytidylic acid (poly I:C), an immuno-stimulant TLR3 agonist, interferon beta or interferon gamma before inoculation with MERS-CoV. Poly I:C and interferon beta therapy resulted in accelerated viral clearance without increased inflammatory cell infiltration [
<xref ref-type="bibr" rid="CR96">96</xref>
]. This small animal model, which is reproducible within 2–3 weeks, offers great potential to accelerate further experimental work to elucidate the detailed host responses involved in MERS-CoV infection and to investigate potential therapeutic interventions, including those described above.</p>
</sec>
<sec id="Sec5">
<title>Clinical experience</title>
<p id="Par24">Clinical data on MERS-CoV therapy remains limited to case reports, case series, and retrospective cohort studies (Table 
<xref rid="Tab2" ref-type="table">2</xref>
). Supported by reports describing the effectiveness of the combination of interferon and ribavirin in vitro and in macaques, this combination has been most widely used. The earliest clinical report emerged from the Eastern Province, Saudi Arabia. Five patients with severe MERS-CoV infection were started on high-dose ribavirin plus interferon alfa-2b after a median of 19 days from hospitalization. All patients were critically ill and had significant co-morbidities. None of the patients survived [
<xref ref-type="bibr" rid="CR97">97</xref>
]. The largest study to date included 44 patients with severe MERS-CoV infection requiring respiratory support [
<xref ref-type="bibr" rid="CR53">53</xref>
]. Twenty patients who received interferon alfa-2a plus high-dose ribavirin after a median of 3 days from diagnosis were compared with an historic matched cohort of 24 patients. Combination therapy was associated with significantly improved survival at 14-days from diagnosis (70 vs 29 %;
<italic>P</italic>
 = 0.004). There was a strong trend towards improved survival in the combination group at 28-days, but the difference was not statistically significant (30 % vs 20 %,
<italic>P</italic>
 = 0.054) [
<xref ref-type="bibr" rid="CR53">53</xref>
].
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Clinical experience with therapeutic interventions for patients with MERS-CoV infection</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th>Reference</th>
<th>Patient(s)</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al-Tawfiq et al. [
<xref ref-type="bibr" rid="CR97">97</xref>
]</td>
<td>5 critically ill patients; all with chronic kidney disease, median age 62 years, 3 males.</td>
<td>RBV 2000-mg loading followed by 400–800 mg q12h plus INF alfa-2b 100–144 μg per week. Median time from hospitalization to start of therapy was 19 days (range 10–22).</td>
<td>1 patient developed hemolytic anemia on therapy, and 2 developed high lipase. All patients died within an average of 40 days after admission.</td>
</tr>
<tr>
<td>Omrani et al. [
<xref ref-type="bibr" rid="CR53">53</xref>
]</td>
<td>44 patients with severe MERS-CoV infection requiring invasive or non-invasive ventilation. Mean (±SD) age was 65.5 (±18.2) years and APACHE II 27 (10.3).</td>
<td>20 patients (treatment group) received RBV 2000-mg loading dose followed by 1200 mg q8h plus peg-INF alfa-2a 180 μg per week within a median of 3 days (range 0–8) from diagnosis. 24 matched historical controls (comparator group) received supportive care only.</td>
<td>Survival in the treatment group and the comparator group was 70 % versus 29 % at 14 days (
<italic>p</italic>
 = 0.004), and 30 % versus 17 % at 28 days (
<italic>p</italic>
 = 0.054), respectivley. The treatment group had significantly more hemoglobin reduction than the comparator group (p=0.002).</td>
</tr>
<tr>
<td>Shalhoub et al. [
<xref ref-type="bibr" rid="CR98">98</xref>
]</td>
<td>24 patients with MERS-CoV pneumonia, median age 60 years, 56 % males.</td>
<td>RBV 2000-mg loading followed by 600 mg q8h plus either IFN alfa-2a 180 μg per week (
<italic>n</italic>
 = 13) or IFN beta-1a 44 mg thrice per week (
<italic>n</italic>
 = 11). Treatment was started within a median of 1 day of MERS-CoV diagnosis.</td>
<td>Overall mortality rate was 69 % (22/32). Mortality in patients who received IFN alfa-2a was 85 % (11/13) versus 64 % (7/11) in those who received IFN beta-1a (
<italic>p</italic>
 = 0.24). Age above 50 years and diabetes mellitus were independent risk factors for mortality.</td>
</tr>
<tr>
<td>Khalid et al. [
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
]</td>
<td>6 patients; all with radiological evidence of pneumonia. 3 with severe infection and multi-organ failure requiring MV and CRRT; 1 requiring non-invasive ventilation; 2 with mild/asymptomatic disease.</td>
<td>RBV 2000-mg loading dose followed by 1200 mg q8h plus peg-INF alfa-2b 180 μg per week. Mean time to start of therapy was 14.7 days in 3 patients with severe MERS-CoV disease. One patient with moderately severe disease was started on treatment on day of admission to hospital.</td>
<td>All 3 patients with severe disease and multi-organ failure died. All remaining 3 patients survived.</td>
</tr>
<tr>
<td>Spanakis et al. [
<xref ref-type="bibr" rid="CR101">101</xref>
]</td>
<td>69-year old man with bilateral pneumonia, ARDS and respiratory failure requiring MV. AKI on CRRT. Later diagnosed with adenocarcinoma of the colon.</td>
<td>Lopinavir 400 mg/ritonavir 100 mg q12h, peg-INF alfa-2a 180 μg per week and RBV 2000 mg loading followed by 1200 mg q8h. All started on day 13 from onset of illness, day 3 from diagnosis of MERS-CoV infection.</td>
<td>Viremia resolved within 2 days of combination therapy. RBV discontinued after 7 days due to hyperbilirubinemia. Patient died of septic shock 13 days after stopping therapy; 2 post-therapy respiratory samples were negative by RT-PCR for MERS-CoV.</td>
</tr>
<tr>
<td>Al-Ghamdi et al. [
<xref ref-type="bibr" rid="CR102">102</xref>
]</td>
<td>2 renal transplant patients. Frist is a 44-years old man who presented 10-years post-transplant with severe, bilateral pneumonia complicated by respiratory failure, and AKI. He required MV and CRRT. Second patient is a 30-year old man who presented 6 weeks post-transplant with no-pneumonic MERS-CoV infection.</td>
<td>
<p>First patient was on long-term cyclosporine, azathioprine, and prednisone. He was started on peg-INF alfa-2a 180 μg per week plus RBV 400-mg loading followed by 200 mg q12h on day 8 from admission; 11 days from onset of symptoms.</p>
<p>Second patient was on mycophenolate and prednisone. No additional anti-viral therapy was prescribed.</p>
</td>
<td>Patient 1 died 7 days after diagnosis. Patient 2 was discharged home after 9 days of hospitalization.</td>
</tr>
<tr>
<td>Shalhoub et al. [
<xref ref-type="bibr" rid="CR103">103</xref>
]</td>
<td>51-year old man with recently diagnosed HIV infection (CD4 count 58 cells/mm
<sup>3</sup>
). Bilateral infiltrates. CMV colitis was diagnosed and treated in the same admission.</td>
<td>Starting day 1 from diagnosis, RBV 2000-mg loading followed by 600 mg q12h plus peg-INF alfa-2a 180 μg per week (9 days), switched to interferon beta-1a 44 μg thrice weekly (17 days). Also anti-HIV therapy with TDF/FTC and ATV/r and anti-CMV therapy with ganciclovir followed by valganciclovir (21 days).</td>
<td>Depression presumed at least partly secondary to interferon therapy. Discharged home after 39 days of hospitalization. Prolonged viral shedding in respiratory secretions, extended beyond RBV/INF therapy.</td>
</tr>
<tr>
<td>Al-Hameed et al. [
<xref ref-type="bibr" rid="CR54">54</xref>
]</td>
<td>8 critically ill patients; all in ICU, 7 on MV. Median age 56.5 years, 75 % males, median day 1 in ICU APACHE II score 13 (range 5–30). 6 developed secondary bacterial infections.</td>
<td>All received INF alfa-2a plus RBV (dosing regimen, duration and time to start of therapy not provided).</td>
<td>
<p>Non-infectious complications included congestive heart failure (2), acute myocardial infarction (2), pulmonary embolism (1), and intra-cranial hemorrhage (1).</p>
<p>Final outcome, 5 died, 1 brain-dead and 2 recovered.</p>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>
<italic>AKI</italic>
acute kidney injury,
<italic>APACHE II</italic>
Acute Physiology and Chronic Health Evaluation II,
<italic>ARDS</italic>
acute respiratory distress syndrome,
<italic>ATV/r</italic>
atazanavir/ritonavir,
<italic>CRRT</italic>
continuous renal replacement therapy,
<italic>FTC</italic>
emtricitabine,
<italic>ICU</italic>
intensive care unit,
<italic>INF</italic>
interferon,
<italic>MV</italic>
mechanical ventilation,
<italic>peg-INF</italic>
pegylated interferon,
<italic>RT-PCR</italic>
real-time polymerase chain reaction,
<italic>RBV</italic>
ribavirin,
<italic>SD</italic>
standard deviation,
<italic>TDF</italic>
tenofovir dipivoxil fumerate</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par25">Similarly, in a recent report from a single center in Jeddah, Saudi Arabia, overall in-hospital mortality was 69 % of 24 patients with severe MERS-CoV infection despite receiving ribavirin plus either interferon alfa-2a or interferon beta-1a within a median of 1 day from diagnosis [
<xref ref-type="bibr" rid="CR98">98</xref>
]. Mortality was not significantly different in 13 patients who received interferon alfa (85 %) compared with 11 patients who received interferon beta therapy (64 %,
<italic>P</italic>
 = 0.24) [
<xref ref-type="bibr" rid="CR98">98</xref>
]. The sample size in both studies was probably inadequate to demonstrate improved long-term survival, especially that most MERS-CoV patients have significant co-morbidities and that the course of MERS-CoV infection is frequently complicated by hospital-acquired infections that are likely to contribute to the patients’ poor outcome [
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR52">52</xref>
,
<xref ref-type="bibr" rid="CR54">54</xref>
,
<xref ref-type="bibr" rid="CR55">55</xref>
]. Furthermore, treatment in both studies was started when patients were already ill and requiring respiratory support, in contrast to the macaques study where treatment was commenced within 8 h of experimental infection [
<xref ref-type="bibr" rid="CR95">95</xref>
]. Interestingly, initiation of treatment in patients with mild symptoms and radiological evidence of pneumonia was associated with full recovery [
<xref ref-type="bibr" rid="CR99">99</xref>
,
<xref ref-type="bibr" rid="CR100">100</xref>
]. Whether initiation of combination therapy earlier in the course of MERS-CoV illness is beneficial is a question that should be addressed in appropriately designed and powered clinical trials.</p>
<p id="Par26">A case report from Greece described one patient with MERS-CoV infection who died despite triple therapy with interferon alfa-2a, ribavirin, and lopinavir. The patient had multi-organ failure and was later diagnosed with colon cancer. MERS-CoV was not detectable in his respiratory tract for several days before his death [
<xref ref-type="bibr" rid="CR101">101</xref>
]. Neither of the two reported patients who had been on cyclosporin prior to MERS-CoV infection for other indications survived [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR102">102</xref>
]. One renal transplant recipient, who was on mycophenolate and prednisolone, survived MERS-CoV infection. However, he did not require any ventilator support and did not receive any anti-viral therapy [
<xref ref-type="bibr" rid="CR102">102</xref>
].</p>
<p id="Par27">There are no published reports of therapeutic use of mycophenolate, cyclosporin, chloroquine, or other agents that have been shown to have anti-MERS-CoV activity in vitro (Table 
<xref rid="Tab1" ref-type="table">1</xref>
).</p>
</sec>
<sec id="Sec6" sec-type="conclusion">
<title>Conclusion</title>
<p id="Par28">The recent availability of MERS-CoV infection model in transduced mice provides a much needed opportunity to accelerate clinical development of various compounds with potent in vitro MERS-CoV inhibitory activity. Evidence available so far supports further clinical investigation of interferon beta-, and to a lesser extent interferon alfa-, based treatment regimens for patients with MERS-CoV. Combining interferon with mycophenolate and/or high dose ribavirin appears especially promising. The role of monoclonal antibody-based MERS-CoV therapy warrants additional investigation in animal models or small exploratory clinical trials. Establishing their safety will be as important as their clinical efficacy.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>This article is part of the Topical Collection on
<italic>Viral Infections</italic>
</p>
</fn>
</fn-group>
<ack>
<sec id="FPar1">
<title>Compliance with ethics guidelines</title>
<p id="Par29">
<bold>Conflict of Interest</bold>
</p>
<p id="Par30">Ali Omrani and Ziad Memish declare that they have no competing interest.</p>
<p id="Par40">
<bold>Human and Animal Rights and Informed Consent</bold>
</p>
<p id="Par31">This article does not contain any studies with human or animal subjects performed by the author.</p>
</sec>
</ack>
<ref-list id="Bib1">
<title>References and Recommended Reading</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>ADME</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>RAM</given-names>
</name>
</person-group>
<article-title>Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia</article-title>
<source>N Engl J Med</source>
<year>2012</year>
<volume>367</volume>
<issue>19</issue>
<fpage>1814</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1211721</pub-id>
<pub-id pub-id-type="pmid">23075143</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hijawi</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Abdallat</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sayaydeh</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel coronavirus infections in Jordan, April 2012: epidemiological findings from a retrospective investigation</article-title>
<source>East Mediterr Health J</source>
<year>2013</year>
<volume>19</volume>
<issue>Suppl 1</issue>
<fpage>S12</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="pmid">23888790</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="other">Al-Abdallat MM, Payne DC, Alqasrawi S, et al. Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description. Clin Infect Dis. 2014;59(9):1225–33.</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<mixed-citation publication-type="other">World Health Organization. Middle East Respiratory Syndrome coronavirus (MERS-CoV) – Saudi Arabia, 16 April 2015. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/16-april-2015-mers-saudi-arabia/en/">http://www.who.int/csr/don/16-april-2015-mers-saudi-arabia/en/</ext-link>
. Accessed April 20, 2015.</mixed-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<mixed-citation publication-type="other">European Centre for Disease Prevention and Control. Severe respiratory disease associated with Middle East respiratory syndrome coronavirus (MERS-CoV); 15th update, 8 March 2015. Available at:
<ext-link ext-link-type="uri" xlink:href="http://ecdc.europa.eu/en/publications/Publications/MERS_update_08-Mar2014.pdf">http://ecdc.europa.eu/en/publications/Publications/MERS_update_08-Mar2014.pdf</ext-link>
. Accessed April 20, 2015.</mixed-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<mixed-citation publication-type="other">Bermingham A, Chand MA, Brown CS, et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Eur Surveill. 2012;17(40):20290.</mixed-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Seilmaier</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<issue>9</issue>
<fpage>745</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70154-3</pub-id>
<pub-id pub-id-type="pmid">23782859</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guery</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Poissy</surname>
<given-names>J</given-names>
</name>
<name>
<surname>el Mansouf</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission</article-title>
<source>Lancet</source>
<year>2013</year>
<volume>381</volume>
<issue>9885</issue>
<fpage>2265</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)60982-4</pub-id>
<pub-id pub-id-type="pmid">23727167</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<mixed-citation publication-type="other">Puzelli S, Azzi A, Santini MG, et al. Investigation of an imported case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013. Eur Surveill. 2013;18(34).</mixed-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<mixed-citation publication-type="other">Tsiodras S, Baka A, Mentis A, et al. A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014. Eur Surveill. 2014;19(16):20782.</mixed-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<mixed-citation publication-type="other">Kraaij-Dirkzwager M, Timen A, Dirksen K, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014. Eur Surveill. 2014;19(21).</mixed-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<mixed-citation publication-type="other">World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) – Austria. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/02-october-2014-mers-austria/en/">http://www.who.int/csr/don/02-october-2014-mers-austria/en/</ext-link>
. Accessed April 20, 2015.</mixed-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<mixed-citation publication-type="other">World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV): summary of current situation, literature update and risk assessment–as of 5 February 2015. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/coronavirus_infections/mers-5-february-2015.pdf?ua=1">http://www.who.int/csr/disease/coronavirus_infections/mers-5-february-2015.pdf?ua=1</ext-link>
. Accessed April 20, 2015.</mixed-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abroug</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Slim</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ouanes-Besbes</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>9</issue>
<fpage>1527</fpage>
<lpage>30</lpage>
<pub-id pub-id-type="doi">10.3201/eid2009.140378</pub-id>
<pub-id pub-id-type="pmid">25148113</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<mixed-citation publication-type="other">World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) – update. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2014_06_14_mers/en/">http://www.who.int/csr/don/2014_06_14_mers/en/</ext-link>
. Accessed April 20, 2015.</mixed-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<mixed-citation publication-type="other">World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV) – The Philippines. Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/13-february-2015-mers/en/">http://www.who.int/csr/don/13-february-2015-mers/en/</ext-link>
. Accessed April 20, 2015.</mixed-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<mixed-citation publication-type="other">Premila Devi J, Noraini W, Norhayati R, et al. Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: preparedness and response, April 2014. Eur Surveill. 2014;19(18).</mixed-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<mixed-citation publication-type="other">Kapoor M, Pringle K, Kumar A, et al. Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus to the United States. Clin Infect Dis. 2014;59(11):1511–8.</mixed-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<mixed-citation publication-type="other">Memish ZA, Cotten M, Watson SJ, et al. Community case clusters of Middle East Respiratory Syndrome Coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study. Int J Infect Dis. 2014;23:63–68.</mixed-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>McGeer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Perl</surname>
<given-names>TM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Hospital outbreak of Middle East respiratory syndrome coronavirus</article-title>
<source>N Engl J Med</source>
<year>2013</year>
<volume>369</volume>
<issue>5</issue>
<fpage>407</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1306742</pub-id>
<pub-id pub-id-type="pmid">23782161</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<mixed-citation publication-type="other">Drosten C, Muth D, Corman VM, et al. An observational, laboratory-based study of outbreaks of Middle East respiratory syndrome coronavirus in Jeddah and Riyadh, kingdom of Saudi Arabia, 2014. Clin Infect Dis. 2015;60(3):369–77.</mixed-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<mixed-citation publication-type="other">Saad M, Omrani AS, Baig K, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. Int J Infect Dis. 2014;29:301–6.</mixed-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transmission of MERS-coronavirus in household contacts</article-title>
<source>N Engl J Med</source>
<year>2014</year>
<volume>371</volume>
<issue>9</issue>
<fpage>828</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1405858</pub-id>
<pub-id pub-id-type="pmid">25162889</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cotten</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kellam</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study</article-title>
<source>Lancet</source>
<year>2013</year>
<volume>382</volume>
<issue>9909</issue>
<fpage>1993</fpage>
<lpage>2002</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)61887-5</pub-id>
<pub-id pub-id-type="pmid">24055451</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breban</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Riou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fontanet</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk</article-title>
<source>Lancet</source>
<year>2013</year>
<volume>382</volume>
<issue>9893</issue>
<fpage>694</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)61492-0</pub-id>
<pub-id pub-id-type="pmid">23831141</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Van Kerkhove</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility</article-title>
<source>Lancet Infect Dis</source>
<year>2014</year>
<volume>14</volume>
<issue>1</issue>
<fpage>50</fpage>
<lpage>6</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70304-9</pub-id>
<pub-id pub-id-type="pmid">24239323</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<mixed-citation publication-type="other">Ferguson NM, Van Kerkhove MD. Identification of MERS-CoV in dromedary camels. Lancet Infect Dis 14(2):93–4.</mixed-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<mixed-citation publication-type="other">Hemida MG, Chu DKW, Poon LLM, et al. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg Infect Dis. 2014;20(7):1231–4.</mixed-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<issue>10</issue>
<fpage>859</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70164-6</pub-id>
<pub-id pub-id-type="pmid">23933067</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<mixed-citation publication-type="other">Nowotny N, Kolodziejek J. Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. Eur Surveill. 2014;19(16):20781.</mixed-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexandersen</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kobinger</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Soule</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wernery</surname>
<given-names>U</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005</article-title>
<source>Transbound Emerg Dis</source>
<year>2014</year>
<volume>61</volume>
<issue>2</issue>
<fpage>105</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1111/tbed.12212</pub-id>
<pub-id pub-id-type="pmid">24456414</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibodies against MERS Coronavirus in Dromedary Camels, United Arab Emirates, 2003 and 2013</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>4</issue>
<fpage>552</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.3201/eid2004.131746</pub-id>
<pub-id pub-id-type="pmid">24655412</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Woo</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>SK</given-names>
</name>
<name>
<surname>Wernery</surname>
<given-names>U</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel betacoronavirus in dromedaries of the Middle East, 2013</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>4</issue>
<fpage>560</fpage>
<lpage>72</lpage>
<pub-id pub-id-type="doi">10.3201/eid2004.131769</pub-id>
<pub-id pub-id-type="pmid">24655427</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<mixed-citation publication-type="other">Reusken CB, Ababneh M, Raj VS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013. Eur Surveill. 2013;18(50):20662.</mixed-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<mixed-citation publication-type="other">Perera RA, Wang P, Gomaa MR, et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Eur Surveill. 2013;18(36)</mixed-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Jores</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>12</issue>
<fpage>2093</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.3201/eid2012.141026</pub-id>
<pub-id pub-id-type="pmid">25425139</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Messadi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Feyisa</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Geographic distribution of MERS coronavirus among dromedary camels, Africa</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>8</issue>
<fpage>1370</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.3201/eid2008.140590</pub-id>
<pub-id pub-id-type="pmid">25062254</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alagaili</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Briese</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia</article-title>
<source>mBio</source>
<year>2014</year>
<volume>5</volume>
<issue>2</issue>
<fpage>e00884</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1128/mBio.01002-14</pub-id>
<pub-id pub-id-type="pmid">24570370</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chu</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>LL</given-names>
</name>
<name>
<surname>Gomaa</surname>
<given-names>MM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS Coronaviruses in dromedary camels, Egypt</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>6</issue>
<fpage>1049</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.3201/eid2006.140299</pub-id>
<pub-id pub-id-type="pmid">24856660</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
<name>
<surname>Cotten</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<issue>6</issue>
<fpage>1012</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.3201/eid2006.140402</pub-id>
<pub-id pub-id-type="pmid">24857749</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Al Dhahiry</surname>
<given-names>SH</given-names>
</name>
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation</article-title>
<source>Lancet Infect Dis</source>
<year>2014</year>
<volume>14</volume>
<issue>2</issue>
<fpage>140</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70690-X</pub-id>
<pub-id pub-id-type="pmid">24355866</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<mixed-citation publication-type="other">Khalafalla AI, Lu X, Al-Mubarak AIA, et al. MERS-CoV in upper respiratory tract and lungs of Dromedary Camels, Saudi Arabia, 2013–2014. Emerg Infect Dis J. 2015;21(7). doi:10.3201/eid2107.150070.</mixed-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Muller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Presence of Middle East respiratory syndrome coronavirus antibodies in Saudi Arabia: a nationwide, cross-sectional, serological study</article-title>
<source>Lancet Infect Dis</source>
<year>2015</year>
<volume>15</volume>
<issue>5</issue>
<fpage>559</fpage>
<lpage>64</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(15)70090-3</pub-id>
<pub-id pub-id-type="pmid">25863564</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Olival</surname>
<given-names>KJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in bats, Saudi Arabia</article-title>
<source>Emerg Infect Dis</source>
<year>2013</year>
<volume>19</volume>
<issue>11</issue>
<fpage>1819</fpage>
<lpage>23</lpage>
<pub-id pub-id-type="doi">10.3201/eid1911.131172</pub-id>
<pub-id pub-id-type="pmid">24206838</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ithete</surname>
<given-names>NL</given-names>
</name>
<name>
<surname>Stoffberg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa</article-title>
<source>Emerg Infect Dis</source>
<year>2013</year>
<volume>19</volume>
<issue>10</issue>
<fpage>1697</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.3201/eid1910.130946</pub-id>
<pub-id pub-id-type="pmid">24050621</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drexler</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS</article-title>
<source>Antivir Res</source>
<year>2014</year>
<volume>101</volume>
<fpage>45</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1016/j.antiviral.2013.10.013</pub-id>
<pub-id pub-id-type="pmid">24184128</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<mixed-citation publication-type="other">Corman VM, Ithete NL, Richards LR, et al. Rooting the phylogenetic tree of MERS-Coronavirus by characterization of a conspecific virus from an African Bat. J Virol. 2014;88(19):11297-303.</mixed-citation>
</ref>
<ref id="CR48">
<label>48.</label>
<mixed-citation publication-type="other">Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28(2):465–522.</mixed-citation>
</ref>
<ref id="CR49">
<label>49.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oboho</surname>
<given-names>IK</given-names>
</name>
<name>
<surname>Tomczyk</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Al-Asmari</surname>
<given-names>AM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>2014 MERS-CoV outbreak in Jeddah—a link to health care facilities</article-title>
<source>N Engl J Med</source>
<year>2015</year>
<volume>372</volume>
<issue>9</issue>
<fpage>846</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1408636</pub-id>
<pub-id pub-id-type="pmid">25714162</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50.</label>
<mixed-citation publication-type="other">Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int J Infect Dis. 2013;17(9):e668–72.</mixed-citation>
</ref>
<ref id="CR51">
<label>51.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
<name>
<surname>Zumla</surname>
<given-names>AI</given-names>
</name>
<name>
<surname>Al-Hakeem</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Al-Rabeeah</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Family cluster of Middle East respiratory syndrome coronavirus infections</article-title>
<source>N Engl J Med</source>
<year>2013</year>
<volume>368</volume>
<issue>26</issue>
<fpage>2487</fpage>
<lpage>94</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa1303729</pub-id>
<pub-id pub-id-type="pmid">23718156</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Al-Tawfiq</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Al-Rabeeah</surname>
<given-names>AA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<issue>9</issue>
<fpage>752</fpage>
<lpage>61</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70204-4</pub-id>
<pub-id pub-id-type="pmid">23891402</pub-id>
</element-citation>
</ref>
<ref id="CR53">
<label>53.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Omrani</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Saad</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Baig</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study</article-title>
<source>Lancet Infect Dis</source>
<year>2014</year>
<volume>14</volume>
<issue>11</issue>
<fpage>1090</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(14)70920-X</pub-id>
<pub-id pub-id-type="pmid">25278221</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54.</label>
<mixed-citation publication-type="other">Al-Hameed F, Wahla AS, Siddiqui S, et al. Characteristics and outcomes of Middle East respiratory syndrome coronavirus patients admitted to an intensive care unit in Jeddah, Saudi Arabia. J Intensive Care Med. 2015</mixed-citation>
</ref>
<ref id="CR55">
<label>55.</label>
<mixed-citation publication-type="other">Arabi YM, Arifi AA, Balkhy HH, et al. Clinical course and outcomes of critically ill patients with middle East respiratory syndrome coronavirus infection. Ann Intern Med. 2014;160(6):389-97.</mixed-citation>
</ref>
<ref id="CR56">
<label>56.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rha</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rudd</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Feikin</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Update on the epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, and guidance for the public, clinicians, and public health authorities - January 2015</article-title>
<source>MMWR Morb Mortal Wkly Rep</source>
<year>2015</year>
<volume>64</volume>
<issue>3</issue>
<fpage>61</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="pmid">25632953</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hart</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Dyall</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Postnikova</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Interferon-beta and mycophenolic acid are potent inhibitors of Middle East respiratory syndrome coronavirus in cell-based assays</article-title>
<source>J Gen Virol</source>
<year>2014</year>
<volume>95</volume>
<issue>Pt 3</issue>
<fpage>571</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1099/vir.0.061911-0</pub-id>
<pub-id pub-id-type="pmid">24323636</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Kao</surname>
<given-names>RY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus</article-title>
<source>J Infect</source>
<year>2013</year>
<volume>67</volume>
<issue>6</issue>
<fpage>606</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1016/j.jinf.2013.09.029</pub-id>
<pub-id pub-id-type="pmid">24096239</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wilde</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Oudshoorn</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-alpha treatment</article-title>
<source>J Gen Virol</source>
<year>2013</year>
<volume>94</volume>
<issue>Pt 8</issue>
<fpage>1749</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="doi">10.1099/vir.0.052910-0</pub-id>
<pub-id pub-id-type="pmid">23620378</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Martellaro</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Callison</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Inhibition of novel beta coronavirus replication by a combination of interferon-alpha2b and ribavirin</article-title>
<source>Sci Rep</source>
<year>2013</year>
<volume>3</volume>
<fpage>1686</fpage>
<pub-id pub-id-type="doi">10.1038/srep01686</pub-id>
<pub-id pub-id-type="pmid">23594967</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61.</label>
<mixed-citation publication-type="other">de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58(8):4875-84.</mixed-citation>
</ref>
<ref id="CR62">
<label>62.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dyall</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection</article-title>
<source>Antimicrob Agents Chemother</source>
<year>2014</year>
<volume>58</volume>
<issue>8</issue>
<fpage>4885</fpage>
<lpage>93</lpage>
<pub-id pub-id-type="doi">10.1128/AAC.03036-14</pub-id>
<pub-id pub-id-type="pmid">24841273</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Scholz</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</name>
</person-group>
<article-title>Role of interferons in the treatment of severe acute respiratory syndrome</article-title>
<source>Expert Opin Biol Ther</source>
<year>2004</year>
<volume>4</volume>
<issue>6</issue>
<fpage>827</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="doi">10.1517/14712598.4.6.827</pub-id>
<pub-id pub-id-type="pmid">15174965</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shah</surname>
<given-names>NR</given-names>
</name>
<name>
<surname>Sunderland</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Grdzelishvili</surname>
<given-names>VZ</given-names>
</name>
</person-group>
<article-title>Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin</article-title>
<source>PLoS One</source>
<year>2010</year>
<volume>5</volume>
<issue>6</issue>
<fpage>e11265</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0011265</pub-id>
<pub-id pub-id-type="pmid">20582319</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds</article-title>
<source>J Clin Virol Off Publ Pan Am Soc Clin Virol</source>
<year>2004</year>
<volume>31</volume>
<issue>1</issue>
<fpage>69</fpage>
<lpage>75</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcv.2004.03.003</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morgenstern</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Michaelis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Baer</surname>
<given-names>PC</given-names>
</name>
<name>
<surname>Doerr</surname>
<given-names>HW</given-names>
</name>
<name>
<surname>Cinatl</surname>
<given-names>J</given-names>
<suffix>Jr</suffix>
</name>
</person-group>
<article-title>Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines</article-title>
<source>Biochem Biophys Res Commun</source>
<year>2005</year>
<volume>326</volume>
<issue>4</issue>
<fpage>905</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbrc.2004.11.128</pub-id>
<pub-id pub-id-type="pmid">15607755</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>de Ruiter</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Metselaar</surname>
<given-names>HJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mycophenolic acid augments interferon-stimulated gene expression and inhibits hepatitis C Virus infection in vitro and in vivo</article-title>
<source>Hepatology</source>
<year>2012</year>
<volume>55</volume>
<issue>6</issue>
<fpage>1673</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1002/hep.25562</pub-id>
<pub-id pub-id-type="pmid">22213147</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>WY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Thiopurine analogs and mycophenolic acid synergistically inhibit the papain-like protease of Middle East respiratory syndrome coronavirus</article-title>
<source>Antivir Res</source>
<year>2015</year>
<volume>115</volume>
<fpage>9</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1016/j.antiviral.2014.12.011</pub-id>
<pub-id pub-id-type="pmid">25542975</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wilde</surname>
<given-names>AH</given-names>
</name>
<name>
<surname>Zevenhoven-Dobbe</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>van der Meer</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cyclosporin A inhibits the replication of diverse coronaviruses</article-title>
<source>J Gen Virol</source>
<year>2011</year>
<volume>92</volume>
<issue>Pt 11</issue>
<fpage>2542</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1099/vir.0.034983-0</pub-id>
<pub-id pub-id-type="pmid">21752960</pub-id>
</element-citation>
</ref>
<ref id="CR70">
<label>70.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Jan</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>SH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small molecules targeting severe acute respiratory syndrome human coronavirus</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2004</year>
<volume>101</volume>
<issue>27</issue>
<fpage>10012</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0403596101</pub-id>
<pub-id pub-id-type="pmid">15226499</pub-id>
</element-citation>
</ref>
<ref id="CR71">
<label>71.</label>
<mixed-citation publication-type="other">Momattin H, Mohammed K, Zumla A, Memish ZA, Al-Tawfiq JA. Therapeutic options for Middle East respiratory syndrome coronavirus (MERS-CoV)–possible lessons from a systematic review of SARS-CoV therapy. Int J Infect Dis. 2013;17(10):e792–8.</mixed-citation>
</ref>
<ref id="CR72">
<label>72.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<issue>7440</issue>
<fpage>251</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1038/nature12005</pub-id>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bosch</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
</person-group>
<article-title>Spiking the MERS-coronavirus receptor</article-title>
<source>Cell Res</source>
<year>2013</year>
<volume>23</volume>
<issue>9</issue>
<fpage>1069</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="doi">10.1038/cr.2013.108</pub-id>
<pub-id pub-id-type="pmid">23938293</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xia</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein</article-title>
<source>Virus Res</source>
<year>2014</year>
<volume>194</volume>
<fpage>200</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/j.virusres.2014.10.007</pub-id>
<pub-id pub-id-type="pmid">25451066</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Kou</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<issue>12</issue>
<fpage>e81587</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0081587</pub-id>
<pub-id pub-id-type="pmid">24324708</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mou</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>van Kuppeveld</surname>
<given-names>FJ</given-names>
</name>
<name>
<surname>Rottier</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Bosch</surname>
<given-names>BJ</given-names>
</name>
</person-group>
<article-title>The receptor binding domain of the new Middle East respiratory syndrome coronavirus maps to a 231-residue region in the spike protein that efficiently elicits neutralizing antibodies</article-title>
<source>J Virol</source>
<year>2013</year>
<volume>87</volume>
<issue>16</issue>
<fpage>9379</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01277-13</pub-id>
<pub-id pub-id-type="pmid">23785207</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor-binding domain in Middle East respiratory syndrome coronavirus spike protein</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<issue>12</issue>
<fpage>7045</fpage>
<lpage>53</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00433-14</pub-id>
<pub-id pub-id-type="pmid">24719424</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein</article-title>
<source>Sci Transl Med</source>
<year>2014</year>
<volume>6</volume>
<issue>234</issue>
<fpage>234ra59</fpage>
<pub-id pub-id-type="doi">10.1126/scitranslmed.3008140</pub-id>
<pub-id pub-id-type="pmid">24778414</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>XC</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<issue>19</issue>
<fpage>E2018</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1402074111</pub-id>
<pub-id pub-id-type="pmid">24778221</pub-id>
</element-citation>
</ref>
<ref id="CR80">
<label>80.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Ju</surname>
<given-names>TW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<issue>14</issue>
<fpage>7796</fpage>
<lpage>805</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00912-14</pub-id>
<pub-id pub-id-type="pmid">24789777</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reinhold</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Brocke</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>DPP4-directed therapeutic strategies for MERS-CoV</article-title>
<source>Lancet Infect Dis</source>
<year>2014</year>
<volume>14</volume>
<issue>2</issue>
<fpage>100</fpage>
<lpage>1</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70696-0</pub-id>
<pub-id pub-id-type="pmid">24457167</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>SL</given-names>
</name>
<name>
<surname>Provacia</surname>
<given-names>LB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<issue>3</issue>
<fpage>1834</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02935-13</pub-id>
<pub-id pub-id-type="pmid">24257613</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ohnuma</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Hatano</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody</article-title>
<source>J Virol</source>
<year>2013</year>
<volume>87</volume>
<issue>24</issue>
<fpage>13892</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02448-13</pub-id>
<pub-id pub-id-type="pmid">24067970</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Doremalen</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Miazgowicz</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Milne-Price</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<issue>16</issue>
<fpage>9220</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.00676-14</pub-id>
<pub-id pub-id-type="pmid">24899185</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Zhu</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor</article-title>
<source>Nat Commun</source>
<year>2014</year>
<volume>5</volume>
<fpage>3067</fpage>
<pub-id pub-id-type="pmid">24473083</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fung</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Enfuvirtide: a fusion inhibitor for the treatment of HIV infection</article-title>
<source>Clin Ther</source>
<year>2004</year>
<volume>26</volume>
<issue>3</issue>
<fpage>352</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="doi">10.1016/S0149-2918(04)90032-X</pub-id>
<pub-id pub-id-type="pmid">15110129</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ying</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Dimitrov</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Development of human neutralizing monoclonal antibodies for prevention and therapy of MERS-CoV infections</article-title>
<source>Microbes Infect Inst Pasteur</source>
<year>2015</year>
<volume>17</volume>
<issue>2</issue>
<fpage>142</fpage>
<lpage>8</lpage>
<pub-id pub-id-type="doi">10.1016/j.micinf.2014.11.008</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cockrell</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Peck</surname>
<given-names>KM</given-names>
</name>
<name>
<surname>Yount</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<issue>9</issue>
<fpage>5195</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.03764-13</pub-id>
<pub-id pub-id-type="pmid">24574399</pub-id>
</element-citation>
</ref>
<ref id="CR89">
<label>89.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coleman</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Matthews</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Goicochea</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Frieman</surname>
<given-names>MB</given-names>
</name>
</person-group>
<article-title>Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus</article-title>
<source>J Gen Virol</source>
<year>2014</year>
<volume>95</volume>
<issue>Pt 2</issue>
<fpage>408</fpage>
<lpage>12</lpage>
<pub-id pub-id-type="doi">10.1099/vir.0.060640-0</pub-id>
<pub-id pub-id-type="pmid">24197535</pub-id>
</element-citation>
</ref>
<ref id="CR90">
<label>90.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Prescott</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Baseler</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters</article-title>
<source>PLoS One</source>
<year>2013</year>
<volume>8</volume>
<issue>7</issue>
<fpage>e69127</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0069127</pub-id>
<pub-id pub-id-type="pmid">23844250</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91.</label>
<mixed-citation publication-type="other">van Doremalen N, Miazgowicz KL, Milne-Price S, et al. Host Species Restriction of Middle East Respiratory Syndrome Coronavirus through its Receptor Dipeptidyl Peptidase 4. J Virol. 2014;(16):9220-32.</mixed-citation>
</ref>
<ref id="CR92">
<label>92.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<issue>41</issue>
<fpage>16598</fpage>
<lpage>603</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1310744110</pub-id>
<pub-id pub-id-type="pmid">24062443</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Feldmann</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Pneumonia from human coronavirus in a macaque model</article-title>
<source>N Engl J Med</source>
<year>2013</year>
<volume>368</volume>
<issue>16</issue>
<fpage>1560</fpage>
<lpage>2</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMc1215691</pub-id>
<pub-id pub-id-type="pmid">23550601</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yao</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bao</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Deng</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus</article-title>
<source>J Infect Dis</source>
<year>2014</year>
<volume>209</volume>
<issue>2</issue>
<fpage>236</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jit590</pub-id>
<pub-id pub-id-type="pmid">24218506</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Falzarano</surname>
<given-names>D</given-names>
</name>
<name>
<surname>de Wit</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rasmussen</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Treatment with interferon-alpha2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques</article-title>
<source>Nat Med</source>
<year>2013</year>
<volume>19</volume>
<issue>10</issue>
<fpage>1313</fpage>
<lpage>7</lpage>
<pub-id pub-id-type="doi">10.1038/nm.3362</pub-id>
<pub-id pub-id-type="pmid">24013700</pub-id>
</element-citation>
</ref>
<ref id="CR96">
<label>96.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhao</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Wohlford-Lenane</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rapid generation of a mouse model for Middle East respiratory syndrome</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2014</year>
<volume>111</volume>
<issue>13</issue>
<fpage>4970</fpage>
<lpage>5</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1323279111</pub-id>
<pub-id pub-id-type="pmid">24599590</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97.</label>
<mixed-citation publication-type="other">Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis. 2014;20:42–6.</mixed-citation>
</ref>
<ref id="CR98">
<label>98.</label>
<mixed-citation publication-type="other">Shalhoub S, Farahat F, Al-Jiffri A, et al. IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J Antimicrob Chemother. 2015. doi:10.1093/jac/dkv085.</mixed-citation>
</ref>
<ref id="CR99">
<label>99.</label>
<mixed-citation publication-type="other">Khalid M, Al Rabiah F, Khan B, Al Mobeireek A, Butt TS, Al Mutairy E. Ribavirin and interferon (IFN)-alpha-2b as primary and preventive treatment for Middle East respiratory syndrome coronavirus (MERS-CoV): a preliminary report of two cases. Antivir Ther. 2015;20(1):87-91.</mixed-citation>
</ref>
<ref id="CR100">
<label>100.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Khalid</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Khan</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Rabiah</surname>
<given-names>FA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle Eastern Respiratory Syndrome Corona Virus (MERS CoV): case reports from a tertiary care hospital in Saudi Arabia</article-title>
<source>Ann Saudi Med</source>
<year>2014</year>
<volume>34</volume>
<issue>5</issue>
<fpage>396</fpage>
<lpage>400</lpage>
<pub-id pub-id-type="pmid">25827696</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spanakis</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsiodras</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Virological and serological analysis of a recent Middle East respiratory syndrome coronavirus infection case on a triple combination antiviral regimen</article-title>
<source>Int J Antimicrob Agents</source>
<year>2014</year>
<volume>44</volume>
<issue>6</issue>
<fpage>528</fpage>
<lpage>32</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijantimicag.2014.07.026</pub-id>
<pub-id pub-id-type="pmid">25288266</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>AlGhamdi</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Mushtaq</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Awn</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Shalhoub</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>MERS CoV infection in Two renal transplant recipients: case report</article-title>
<source>Am J Transplant Off J Am Soc Transplantat Am Soc Transplant Surg</source>
<year>2015</year>
<volume>15</volume>
<issue>4</issue>
<fpage>1101</fpage>
<lpage>4</lpage>
<pub-id pub-id-type="doi">10.1111/ajt.13085</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shalhoub</surname>
<given-names>S</given-names>
</name>
<name>
<surname>AlZahrani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Simhairi</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mushtaq</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report</article-title>
<source>J Clin Virol off Publ Pan Am Soc Clin Virol</source>
<year>2015</year>
<volume>62</volume>
<fpage>69</fpage>
<lpage>71</lpage>
<pub-id pub-id-type="doi">10.1016/j.jcv.2014.11.030</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000507  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000507  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021