Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tissue Distribution of the MERS-Coronavirus Receptor in Bats

Identifieur interne : 000442 ( Pmc/Corpus ); précédent : 000441; suivant : 000443

Tissue Distribution of the MERS-Coronavirus Receptor in Bats

Auteurs : W. Widagdo ; Lineke Begeman ; Debby Schipper ; Peter R. Van Run ; Andrew A. Cunningham ; Nils Kley ; Chantal B. Reusken ; Bart L. Haagmans ; Judith M. A. Van Den Brand

Source :

RBID : PMC:5430768

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (Epomophorus gambianus and Rousettus aegyptiacus) and two insectivorous bat species (Pipistrellus pipistrellus and Eptesicus serotinus). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.


Url:
DOI: 10.1038/s41598-017-01290-6
PubMed: 28446791
PubMed Central: 5430768

Links to Exploration step

PMC:5430768

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tissue Distribution of the MERS-Coronavirus Receptor in Bats</title>
<author>
<name sortKey="Widagdo, W" sort="Widagdo, W" uniqKey="Widagdo W" first="W." last="Widagdo">W. Widagdo</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Begeman, Lineke" sort="Begeman, Lineke" uniqKey="Begeman L" first="Lineke" last="Begeman">Lineke Begeman</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schipper, Debby" sort="Schipper, Debby" uniqKey="Schipper D" first="Debby" last="Schipper">Debby Schipper</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Run, Peter R Van" sort="Run, Peter R Van" uniqKey="Run P" first="Peter R. Van" last="Run">Peter R. Van Run</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Andrew A" sort="Cunningham, Andrew A" uniqKey="Cunningham A" first="Andrew A." last="Cunningham">Andrew A. Cunningham</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2242 7273</institution-id>
<institution-id institution-id-type="GRID">grid.20419.3e</institution-id>
<institution>Institute of Zoology,</institution>
<institution>Zoological Society of London,</institution>
</institution-wrap>
Regents Park, London, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kley, Nils" sort="Kley, Nils" uniqKey="Kley N" first="Nils" last="Kley">Nils Kley</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417834.d</institution-id>
<institution>Institute for Novel and Emerging Infectious Diseases,</institution>
<institution>Friedrich Loeffler Institute,</institution>
</institution-wrap>
Greifswald, Mecklenburg-Vorpommern, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reusken, Chantal B" sort="Reusken, Chantal B" uniqKey="Reusken C" first="Chantal B." last="Reusken">Chantal B. Reusken</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haagmans, Bart L" sort="Haagmans, Bart L" uniqKey="Haagmans B" first="Bart L." last="Haagmans">Bart L. Haagmans</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Den Brand, Judith M A" sort="Van Den Brand, Judith M A" uniqKey="Van Den Brand J" first="Judith M. A." last="Van Den Brand">Judith M. A. Van Den Brand</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28446791</idno>
<idno type="pmc">5430768</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5430768</idno>
<idno type="RBID">PMC:5430768</idno>
<idno type="doi">10.1038/s41598-017-01290-6</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000442</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000442</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Tissue Distribution of the MERS-Coronavirus Receptor in Bats</title>
<author>
<name sortKey="Widagdo, W" sort="Widagdo, W" uniqKey="Widagdo W" first="W." last="Widagdo">W. Widagdo</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Begeman, Lineke" sort="Begeman, Lineke" uniqKey="Begeman L" first="Lineke" last="Begeman">Lineke Begeman</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Schipper, Debby" sort="Schipper, Debby" uniqKey="Schipper D" first="Debby" last="Schipper">Debby Schipper</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Run, Peter R Van" sort="Run, Peter R Van" uniqKey="Run P" first="Peter R. Van" last="Run">Peter R. Van Run</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Cunningham, Andrew A" sort="Cunningham, Andrew A" uniqKey="Cunningham A" first="Andrew A." last="Cunningham">Andrew A. Cunningham</name>
<affiliation>
<nlm:aff id="Aff2">
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2242 7273</institution-id>
<institution-id institution-id-type="GRID">grid.20419.3e</institution-id>
<institution>Institute of Zoology,</institution>
<institution>Zoological Society of London,</institution>
</institution-wrap>
Regents Park, London, United Kingdom</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kley, Nils" sort="Kley, Nils" uniqKey="Kley N" first="Nils" last="Kley">Nils Kley</name>
<affiliation>
<nlm:aff id="Aff3">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417834.d</institution-id>
<institution>Institute for Novel and Emerging Infectious Diseases,</institution>
<institution>Friedrich Loeffler Institute,</institution>
</institution-wrap>
Greifswald, Mecklenburg-Vorpommern, Germany</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Reusken, Chantal B" sort="Reusken, Chantal B" uniqKey="Reusken C" first="Chantal B." last="Reusken">Chantal B. Reusken</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Haagmans, Bart L" sort="Haagmans, Bart L" uniqKey="Haagmans B" first="Bart L." last="Haagmans">Bart L. Haagmans</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Den Brand, Judith M A" sort="Van Den Brand, Judith M A" uniqKey="Van Den Brand J" first="Judith M. A." last="Van Den Brand">Judith M. A. Van Den Brand</name>
<affiliation>
<nlm:aff id="Aff1">Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Scientific Reports</title>
<idno type="eISSN">2045-2322</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (
<italic>Epomophorus gambianus</italic>
and
<italic>Rousettus aegyptiacus</italic>
) and two insectivorous bat species (
<italic>Pipistrellus pipistrellus</italic>
and
<italic>Eptesicus serotinus</italic>
). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A Zumla</name>
</author>
<author>
<name sortKey="Hui, Ds" uniqKey="Hui D">DS Hui</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alraddadi, Bm" uniqKey="Alraddadi B">BM Alraddadi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Haagmans, Bl" uniqKey="Haagmans B">BL Haagmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vergara Alert, J" uniqKey="Vergara Alert J">J Vergara-Alert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cai, Y" uniqKey="Cai Y">Y Cai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckerle, I" uniqKey="Eckerle I">I Eckerle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reusken, Cb" uniqKey="Reusken C">CB Reusken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Memish, Za" uniqKey="Memish Z">ZA Memish</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ithete, Nl" uniqKey="Ithete N">NL Ithete</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Annan, A" uniqKey="Annan A">A Annan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, L" uniqKey="Yang L">L Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wacharapluesadee, S" uniqKey="Wacharapluesadee S">S Wacharapluesadee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Hk" uniqKey="Kim H">HK Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S van Boheemen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, Vs" uniqKey="Raj V">VS Raj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cui, J" uniqKey="Cui J">J Cui</name>
</author>
<author>
<name sortKey="Eden, Js" uniqKey="Eden J">JS Eden</name>
</author>
<author>
<name sortKey="Holmes, Ec" uniqKey="Holmes E">EC Holmes</name>
</author>
<author>
<name sortKey="Wang, Lf" uniqKey="Wang L">LF Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Q" uniqKey="Wang Q">Q Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Widagdo, W" uniqKey="Widagdo W">W Widagdo</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Uhlen, M" uniqKey="Uhlen M">M Uhlen</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Quaroni, A" uniqKey="Quaroni A">A Quaroni</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, Vm" uniqKey="Corman V">VM Corman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ng, Dl" uniqKey="Ng D">DL Ng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hocke, Ac" uniqKey="Hocke A">AC Hocke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hemida, Mg" uniqKey="Hemida M">MG Hemida</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C Drosten</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsiodras, S" uniqKey="Tsiodras S">S Tsiodras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Assiri, A" uniqKey="Assiri A">A Assiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guery, B" uniqKey="Guery B">B Guery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Peterson, Lw" uniqKey="Peterson L">LW Peterson</name>
</author>
<author>
<name sortKey="Artis, D" uniqKey="Artis D">D Artis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edwards, Yh" uniqKey="Edwards Y">YH Edwards</name>
</author>
<author>
<name sortKey="Hopkinson, Da" uniqKey="Hopkinson D">DA Hopkinson</name>
</author>
<author>
<name sortKey="Harris, H" uniqKey="Harris H">H Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Cm" uniqKey="Chan C">CM Chan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Sci Rep</journal-id>
<journal-id journal-id-type="iso-abbrev">Sci Rep</journal-id>
<journal-title-group>
<journal-title>Scientific Reports</journal-title>
</journal-title-group>
<issn pub-type="epub">2045-2322</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28446791</article-id>
<article-id pub-id-type="pmc">5430768</article-id>
<article-id pub-id-type="publisher-id">1290</article-id>
<article-id pub-id-type="doi">10.1038/s41598-017-01290-6</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Tissue Distribution of the MERS-Coronavirus Receptor in Bats</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Widagdo</surname>
<given-names>W.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Begeman</surname>
<given-names>Lineke</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Schipper</surname>
<given-names>Debby</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Run</surname>
<given-names>Peter R. van</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Cunningham</surname>
<given-names>Andrew A.</given-names>
</name>
<xref ref-type="aff" rid="Aff2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kley</surname>
<given-names>Nils</given-names>
</name>
<xref ref-type="aff" rid="Aff3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Reusken</surname>
<given-names>Chantal B.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Haagmans</surname>
<given-names>Bart L.</given-names>
</name>
<address>
<email>b.haagmans@erasmusmc.nl</email>
</address>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>van den Brand</surname>
<given-names>Judith M. A.</given-names>
</name>
<xref ref-type="aff" rid="Aff1">1</xref>
</contrib>
<aff id="Aff1">
<label>1</label>
Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands</aff>
<aff id="Aff2">
<label>2</label>
<institution-wrap>
<institution-id institution-id-type="ISNI">0000 0001 2242 7273</institution-id>
<institution-id institution-id-type="GRID">grid.20419.3e</institution-id>
<institution>Institute of Zoology,</institution>
<institution>Zoological Society of London,</institution>
</institution-wrap>
Regents Park, London, United Kingdom</aff>
<aff id="Aff3">
<label>3</label>
<institution-wrap>
<institution-id institution-id-type="GRID">grid.417834.d</institution-id>
<institution>Institute for Novel and Emerging Infectious Diseases,</institution>
<institution>Friedrich Loeffler Institute,</institution>
</institution-wrap>
Greifswald, Mecklenburg-Vorpommern, Germany</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>26</day>
<month>4</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>26</day>
<month>4</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="collection">
<year>2017</year>
</pub-date>
<volume>7</volume>
<elocation-id>1193</elocation-id>
<history>
<date date-type="received">
<day>26</day>
<month>1</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>3</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>© The Author(s) 2017</copyright-statement>
<license license-type="OpenAccess">
<license-p>
<bold>Open Access</bold>
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</ext-link>
.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor. The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism. Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs. In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat species (
<italic>Epomophorus gambianus</italic>
and
<italic>Rousettus aegyptiacus</italic>
) and two insectivorous bat species (
<italic>Pipistrellus pipistrellus</italic>
and
<italic>Eptesicus serotinus</italic>
). In the frugivorous bats, DPP4 was present in epithelial cells of both the respiratory and the intestinal tract, similar to what has been reported for camels and humans. In the insectivorous bats, however, DPP4 expression in epithelial cells of the respiratory tract was almost absent. The preferential expression of DPP4 in the intestinal tract of insectivorous bats, suggests that transmission of MERS-like-CoVs mainly occurs via the fecal-oral route. Our results highlight differences in the distribution of DPP4 expression among MERS-CoV susceptible species, which might influence variability in virus tropism, pathogenesis and transmission route.</p>
</abstract>
<kwd-group kwd-group-type="npg-subject">
<title>Subject terms</title>
<kwd>Viral transmission</kwd>
<kwd>Animal physiology</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2017</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1" sec-type="introduction">
<title>Introduction</title>
<p id="Par2">Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in the human population in 2012 and has been causing multiple outbreaks of human disease, mainly in the Arabian Peninsula
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
</sup>
. The dromedary camel (
<italic>Camelus dromedarius</italic>
) has been shown to be the reservoir host for primary human infections
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
, although other susceptible animals
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
<xref ref-type="bibr" rid="CR11">11</xref>
</sup>
, including bats
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
, are suspected also to be hosts for this virus. MERS-like-CoVs have been sequenced from bat samples, mainly from insectivorous bats, but they have not yet been successfully isolated
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. Screening of over 5000 insectivorous bats from Ghana, Ukraine, Romania, Germany, and the Netherlands showed that MERS-CoV-like viruses were detected in 24.9% of
<italic>Nycteris</italic>
bats and 14.7% of
<italic>Pipistrelle</italic>
bats
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
.</p>
<p id="Par3">MERS-CoV uses dipeptidyl peptidase-4 (DPP4) as its receptor to infect its target cells, including bat cells
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. Analysis of DPP4 sequences from different bat species and
<italic>in-vitro</italic>
infection studies with various bat cell lines suggested that multiple bat species are susceptible to MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
. MERS-like-CoVs probably also use DPP4 as indicated by studies on the Tylonycteris bat CoV HKU4, one of the MERS-like-CoVs
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
. HKU4 uses DPP4 to infect both bat and human cells
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
. It is known that DPP4 is differently distributed in the respiratory tract of humans and other susceptible livestock animals, including dromedary camels
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. DPP4 expression in the nasal epithelium of the camel, llama, and pig allows them to develop upper respiratory tract infection upon intranasal inoculation with MERS-CoV
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
, while in humans, DPP4 is exclusively expressed in the lower respiratory tract epithelium, which is in line with acute pneumonia being the main clinical outcome of MERS-CoV infection
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. Additionally, the absence of DPP4 expression in the upper respiratory tract epithelium of sheep renders this tissue to be non-susceptible
<italic>in-vivo</italic>
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
. These data indicate that the localization of DPP4 expression in tissues reflects MERS-CoV susceptibility and tropism
<italic>in vivo</italic>
. The localization of DPP4 expression in bat tissues, however, has not been studied, unlike that in other MERS-CoV susceptible species
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
.</p>
<p id="Par4">Our study aimed to understand the tropism of MERS-like-CoVs in bats by mapping the distribution of DPP4 expression in tissues from four bat species. DPP4 immunohistochemistry staining was performed on tissues collected from two widespread insectivorous bat species in Europe and Asia, the common pipistrelle bat (
<italic>Pipistrellus pipistrellus</italic>
) and the serotine bat (
<italic>Eptesicus serotinus</italic>
)
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
,
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
; and two common frugivorous bat species in Africa, i.e. the Gambian epauletted fruit bat (
<italic>Epomophorus gambianus</italic>
) and the Egyptian fruit bat (
<italic>Rousettus aegyptiacus</italic>
)
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
,
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
. These four bat species were chosen based on their interactions with humans as they roost and forage in the human habitat or serve as a human food source
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
. We show that DPP4 localization varies not only among MERS-CoV susceptible species
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
but also between bat species, which may imply variability in MERS-like-CoVs tropism, pathogenesis, and transmission route.</p>
</sec>
<sec id="Sec2" sec-type="results">
<title>Results</title>
<p id="Par5">Immunohistochemistry to detect DPP4 was performed on nose, lung, intestine, kidney, salivary gland, and liver tissues of different bat species: common pipistrelle bat, serotine bat, Gambian epauletted fruit bat (further referred as Gambian fruit bat), and Egyptian fruit bat. The assay was replicated two-three times for each tissue. We have used the same technique to map DPP4 localization in the respiratory tract tissues of human, dromedary camel, sheep, horse, pig, and llama
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. The antibody used in this study recognizes bat DPP4 as was demonstrated in transfection experiments using cloned Pipistrelle bat DPP4
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. Hematoxylin and eosin staining on subsequent slides of the same tissues from the bats did not show significant histological changes.</p>
<p id="Par6">DPP4 was not found in the nasal olfactory epithelial cells of common pipistrelle bat, serotine bat, Gambian fruit bat, or Egyptian fruit bat (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). In the nasal tissues of common pipistrelle bat, DPP4 was not detected in the respiratory epithelial cells lining the nasal cavity, but was detected in the epithelial cells lining the ducts of the submucosal glands in this species. In the serotine bat and Gambian fruit bat, multifocal DPP4 expression was detected in a limited number of nasal respiratory epithelial cells. In contrast, in the nasal tissues of the Egyptian fruit bat, DPP4 was prominently detected at the apical surface of the respiratory epithelial cells lining the nasal cavity as well as in glandular and ductular epithelial cells of the submucosal glands. In the lungs of the common pipistrelle and serotine bat, DPP4 was found in the endothelial cells of the capillaries but not in the bronchial, bronchiolar or alveolar epithelial cells. In the Gambian and Egyptian fruit bat, DPP4 was detected in the bronchial, bronchiolar and alveolar epithelial cells as well as in endothelial cells of small blood vessels (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
).
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>DPP4 expression in the respiratory tract tissues of common pipistrelle bat, serotine bat, Gambian epauletted fruit bat, and Egyptian fruit bat. DPP4 (indicated in red) is expressed in the nasal, bronchiolar and alveolar epithelium of the fruit bats, with limited expression in the epithelium lining the nasal cavity of serotine bats, and not detected in the epithelium lining the respiratory tract of the common pipistrelle bats. Original magnification x400 for all images.</p>
</caption>
<graphic xlink:href="41598_2017_1290_Fig1_HTML" id="d29e472"></graphic>
</fig>
</p>
<p id="Par7">In the intestinal tissues of all four bat species, DPP4 was prominently expressed on the apical surface of both small and large intestinal epithelial cells (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). In the kidney of all four bat species, DPP4 was found in glomerular cells, parietal squamous epithelial cells of the Bowman’s capsule, and in the proximal tubular epithelial cells. In the salivary gland of common pipistrelle bat, DPP4 was only detected in the ductular epithelial cells, while in the serotine bat, it was detected in a limited number of glandular epithelial cells. In the Gambian and Egyptian fruit bat, it was detected in both the glandular and ductular epithelial cells of the salivary gland. In the liver of the common pipistrelle bat and serotine bat, DPP4 was present in a limited number of endothelial cells lining the sinusoids. In contrast, in the liver of the Gambian and Egyptian fruit bat, DPP4 was detected in the bile duct epithelial cells, in the endothelial cells of the hepatic arteries, and in the endothelial cells of the sinusoids (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
). Variation in DPP4 signal and localization were occasionally observed between animals within the same species. In one common pipistrelle bat, the paranasal sinus and pharynx were examined and showed a limited number of DPP4 positive epithelial cells. The results of the DPP4 immunohistochemistry staining were scored qualitatively and summarized in Table 
<xref rid="Tab1" ref-type="table">1</xref>
.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>DPP4 expression in the intestine, kidney, salivary gland, and liver tissues of the common pipistrelle bat, serotine bat, Gambian epauletted fruit bat, and Egyptian fruit bat. In all four bat species, DPP4 (indicated in red) is detected on the apical surface of the intestinal epithelium, proximal tubular epithelium of the kidney, and in the salivary glands. Normal goat serum is used as isotype control for each tissue and showed no background signal. Only isotype control staining of the small intestines is shown. Original magnification x400 for all images.</p>
</caption>
<graphic xlink:href="41598_2017_1290_Fig2_HTML" id="d29e493"></graphic>
</fig>
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Overview of DPP4 expression in the tissues of the common pipistrelle bat, serotine bat, Gambian epauletted fruit bat and Egyptian fruit bat.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th></th>
<th>Common pipistrelle bat</th>
<th>Serotine bat</th>
<th>Gambian fruit bat</th>
<th>Egyptian fruit bat</th>
</tr>
</thead>
<tbody>
<tr>
<td colspan="5">
<bold>Nose</bold>
</td>
</tr>
<tr>
<td>✓Nasal respiratory epithelial cells</td>
<td></td>
<td>+/−</td>
<td>+/−</td>
<td> + </td>
</tr>
<tr>
<td>✓Nasal olfactory epithelial cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓Submucosal glands</td>
<td>+</td>
<td>+/−</td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td colspan="5">
<bold>Lung</bold>
</td>
</tr>
<tr>
<td>✓Bronchiolar epithelial cells</td>
<td></td>
<td></td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td>✓Alveolar epithelial cells</td>
<td></td>
<td></td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td>✓Endothelial cells of the capillaries and small blood vessels</td>
<td>+/−</td>
<td>+/−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td colspan="5">
<bold>Intestine</bold>
</td>
</tr>
<tr>
<td>✓Small intestinal epithelial cells</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>✓Large intestinal epithelial cells</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td colspan="5">
<bold>Kidney</bold>
</td>
</tr>
<tr>
<td>✓Glomerular cells</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>✓Parietal squamous epithelial cells of the bowman capsule</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>✓Proximal tubular epithelial cells</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td colspan="5">
<bold>Salivary gland</bold>
</td>
</tr>
<tr>
<td>✓Glandular epithelial cells</td>
<td></td>
<td>+/−</td>
<td>+/−</td>
<td>+</td>
</tr>
<tr>
<td>✓Ductular epithelial cells</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td colspan="5">
<bold>Liver</bold>
</td>
</tr>
<tr>
<td>✓Hepatocytes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓Bile ductular epithelial cells</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>✓Endothelial cells of the hepatic vein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓Endothelial cells of the hepatic artery</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>✓Endothelial cells of the sinusoids</td>
<td></td>
<td>+/−</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>+, positive detection; +/−, only expressed in a limited number of cells; −, undetected.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p id="Par8">In general, our results showed that DPP4 was prominently expressed in the intestine and the respiratory tract tissues of the frugivorous bats, i.e. the Gambian and the Egyptian fruit bat. However, it is limitedly expressed in the respiratory tract tissues of the insectivorous bats, i.e. the common pipistrelle bat and the serotine bat. In the common pipistrelle bat, DPP4 was not detected in the nasal respiratory, nasal olfactory, bronchiolar, or alveolar epithelium, but was abundant on the apical surface of the epithelium lining the small and large intestine. We compared these findings to our previous results on dromedary camel and human tissues
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. In dromedary camels, DPP4 is strongly detected in the nasal respiratory, tracheal, and bronchial epithelium, while there is limited expression in the alveolar epithelium (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). In humans, it is not found in the nasal epithelium and is present mainly in the alveolar epithelium. Additionally, we performed DPP4 staining on intestinal tissues of dromedary camels obtained from a previous study
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. We found that DPP4 was expressed mainly on the apical surface of the small intestinal epithelium (data not shown), similar to what has been reported for humans
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
(Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
).
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>Different distribution of DPP4 expression in the lining respiratory tract and intestinal epithelium of the common pipistrelle bat, serotine bat, Gambian fruit bat, Egyptian fruit bat, dromedary camel, and human. In the common pipistrelle bat and serotine bat, DPP4 is limitedly detected in the respiratory tract and mainly expressed in the intestinal epithelium. In the Gambian and Egyptian fruit bat, DPP4 is found both in the respiratory tract and in the intestinal epithelium. In the dromedary camel, it is expressed in the upper respiratory tract and small intestine epithelium. In the human, it is predominantly expressed in the lower respiratory tract and small intestine epithelium.</p>
</caption>
<graphic xlink:href="41598_2017_1290_Fig3_HTML" id="d29e892"></graphic>
</fig>
</p>
</sec>
<sec id="Sec3" sec-type="discussion">
<title>Discussion</title>
<p id="Par9">The tissue distribution of the MERS-CoV receptor, DPP4, has previously been studied in humans, dromedary camels, and other livestock animals
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
,
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. Here, we show that DPP4 is differentially expressed among bat species, especially between insectivorous and frugivorous bats. It is strongly detected in the intestine of the common pipistrelle bat, the serotine bat, the Gambian fruit bat and the Egyptian fruit bat. It is also prominent in the respiratory tract epithelium of the Gambian and Egyptian fruit bat, but expression is limited in that of the common pipistrelle and serotine bat. Given the essential role of DPP4 in the entry of MERS-CoV into cells, these results suggest that MERS-like-CoVs are not likely able to replicate in the respiratory tract in these two insectivorous bats. This is in line with our previous report on MERS-CoV infection experiment in sheep, showing that the lack of DPP4 in the respiratory tract of the sheep was associated with restricted MERS-CoV replication in these animals upon intranasal inoculation
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
. Rather, in these two insectivorous bats, MERS-like-CoVs may preferentially replicate in the gastrointestinal tract. This is partly supported by the fact that viral genomes of MERS-like-CoVs were mainly obtained from faecal and intestinal tissue samples of insectivorous bats
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
. This intestinal tropism indicates that these viruses transmit mainly through the fecal-oral route. Therefore, future screening of MERS-like-CoVs from insectivorous bats, particularly the common pipistrelle bat, might focus on fecal material, rectal swabs, or intestinal tissues, rather than throat or nasal swabs.</p>
<p id="Par10">Prominent DPP4 expression in both respiratory tract and intestinal epithelium of the Gambian fruit bat and the Egyptian fruit bat suggests that MERS-CoV is able to replicate in both the respiratory tract and intestine of the fruit bats. These results are in line with the fact that MERS-CoV was able to replicate in the lungs of Jamaican fruit bat (
<italic>Artibeus jamaicensis</italic>
) upon intranasal and intraperitoneal inoculation
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
. Interestingly, viral RNA could be detected in the rectal swabs of these animals up to day 9 p.i. and infectious virus was also isolated in the duodenum of one of the bats at day 28 p.i.
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
. These data suggest that MERS-CoV infects and replicates in the intestine of these bats, not only in the respiratory tract. MERS-CoV infection in these bats is likely mediated by DPP4, since hamster BHK cells, a non-susceptible cell line, could be infected by MERS-CoV when modified to express Jamaican fruit bat’s DPP4
<sup>
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
. DPP4 expression in the intestine and respiratory tract of these Jamaican fruit bats, however, was not investigated. Since the Jamaican fruit bat is a new world fruit bat, unlike the Gambian fruit bat and the Egyptian fruit bat, which are old world fruit bats, their genetic difference might influence the variation in DPP4 expression among these species. In contrast to the fruit bats, where DPP4 is expressed throughout the respiratory tract, DPP4 is rarely detected in the respiratory tract tissues of insectivorous bats. This limited DPP4 expression in insectivorous bats might significantly restrict the replication of MERS-like-CoVs in these tissues and minimize the possibility of transmission of these viruses from the respiratory tract.</p>
<p id="Par11">The limited DPP4 expression in the respiratory tract of the two insectivorous bat species, particularly the common pipistrelle bat, is different from what has been reported for dromedary camels and humans. In humans, DPP4 is merely expressed in the lower respiratory tract, while in the dromedary camels, it is detected in the upper respiratory tract epithelium
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
. This renders humans to develop pneumonia upon MERS-CoV infection, while camels develop upper respiratory tract infection
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR38">38</xref>
,
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. In the intestine of both dromedary camels and humans, DPP4 is mainly present in the apical surface of the small intestine epithelium
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
. MERS-CoV has been isolated from faecal samples of a naturally infected dromedary camel, which suggests that this virus is able to replicate in the intestinal tract of this species
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
. However, in dromedary camels, the chance of detecting MERS-CoV RNA in faecal samples is much lower than from nasal swabs
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
. We also observed that low amounts of viral RNA are detectable in rectal swabs taken from MERS-CoV- inoculated dromedary camels
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
. While MERS-CoV has not yet been isolated from human faecal samples, low amounts of viral RNA could be detected in stool samples of MERS patients
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
, and several MERS patients have also been reported to suffer from diarrhoea
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
. These observations suggest that MERS-CoV replicates in the intestine of both dromedary camels and humans although only to a limited extent. It is currently unclear what factors restrain MERS-CoV replication in the intestinal tract of dromedary camels and humans. The human intestinal tract is protected by a mucus layer, commensal microorganisms, multiple innate and adaptive immune cells
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
. Also, adenosine deaminase (ADA), a natural antagonist of DPP4 that can inhibit MERS-CoV infection
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
, has also been found in the human intestine. The amount of ADA in the human intestine is four times higher compared to that in the lung
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
. The presence of DPP4 in the intestinal tract of bats suggests an intestinal tropism of MERS-like-CoVs. We also detected DPP4 in the salivary glands and kidneys in all of the bats.
<italic>In vitro</italic>
, MERS-CoV has also been shown to replicate in primary kidney cell culture derived from common pipistrelle bat
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
. However, there has been no further evidence supporting the susceptibility of these two tissues
<italic>in vivo</italic>
, nor have there been any reports of MERS-like-CoVs isolated from these two tissues or from bat urine samples. Whether these viruses are transmitted through bat saliva or urine, therefore, is currently unclear.</p>
<p id="Par12">In general, our study describes the variation in DPP4 distribution among four bat species, with notable differences between insectivorous and frugivorous bats. More importantly, the tissue distribution of DPP4 in insectivorous bats, believed to be one of the natural hosts for MERS-like-CoVs, is different to that in dromedary camels and humans. Our results indicate intestinal tropism of MERS-like-CoVs in the insectivorous bats we examined. The existence of a co-receptor that might influence MERS-like-CoVs tropism and replication in these bats, however, could not be disregarded. CEACAM5 is recently reported as an attachment factor that facilitates entry of MERS-CoV
<italic>in-vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
. Whether CEACAM5 plays an important role
<italic>in-vivo</italic>
, particularly in bats, remains to be investigated.
<italic>In-vivo</italic>
infection experiments are necessary to confirm our findings, but such studies are ethically and technically challenging. Nevertheless, our data are relevant for future monitoring and surveillance of MERS-like-CoVs in insectivorous bats, particularly in the common pipistrelle bat
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
, as well as for future efforts to better understand the pathogenesis and transmission of MERS-like-CoVs in their natural host.</p>
</sec>
<sec id="Sec4" sec-type="materials|methods">
<title>Materials and Methods</title>
<p id="Par13">Common pipistrelle and serotine bats were found stranded and severely wounded on different occasions, and admitted to an official local bat shelter in the Netherlands. The animals were euthanized by veterinarians due to ethical reasons using officially approved methods. The Gambian fruit bats and three of four Egyptian fruit bats used in this study originated from free-ranging populations in Ghana. The bats were sampled for an unrelated study and this study was approved by the Ethics Committee of the Zoological Society of London (ref. WLE715) and the council for scientific and industrial research in Accra, Ghana. One of the Egyptian fruit bats was obtained from the captive colony at the Friederich Loeffler Institute, Riems, Germany. It had been euthanized due to reasons not related to this study. All methods were performed in accordance with the relevant guidelines and regulations.</p>
<p id="Par14">After euthanasia, the bats were necropsied and tissues were collected. Parts of the lung, intestine, salivary gland, liver, and kidney were obtained from nine common pipistrelle bats, seven serotine bats, three Gambian fruit bats, and four Egyptian fruit bats. Parts of the noses were obtained from five common pipistrelle bats, six serotine bats, three Gambian fruit bats, and three Egyptian fruit bats. These tissues were all fixed in 10% formalin and embedded in paraffin. The noses were decalcified in 10% EDTA for 9 days before being embedded in paraffin. The formalin fixed paraffin embedded tissues were sectioned (4 μm), deparaffinized, and subsequently hydrated. Citric acid buffer 10 mM pH 6 was used to retrieve antigens. Blocking with normal rabbit serum 5% was performed prior to staining with polyclonal goat IgG anti-DPP4 (R&D systems, Abingdon, UK) in 5 µg/ml concentration. Normal goat serum (MP Biomedicals, Santa Ana, CA, USA) in equal concentration was used as negative control. DPP4 staining was performed at 4 °C overnight. Secondary antibody rabbit anti-goat IgG labeled with peroxidase were applied subsequently in 1:200 dilution for 1 hour at room temperature (Dako, Glostrup, Denmark). The red signal was revealed with 3-amino-9-ethyl-carbazole (Sigma-Aldrich, St. Louis, Missouri, USA) before counterstaining with hematoxylin.</p>
<p id="Par15">Dromedary camel intestinal tissues were obtained from three different animals sacrificed at day 14 post infection with MERS-CoV in a previous MERS-CoV vaccination experiment
<sup>
<xref ref-type="bibr" rid="CR2">2</xref>
</sup>
. Two of these animals were vaccinated beforehand, while one was not. MERS-CoV was not detected in the intestinal tissues of these animals using PCR, virus titration or immunohistochemistry detecting nucleoprotein of MERS-CoV. Information on DPP4 expression in human respiratory and intestinal tissues was derived from the previous studies
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR33">33</xref>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
.</p>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Publisher's note:</bold>
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>This study is supported by a TOP project Grant (91213066) and by the Zoonoses in the night project (5O-52200-98-308) both funded by ZonMW. The
<italic>E. gambianus</italic>
and three of four
<italic>R. aegyptiacus</italic>
used in this study originated from a study in Ghana in collaboration with Richard Suu-Ire, from the Forestry Commission, Accra. We would like to thank Anne Buschmann-Balkema for her assistance in preparing the
<italic>R. aegyptiacus</italic>
tissues that come from the Friederich Loeffler Institute, Riems, Germany. We would like to thank Stichting Vleermuisopvang Oss for providing the tissues of
<italic>P. pipistrellus</italic>
. We thank Brigitta M Laksono for her advice on the schematic figure.</p>
</ack>
<notes notes-type="author-contribution">
<title>Author Contributions</title>
<p>W.W. and D.S. performed the experiments. W.W. and L.B. performed the data analysis. W.W., B.L.H., and J.M.A. wrote the manuscript. L.B. prepared the Gambian fruit bat and Egyptian fruit bat tissues. A.A.C. provided the access to Gambian fruit bat and Egyptian fruit bat tissues. P.R.v.R. performed the hematoxylin-eosin staining of the bat tissues. N.K. provided one of the Egyptian fruit bat tissues. C.B.R. provided valuable insight in this study. B.L.H. initiated the study and advised on the experiment. J.M.A. prepared the Pipistrelle bat and Serotine bat tissues, managed the experiment, and supervised the data analysis. All authors evaluated the manuscript and offered feedbacks before submission.</p>
</notes>
<notes notes-type="COI-statement">
<title>Competing Interests</title>
<p id="Par16">The authors declare that they have no competing interests.</p>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zumla</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Hui</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Perlman</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome</article-title>
<source>Lancet</source>
<year>2015</year>
<volume>386</volume>
<fpage>995</fpage>
<lpage>1007</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(15)60454-8</pub-id>
<pub-id pub-id-type="pmid">26049252</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels</article-title>
<source>Science</source>
<year>2016</year>
<volume>351</volume>
<fpage>77</fpage>
<lpage>81</lpage>
<pub-id pub-id-type="doi">10.1126/science.aad1283</pub-id>
<pub-id pub-id-type="pmid">26678878</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Isolation of MERS coronavirus from a dromedary camel, Qatar, 2014</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<fpage>1339</fpage>
<lpage>1342</lpage>
<pub-id pub-id-type="doi">10.3201/eid2008.140663</pub-id>
<pub-id pub-id-type="pmid">25075761</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<fpage>859</fpage>
<lpage>866</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70164-6</pub-id>
<pub-id pub-id-type="pmid">23933067</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East Respiratory Syndrome coronavirus (MERS-CoV) serology in major livestock species in an affected region in Jordan, June to September 2013</article-title>
<source>Euro Surveill</source>
<year>2013</year>
<volume>18</volume>
<fpage>20662</fpage>
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2013.18.50.20662</pub-id>
<pub-id pub-id-type="pmid">24342516</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Meyer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<fpage>552</fpage>
<lpage>559</lpage>
<pub-id pub-id-type="doi">10.3201/eid2004.131746</pub-id>
<pub-id pub-id-type="pmid">24655412</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alraddadi</surname>
<given-names>BM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Risk Factors for Primary Middle East Respiratory Syndrome Coronavirus Illness in Humans, Saudi Arabia, 2014</article-title>
<source>Emerg Infect Dis</source>
<year>2016</year>
<volume>22</volume>
<fpage>49</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.3201/eid2201.151340</pub-id>
<pub-id pub-id-type="pmid">26692185</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Haagmans</surname>
<given-names>BL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in dromedary camels: an outbreak investigation</article-title>
<source>Lancet Infect Dis</source>
<year>2014</year>
<volume>14</volume>
<fpage>140</fpage>
<lpage>145</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70690-X</pub-id>
<pub-id pub-id-type="pmid">24355866</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vergara-Alert</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Livestock Susceptibility to Infection with Middle East Respiratory Syndrome Coronavirus</article-title>
<source>Emerg Infect Dis</source>
<year>2017</year>
<volume>23</volume>
<fpage>232</fpage>
<lpage>240</lpage>
<pub-id pub-id-type="doi">10.3201/eid2302.161239</pub-id>
<pub-id pub-id-type="pmid">27901465</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the Middle East respiratory syndrome coronavirus</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<fpage>1834</fpage>
<lpage>1838</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02935-13</pub-id>
<pub-id pub-id-type="pmid">24257613</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS-CoV Infection of Alpaca in a Region Where MERS-CoV is Endemic</article-title>
<source>Emerg Infect Dis</source>
<year>2016</year>
<volume>22</volume>
<fpage>1129</fpage>
<lpage>1131</lpage>
<pub-id pub-id-type="doi">10.3201/eid2206.152113</pub-id>
<pub-id pub-id-type="pmid">27070501</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cai</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection</article-title>
<source>PLoS One</source>
<year>2014</year>
<volume>9</volume>
<fpage>e112060</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0112060</pub-id>
<pub-id pub-id-type="pmid">25409519</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eckerle</surname>
<given-names>I</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Replicative Capacity of MERS Coronavirus in Livestock Cell Lines</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<fpage>276</fpage>
<lpage>279</lpage>
<pub-id pub-id-type="doi">10.3201/eid2002.131182</pub-id>
<pub-id pub-id-type="pmid">24457147</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reusken</surname>
<given-names>CB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Circulation of group 2 coronaviruses in a bat species common to urban areas in Western Europe</article-title>
<source>Vector Borne Zoonotic Dis</source>
<year>2010</year>
<volume>10</volume>
<fpage>785</fpage>
<lpage>791</lpage>
<pub-id pub-id-type="doi">10.1089/vbz.2009.0173</pub-id>
<pub-id pub-id-type="pmid">20055576</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Memish</surname>
<given-names>ZA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus in bats, Saudi Arabia</article-title>
<source>Emerg Infect Dis</source>
<year>2013</year>
<volume>19</volume>
<fpage>1819</fpage>
<lpage>1823</lpage>
<pub-id pub-id-type="doi">10.3201/eid1911.131172</pub-id>
<pub-id pub-id-type="pmid">24206838</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ithete</surname>
<given-names>NL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Close relative of human Middle East respiratory syndrome coronavirus in bat, South Africa</article-title>
<source>Emerg Infect Dis</source>
<year>2013</year>
<volume>19</volume>
<fpage>1697</fpage>
<lpage>1699</lpage>
<pub-id pub-id-type="doi">10.3201/eid1910.130946</pub-id>
<pub-id pub-id-type="pmid">24050621</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Annan</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe</article-title>
<source>Emerg Infect Dis</source>
<year>2013</year>
<volume>19</volume>
<fpage>456</fpage>
<lpage>459</lpage>
<pub-id pub-id-type="doi">10.3201/eid1903.121503</pub-id>
<pub-id pub-id-type="pmid">23622767</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS-related betacoronavirus in Vespertilio superans bats, China</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<fpage>1260</fpage>
<lpage>1262</lpage>
<pub-id pub-id-type="doi">10.3201/eid.2006.140318</pub-id>
<pub-id pub-id-type="pmid">24960574</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wacharapluesadee</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Group C betacoronavirus in bat guano fertilizer, Thailand</article-title>
<source>Emerg Infect Dis</source>
<year>2013</year>
<volume>19</volume>
<fpage>1349</fpage>
<lpage>1351</lpage>
<pub-id pub-id-type="doi">10.3201/eid1908.130119</pub-id>
<pub-id pub-id-type="pmid">23880503</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>HK</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Detection of Severe Acute Respiratory Syndrome-Like, Middle East Respiratory Syndrome-Like Bat Coronaviruses and Group H Rotavirus in Faeces of Korean Bats</article-title>
<source>Transbound Emerg Dis</source>
<year>2016</year>
<volume>63</volume>
<fpage>365</fpage>
<lpage>372</lpage>
<pub-id pub-id-type="doi">10.1111/tbed.12515</pub-id>
<pub-id pub-id-type="pmid">27213718</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Boheemen</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans</article-title>
<source>MBio</source>
<year>2012</year>
<volume>3</volume>
<fpage>e00473-12</fpage>
<lpage>e00473-12</lpage>
<pub-id pub-id-type="pmid">23170002</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>VS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC</article-title>
<source>Nature</source>
<year>2013</year>
<volume>495</volume>
<fpage>251</fpage>
<lpage>254</lpage>
<pub-id pub-id-type="doi">10.1038/nature12005</pub-id>
<pub-id pub-id-type="pmid">23486063</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cui</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Eden</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Holmes</surname>
<given-names>EC</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>LF</given-names>
</name>
</person-group>
<article-title>Adaptive evolution of bat dipeptidyl peptidase 4 (dpp4): implications for the origin and emergence of Middle East respiratory syndrome coronavirus</article-title>
<source>Virol J</source>
<year>2013</year>
<volume>10</volume>
<fpage>304</fpage>
<pub-id pub-id-type="doi">10.1186/1743-422X-10-304</pub-id>
<pub-id pub-id-type="pmid">24107353</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Bat origins of MERS-CoV supported by bat coronavirus HKU4 usage of human receptor CD26</article-title>
<source>Cell Host Microbe</source>
<year>2014</year>
<volume>16</volume>
<fpage>328</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="doi">10.1016/j.chom.2014.08.009</pub-id>
<pub-id pub-id-type="pmid">25211075</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus</article-title>
<source>Proc Natl Acad Sci USA</source>
<year>2014</year>
<volume>111</volume>
<fpage>12516</fpage>
<lpage>12521</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.1405889111</pub-id>
<pub-id pub-id-type="pmid">25114257</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Widagdo</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Differential expression of the MERS-coronavirus receptor in the upper respiratory tract of humans and dromedary camels</article-title>
<source>J Virol.</source>
<year>2016</year>
<volume>90</volume>
<fpage>4838</fpage>
<lpage>4842</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.02994-15</pub-id>
<pub-id pub-id-type="pmid">26889022</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<mixed-citation publication-type="other">Who Mers-Cov Research, G. State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans.
<italic>PLoS Curr</italic>
<bold>5</bold>
, doi: 10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8 (2013).</mixed-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<mixed-citation publication-type="other">Hutson, A.
<italic>et al</italic>
.
<italic>Eptesicus serotinus</italic>
, http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T7911A12867244.en (2008).</mixed-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<mixed-citation publication-type="other">Hutson, A.
<italic>et al</italic>
.
<italic>Pipistrellus pipistrellus</italic>
, http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T17317A6968203.en (2008).</mixed-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<mixed-citation publication-type="other">Korine, C.
<italic>Rousettus aegyptiacus</italic>
, http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T29730A22043105.en (2016).</mixed-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<mixed-citation publication-type="other">Tanshi, I. & Fahr, J.
<italic>Epomophorus gambianus</italic>
, e.T7903A22122670 (2016).</mixed-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uhlen</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Proteomics. Tissue-based map of the human proteome</article-title>
<source>Science</source>
<year>2015</year>
<volume>347</volume>
<fpage>1260419</fpage>
<lpage>1260419</lpage>
<pub-id pub-id-type="doi">10.1126/science.1260419</pub-id>
<pub-id pub-id-type="pmid">25613900</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<mixed-citation publication-type="other">Gorvel, J. P.
<italic>et al</italic>
. Expression of sucrase-isomaltase and dipeptidylpeptidase IV in human small intestine and colon.
<italic>Gastroenterology</italic>
<bold>101</bold>
, 618-625, doi:S0016508591003001 [pii], 101, 618–25 (1991).</mixed-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Quaroni</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Expression and different polarity of aminopeptidase N in normal human colonic mucosa and colonic tumors</article-title>
<source>Int J Cancer</source>
<year>1992</year>
<volume>51</volume>
<fpage>404</fpage>
<lpage>411</lpage>
<pub-id pub-id-type="doi">10.1002/ijc.2910510312</pub-id>
<pub-id pub-id-type="pmid">1375588</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35.</label>
<mixed-citation publication-type="other">Darmoul, D.
<italic>et al</italic>
. Regional expression of epithelial dipeptidyl peptidase IV in the human intestines.
<italic>Biochem Biophys Res Commun</italic>
<bold>203</bold>
, 1224-1229, doi:S0006291X84723138 [pii], 203, 1224-9 (1994).</mixed-citation>
</ref>
<ref id="CR36">
<label>36.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>VM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rooting the phylogenetic tree of middle East respiratory syndrome coronavirus by characterization of a conspecific virus from an African bat</article-title>
<source>J Virol</source>
<year>2014</year>
<volume>88</volume>
<fpage>11297</fpage>
<lpage>11303</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01498-14</pub-id>
<pub-id pub-id-type="pmid">25031349</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis)</article-title>
<source>Sci Rep</source>
<year>2016</year>
<volume>6</volume>
<fpage>21878</fpage>
<pub-id pub-id-type="doi">10.1038/srep21878</pub-id>
<pub-id pub-id-type="pmid">26899616</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ng</surname>
<given-names>DL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014</article-title>
<source>Am J Pathol</source>
<year>2016</year>
<volume>186</volume>
<fpage>652</fpage>
<lpage>658</lpage>
<pub-id pub-id-type="doi">10.1016/j.ajpath.2015.10.024</pub-id>
<pub-id pub-id-type="pmid">26857507</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hocke</surname>
<given-names>AC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Emerging human middle East respiratory syndrome coronavirus causes widespread infection and alveolar damage in human lungs</article-title>
<source>Am J Respir Crit Care Med</source>
<year>2013</year>
<volume>188</volume>
<fpage>882</fpage>
<lpage>886</lpage>
<pub-id pub-id-type="doi">10.1164/rccm.201305-0954LE</pub-id>
<pub-id pub-id-type="pmid">24083868</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hemida</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS coronavirus in dromedary camel herd, Saudi Arabia</article-title>
<source>Emerg Infect Dis</source>
<year>2014</year>
<volume>20</volume>
<fpage>1231</fpage>
<lpage>1234</lpage>
<pub-id pub-id-type="doi">10.3201/eid2007.140571</pub-id>
<pub-id pub-id-type="pmid">24964193</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<fpage>745</fpage>
<lpage>751</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70154-3</pub-id>
<pub-id pub-id-type="pmid">23782859</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsiodras</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A case of imported Middle East Respiratory Syndrome coronavirus infection and public health response, Greece, April 2014</article-title>
<source>Euro Surveill</source>
<year>2014</year>
<volume>19</volume>
<fpage>20782</fpage>
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2014.19.16.20782</pub-id>
<pub-id pub-id-type="pmid">24786258</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Assiri</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study</article-title>
<source>Lancet Infect Dis</source>
<year>2013</year>
<volume>13</volume>
<fpage>752</fpage>
<lpage>761</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70204-4</pub-id>
<pub-id pub-id-type="pmid">23891402</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guery</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission</article-title>
<source>Lancet</source>
<year>2013</year>
<volume>381</volume>
<fpage>2265</fpage>
<lpage>2272</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)60982-4</pub-id>
<pub-id pub-id-type="pmid">23727167</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Peterson</surname>
<given-names>LW</given-names>
</name>
<name>
<surname>Artis</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Intestinal epithelial cells: regulators of barrier function and immune homeostasis</article-title>
<source>Nat Rev Immunol</source>
<year>2014</year>
<volume>14</volume>
<fpage>141</fpage>
<lpage>153</lpage>
<pub-id pub-id-type="doi">10.1038/nri3608</pub-id>
<pub-id pub-id-type="pmid">24566914</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edwards</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Hopkinson</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Harris</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Adenosine deaminase isozymes in human tissues</article-title>
<source>Ann Hum Genet</source>
<year>1971</year>
<volume>35</volume>
<fpage>207</fpage>
<lpage>219</lpage>
<pub-id pub-id-type="doi">10.1111/j.1469-1809.1956.tb01393.x</pub-id>
<pub-id pub-id-type="pmid">5159535</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>CM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus</article-title>
<source>J Virol</source>
<year>2016</year>
<volume>90</volume>
<fpage>9114</fpage>
<lpage>9127</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01133-16</pub-id>
<pub-id pub-id-type="pmid">27489282</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000442 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000442 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:5430768
   |texte=   Tissue Distribution of the MERS-Coronavirus Receptor in Bats
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:28446791" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021