Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000383 ( Pmc/Corpus ); précédent : 0003829; suivant : 0003840 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insilico Alpha-Helical Structural Recognition of Temporin Antimicrobial Peptides and Its Interactions with Middle East Respiratory Syndrome-Coronavirus</title>
<author>
<name sortKey="Marimuthu, Sathish Kumar" sort="Marimuthu, Sathish Kumar" uniqKey="Marimuthu S" first="Sathish Kumar" last="Marimuthu">Sathish Kumar Marimuthu</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nagarajan, Krishnanand" sort="Nagarajan, Krishnanand" uniqKey="Nagarajan K" first="Krishnanand" last="Nagarajan">Krishnanand Nagarajan</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perumal, Sathish Kumar" sort="Perumal, Sathish Kumar" uniqKey="Perumal S" first="Sathish Kumar" last="Perumal">Sathish Kumar Perumal</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Palanisamy, Selvamani" sort="Palanisamy, Selvamani" uniqKey="Palanisamy S" first="Selvamani" last="Palanisamy">Selvamani Palanisamy</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Subbiah, Latha" sort="Subbiah, Latha" uniqKey="Subbiah L" first="Latha" last="Subbiah">Latha Subbiah</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32206049</idno>
<idno type="pmc">7088259</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7088259</idno>
<idno type="RBID">PMC:7088259</idno>
<idno type="doi">10.1007/s10989-019-09951-y</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000383</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000383</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Insilico Alpha-Helical Structural Recognition of Temporin Antimicrobial Peptides and Its Interactions with Middle East Respiratory Syndrome-Coronavirus</title>
<author>
<name sortKey="Marimuthu, Sathish Kumar" sort="Marimuthu, Sathish Kumar" uniqKey="Marimuthu S" first="Sathish Kumar" last="Marimuthu">Sathish Kumar Marimuthu</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Nagarajan, Krishnanand" sort="Nagarajan, Krishnanand" uniqKey="Nagarajan K" first="Krishnanand" last="Nagarajan">Krishnanand Nagarajan</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Perumal, Sathish Kumar" sort="Perumal, Sathish Kumar" uniqKey="Perumal S" first="Sathish Kumar" last="Perumal">Sathish Kumar Perumal</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Palanisamy, Selvamani" sort="Palanisamy, Selvamani" uniqKey="Palanisamy S" first="Selvamani" last="Palanisamy">Selvamani Palanisamy</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Subbiah, Latha" sort="Subbiah, Latha" uniqKey="Subbiah L" first="Latha" last="Subbiah">Latha Subbiah</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Peptide Research and Therapeutics</title>
<idno type="ISSN">1573-3149</idno>
<idno type="eISSN">1573-3904</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="Par1">Many antimicrobial peptides (AMPs) have multiple antimicrobial immunity effects. One such class of peptides is temporins. Temporins are the smallest (AMPs) found in nature and are highly active against gram-positive bacteria. Nowadays, there was a rapid increase in the availability of the 3D structure of proteins in PDB (protein data bank). The conserved residues and 3D structural conformations of temporins (AMPs) were still unknown. The present study explores the sequence analysis, alpha-helical structural conformations of temporins. The sequence of temporins was deracinated from APD3 database, the three-dimensional structure was constructed by homology modeling studies. The sequence analysis results show that the conserved residues among the peptide sequences, the maximum of the sequences are 70% alike to each other. The secondary structure prediction results revealed that 99% of temporin (AMPs) exhibited in alpha-helical form. The 3D structure speculated using RAMPAGE exposes the alpha-helical conformation in all temporins (AMPs). The phylogenetic analysis reveals the evolutionary relationships of temporins (AMPs), which are branched into seven clusters. As a result, we identified a list of potential temporin AMPs which docked to the antiviral protein (MERS-CoV), it shows good protein-peptide binding. This computational approach may serve as a good model for the rationale design of temporin based antibiotics.</p>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (10.1007/s10989-019-09951-y) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahmed, A" uniqKey="Ahmed A">A Ahmed</name>
</author>
<author>
<name sortKey="Siman Tov, G" uniqKey="Siman Tov G">G Siman-Tov</name>
</author>
<author>
<name sortKey="Hall, G" uniqKey="Hall G">G Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Babicki, S" uniqKey="Babicki S">S Babicki</name>
</author>
<author>
<name sortKey="Arndt, D" uniqKey="Arndt D">D Arndt</name>
</author>
<author>
<name sortKey="Marcu, A" uniqKey="Marcu A">A Marcu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bahar, Aa" uniqKey="Bahar A">AA Bahar</name>
</author>
<author>
<name sortKey="Ren, D" uniqKey="Ren D">D Ren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Batoni, G" uniqKey="Batoni G">G Batoni</name>
</author>
<author>
<name sortKey="Maisetta, G" uniqKey="Maisetta G">G Maisetta</name>
</author>
<author>
<name sortKey="Brancatisano, Fl" uniqKey="Brancatisano F">FL Brancatisano</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Crooks, Ge" uniqKey="Crooks G">GE Crooks</name>
</author>
<author>
<name sortKey="Hon, G" uniqKey="Hon G">G Hon</name>
</author>
<author>
<name sortKey="Chandonia, J M" uniqKey="Chandonia J">J-M Chandonia</name>
</author>
<author>
<name sortKey="Brenner, Se" uniqKey="Brenner S">SE Brenner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Du, L" uniqKey="Du L">L Du</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
<author>
<name sortKey="Zhou, Y" uniqKey="Zhou Y">Y Zhou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, Rc" uniqKey="Edgar R">RC Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fiser, A" uniqKey="Fiser A">A Fiser</name>
</author>
<author>
<name sortKey="Do, Rkg" uniqKey="Do R">RKG Do</name>
</author>
<author>
<name sortKey="Sali, A" uniqKey="Sali A">A Šali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hancock, Re" uniqKey="Hancock R">RE Hancock</name>
</author>
<author>
<name sortKey="Chapple, Ds" uniqKey="Chapple D">DS Chapple</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hancock, Rew" uniqKey="Hancock R">REW Hancock</name>
</author>
<author>
<name sortKey="Brown, Kl" uniqKey="Brown K">KL Brown</name>
</author>
<author>
<name sortKey="Mookherjee, N" uniqKey="Mookherjee N">N Mookherjee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van T Hof, W" uniqKey="Van T Hof W">W van t Hof</name>
</author>
<author>
<name sortKey="Veerman, Eci" uniqKey="Veerman E">ECI Veerman</name>
</author>
<author>
<name sortKey="Helmerhorst, Ej" uniqKey="Helmerhorst E">EJ Helmerhorst</name>
</author>
<author>
<name sortKey="Amerongen, Avn" uniqKey="Amerongen A">AVN Amerongen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Huang, J" uniqKey="Huang J">J Huang</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Y" uniqKey="Huang Y">Y Huang</name>
</author>
<author>
<name sortKey="Niu, B" uniqKey="Niu B">B Niu</name>
</author>
<author>
<name sortKey="Gao, Y" uniqKey="Gao Y">Y Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozakov, D" uniqKey="Kozakov D">D Kozakov</name>
</author>
<author>
<name sortKey="Beglov, D" uniqKey="Beglov D">D Beglov</name>
</author>
<author>
<name sortKey="Bohnuud, T" uniqKey="Bohnuud T">T Bohnuud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kozakov, D" uniqKey="Kozakov D">D Kozakov</name>
</author>
<author>
<name sortKey="Hall, Dr" uniqKey="Hall D">DR Hall</name>
</author>
<author>
<name sortKey="Xia, B" uniqKey="Xia B">B Xia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kustanovich, I" uniqKey="Kustanovich I">I Kustanovich</name>
</author>
<author>
<name sortKey="Shalev, De" uniqKey="Shalev D">DE Shalev</name>
</author>
<author>
<name sortKey="Mikhlin, M" uniqKey="Mikhlin M">M Mikhlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Dg" uniqKey="Lee D">DG Lee</name>
</author>
<author>
<name sortKey="Kim, Hn" uniqKey="Kim H">HN Kim</name>
</author>
<author>
<name sortKey="Park, Y" uniqKey="Park Y">Y Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Letunic, I" uniqKey="Letunic I">I Letunic</name>
</author>
<author>
<name sortKey="Bork, P" uniqKey="Bork P">P Bork</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, W" uniqKey="Li W">W Li</name>
</author>
<author>
<name sortKey="Godzik, A" uniqKey="Godzik A">A Godzik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovell, Sc" uniqKey="Lovell S">SC Lovell</name>
</author>
<author>
<name sortKey="Davis, Iw" uniqKey="Davis I">IW Davis</name>
</author>
<author>
<name sortKey="Arendall, Wb" uniqKey="Arendall W">WB Arendall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malanovic, N" uniqKey="Malanovic N">N Malanovic</name>
</author>
<author>
<name sortKey="Lohner, K" uniqKey="Lohner K">K Lohner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marcocci, Me" uniqKey="Marcocci M">ME Marcocci</name>
</author>
<author>
<name sortKey="Amatore, D" uniqKey="Amatore D">D Amatore</name>
</author>
<author>
<name sortKey="Villa, S" uniqKey="Villa S">S Villa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marti Renom, Ma" uniqKey="Marti Renom M">MA Martí-Renom</name>
</author>
<author>
<name sortKey="Stuart, Ac" uniqKey="Stuart A">AC Stuart</name>
</author>
<author>
<name sortKey="Fiser, A" uniqKey="Fiser A">A Fiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsuzaki, K" uniqKey="Matsuzaki K">K Matsuzaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Melo, Mn" uniqKey="Melo M">MN Melo</name>
</author>
<author>
<name sortKey="Ferre, R" uniqKey="Ferre R">R Ferre</name>
</author>
<author>
<name sortKey="Castanho, Marb" uniqKey="Castanho M">MARB Castanho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Milne Price, S" uniqKey="Milne Price S">S Milne-Price</name>
</author>
<author>
<name sortKey="Miazgowicz, Kl" uniqKey="Miazgowicz K">KL Miazgowicz</name>
</author>
<author>
<name sortKey="Munster, Vj" uniqKey="Munster V">VJ Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mustafa, S" uniqKey="Mustafa S">S Mustafa</name>
</author>
<author>
<name sortKey="Balkhy, H" uniqKey="Balkhy H">H Balkhy</name>
</author>
<author>
<name sortKey="Gabere, M" uniqKey="Gabere M">M Gabere</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, M" uniqKey="Roy M">M Roy</name>
</author>
<author>
<name sortKey="Lebeau, L" uniqKey="Lebeau L">L Lebeau</name>
</author>
<author>
<name sortKey="Chessa, C" uniqKey="Chessa C">C Chessa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sali, A" uniqKey="Sali A">A Sali</name>
</author>
<author>
<name sortKey="Blundell, Tl" uniqKey="Blundell T">TL Blundell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Singla, D" uniqKey="Singla D">D Singla</name>
</author>
<author>
<name sortKey="Rashid, M" uniqKey="Rashid M">M Rashid</name>
</author>
<author>
<name sortKey="Raghava, Gp" uniqKey="Raghava G">GP Raghava</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sharma, A" uniqKey="Sharma A">A Sharma</name>
</author>
<author>
<name sortKey="Gupta, P" uniqKey="Gupta P">P Gupta</name>
</author>
<author>
<name sortKey="Kumar, R" uniqKey="Kumar R">R Kumar</name>
</author>
<author>
<name sortKey="Bhardwaj, A" uniqKey="Bhardwaj A">A Bhardwaj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y Shen</name>
</author>
<author>
<name sortKey="Maupetit, J" uniqKey="Maupetit J">J Maupetit</name>
</author>
<author>
<name sortKey="Derreumaux, P" uniqKey="Derreumaux P">P Derreumaux</name>
</author>
<author>
<name sortKey="Tuffery, P" uniqKey="Tuffery P">P Tufféry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Skalickova, S" uniqKey="Skalickova S">S Skalickova</name>
</author>
<author>
<name sortKey="Heger, Z" uniqKey="Heger Z">Z Heger</name>
</author>
<author>
<name sortKey="Krejcova, L" uniqKey="Krejcova L">L Krejcova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steinegger, M" uniqKey="Steinegger M">M Steinegger</name>
</author>
<author>
<name sortKey="Soding, J" uniqKey="Soding J">J Söding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steiner, H" uniqKey="Steiner H">H Steiner</name>
</author>
<author>
<name sortKey="Andreu, D" uniqKey="Andreu D">D Andreu</name>
</author>
<author>
<name sortKey="Merrifield, Rb" uniqKey="Merrifield R">RB Merrifield</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K Tamura</name>
</author>
<author>
<name sortKey="Stecher, G" uniqKey="Stecher G">G Stecher</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thevenet, P" uniqKey="Thevenet P">P Thevenet</name>
</author>
<author>
<name sortKey="Shen, Y" uniqKey="Shen Y">Y Shen</name>
</author>
<author>
<name sortKey="Maupetit, J" uniqKey="Maupetit J">J Maupetit</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vajda, S" uniqKey="Vajda S">S Vajda</name>
</author>
<author>
<name sortKey="Yueh, C" uniqKey="Yueh C">C Yueh</name>
</author>
<author>
<name sortKey="Beglov, D" uniqKey="Beglov D">D Beglov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, G" uniqKey="Wang G">G Wang</name>
</author>
<author>
<name sortKey="Li, X" uniqKey="Li X">X Li</name>
</author>
<author>
<name sortKey="Wang, Z" uniqKey="Wang Z">Z Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webb, B" uniqKey="Webb B">B Webb</name>
</author>
<author>
<name sortKey="Sali, A" uniqKey="Sali A">A Sali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeaman, Mr" uniqKey="Yeaman M">MR Yeaman</name>
</author>
<author>
<name sortKey="Yount, Ny" uniqKey="Yount N">NY Yount</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zasloff, M" uniqKey="Zasloff M">M Zasloff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zelezetsky, I" uniqKey="Zelezetsky I">I Zelezetsky</name>
</author>
<author>
<name sortKey="Tossi, A" uniqKey="Tossi A">A Tossi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zimmermann, L" uniqKey="Zimmermann L">L Zimmermann</name>
</author>
<author>
<name sortKey="Stephens, A" uniqKey="Stephens A">A Stephens</name>
</author>
<author>
<name sortKey="Nam, S Z" uniqKey="Nam S">S-Z Nam</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Pept Res Ther</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Pept Res Ther</journal-id>
<journal-title-group>
<journal-title>International Journal of Peptide Research and Therapeutics</journal-title>
</journal-title-group>
<issn pub-type="ppub">1573-3149</issn>
<issn pub-type="epub">1573-3904</issn>
<publisher>
<publisher-name>Springer Netherlands</publisher-name>
<publisher-loc>Dordrecht</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32206049</article-id>
<article-id pub-id-type="pmc">7088259</article-id>
<article-id pub-id-type="publisher-id">9951</article-id>
<article-id pub-id-type="doi">10.1007/s10989-019-09951-y</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Insilico Alpha-Helical Structural Recognition of Temporin Antimicrobial Peptides and Its Interactions with Middle East Respiratory Syndrome-Coronavirus</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Marimuthu</surname>
<given-names>Sathish Kumar</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nagarajan</surname>
<given-names>Krishnanand</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Perumal</surname>
<given-names>Sathish Kumar</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Palanisamy</surname>
<given-names>Selvamani</given-names>
</name>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<contrib-id contrib-id-type="orcid">http://orcid.org/0000-0001-5054-6296</contrib-id>
<name>
<surname>Subbiah</surname>
<given-names>Latha</given-names>
</name>
<address>
<email>lathasuba2010@gmail.com</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.252262.3</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0613 6919</institution-id>
<institution>Department of Pharmaceutical Technology,</institution>
<institution>University College of Engineering, Anna University, Bharathidasan Institute of Technology (BIT) Campus,</institution>
</institution-wrap>
Tiruchirappalli, 620024 Tamilnadu India</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>26</day>
<month>10</month>
<year>2019</year>
</pub-date>
<fpage>1</fpage>
<lpage>11</lpage>
<history>
<date date-type="accepted">
<day>17</day>
<month>10</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>© Springer Nature B.V. 2019</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<p id="Par1">Many antimicrobial peptides (AMPs) have multiple antimicrobial immunity effects. One such class of peptides is temporins. Temporins are the smallest (AMPs) found in nature and are highly active against gram-positive bacteria. Nowadays, there was a rapid increase in the availability of the 3D structure of proteins in PDB (protein data bank). The conserved residues and 3D structural conformations of temporins (AMPs) were still unknown. The present study explores the sequence analysis, alpha-helical structural conformations of temporins. The sequence of temporins was deracinated from APD3 database, the three-dimensional structure was constructed by homology modeling studies. The sequence analysis results show that the conserved residues among the peptide sequences, the maximum of the sequences are 70% alike to each other. The secondary structure prediction results revealed that 99% of temporin (AMPs) exhibited in alpha-helical form. The 3D structure speculated using RAMPAGE exposes the alpha-helical conformation in all temporins (AMPs). The phylogenetic analysis reveals the evolutionary relationships of temporins (AMPs), which are branched into seven clusters. As a result, we identified a list of potential temporin AMPs which docked to the antiviral protein (MERS-CoV), it shows good protein-peptide binding. This computational approach may serve as a good model for the rationale design of temporin based antibiotics.</p>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (10.1007/s10989-019-09951-y) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Temporins</kwd>
<kwd>Alpha helical</kwd>
<kwd>Amino acid composition</kwd>
<kwd>Structure prediction</kwd>
<kwd>Phylogenetic tree</kwd>
<kwd>Protein-peptide docking</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Introduction</title>
<sec id="Sec2">
<title>Antimicrobial Peptides</title>
<p id="Par2">Almost all multicellular organisms have AMPs to protect themselves from pathogenic microbes and acts as the first line of defence (Hancock and Chapple
<xref ref-type="bibr" rid="CR10">1999</xref>
). AMPs are an integral part of the body's natural immune system which exhibits not only antimicrobial, anticancer, antitumor activity and but also displays immunomodulating properties (Zasloff
<xref ref-type="bibr" rid="CR45">2002</xref>
). Majority of the mode of action studies performed using AMPs have cell membranes as their targets, and a variety of models have been proposed so far to explain the formation of membrane pores (Yeaman and Yount
<xref ref-type="bibr" rid="CR44">2003</xref>
). The disruptive membrane models such as “barrel-stave,” (Melo et al.
<xref ref-type="bibr" rid="CR25">2009</xref>
) “toroidal pore” (Hof et al.
<xref ref-type="bibr" rid="CR39">2001</xref>
) or “carpet models” (Steiner et al.
<xref ref-type="bibr" rid="CR35">1988</xref>
) provide a deeper insight into the interaction of amphipathic alpha-helical peptides with lipid bilayers, which are often referred as molecular electroporation (Matsuzaki
<xref ref-type="bibr" rid="CR24">1999</xref>
). The variations in cell membrane lipid composition of eukaryotic and prokaryotic organisms form as the primary targets for AMPs. The specificity of AMPs to the target cells relies upon the peptides favourable interaction with the microbial targets, which allow them to lyse a specific cell without affecting the host cells (Hancock et al.
<xref ref-type="bibr" rid="CR11">2006</xref>
). Net charge, amphipathicity, and hydrophobicity of AMPs also play a crucial role in the association of these peptides to target cellular membranes from exerting antimicrobial activity. Diverse antimicrobial peptides have been reported from various ecological components such as plants, mammals, insects, and invertebrates. Currently, more than 2838 AMPs have been deposit in the antimicrobial peptide database.</p>
</sec>
</sec>
<sec id="Sec3">
<title>Temporins</title>
<p id="Par3">The temporins are small (10 to 14 amino acid residues), linear (AMPs) with a net cationic charge and an amidated C-terminus. These peptide classes are collectively known as temporins and have shown the highest activity among AMPs studied till date, against both human erythrocytes and bacterial strains. The mode of action of AMPs against bacterial cells has been extensively identified and documented; their antiviral functions were not fully understood (Skalickova et al.
<xref ref-type="bibr" rid="CR33">2015</xref>
). Recent findings have suggested the efficacy of various classes of AMPs and their specific mode of action against viral pathogens and the potential use of these AMPs as an antiviral therapy (Marcocci et al.
<xref ref-type="bibr" rid="CR22">2018</xref>
; Ahmed et al.
<xref ref-type="bibr" rid="CR1">2019</xref>
).</p>
<p id="Par4">Due to the membranolytic effects of temporins, the pathogens were difficult to develop resistance. Therefore, temporins are prospective aspirants for the design of imminent antiviral drugs with an innovative approach However, there is no structural information is available for the temporins family of AMPs. Therefore, we investigated the in silico structural information and protein-peptide interactions of temporins AMPs against MERS-CoV. These in silico findings are thought to help designing new types of peptide based antiviral drugs.</p>
</sec>
<sec id="Sec4">
<title>Middle East Respiratory Syndrome-Coronavirus (MERS-CoV)</title>
<p id="Par5">In 2012, MERS-CoV was recognized in Saudi Arabia and belongs to the Coronaviridae family, mostly reported among the individuals of the Middle East (Milne-Price et al.
<xref ref-type="bibr" rid="CR26">2014</xref>
). MERS-CoV protein is a main target for therapeutic development to obstruct membrane fusion and viral entry (Du et al.
<xref ref-type="bibr" rid="CR7">2017</xref>
). Since, there is no effective therapeutics for Middle East Respiratory Syndrome and this research attempts to find using peptide therapeutics by establishing a basis for the protein-peptide interactions through molecular docking analysis for the antiviral protein MERS-CoV.</p>
</sec>
<sec id="Sec5">
<title>Materials and Methods</title>
<sec id="Sec6">
<title>Dataset</title>
<p id="Par6">Temporin family of (AMPs) was chosen for the present study. The amino acid sequence of (AMPs)belonging to the entire temporin family was retrieved from the APD3 antimicrobial database (
<ext-link ext-link-type="uri" xlink:href="https://aps.unmc.edu/AP/">https://aps.unmc.edu/AP/</ext-link>
) (Wang et al.
<xref ref-type="bibr" rid="CR41">2009</xref>
,
<xref ref-type="bibr" rid="CR42">2016</xref>
; Wang and Wang
<xref ref-type="bibr" rid="CR40">2004</xref>
). A total of 121 antimicrobial peptides of temporin family from various organisms were collected from the database. The sequence alignment was performed with the aid of MUSCLE program.(Edgar
<xref ref-type="bibr" rid="CR8">2004</xref>
; Zimmermann et al.
<xref ref-type="bibr" rid="CR47">2018</xref>
). Followed by performing Multiple sequence alignment (MSA), the temporin family was clustered based on sequence similarity. MMseqs2 and CD-Hit were used (
<ext-link ext-link-type="uri" xlink:href="https://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi">https://weizhongli-lab.org/cdhit_suite/cgi-bin/index.cgi</ext-link>
) for clustering of peptides (Steinegger and Söding
<xref ref-type="bibr" rid="CR34">2017</xref>
; Huang et al.
<xref ref-type="bibr" rid="CR12">2010a</xref>
,
<xref ref-type="bibr" rid="CR13">b</xref>
; Li and Godzik
<xref ref-type="bibr" rid="CR19">2006</xref>
). Among the clustered peptides the conserved residues were determined using Weblogo (Crooks et al.
<xref ref-type="bibr" rid="CR6">2004</xref>
). The secondary structure prediction for the entire temporin family of peptides was performed to achieve the homology modeling. Further, the biofilm active temporin peptides were also predicted using the dPABBs module (Sharma et al.
<xref ref-type="bibr" rid="CR31">2016</xref>
). The half-life of the peptides was identified using the HLP, a server for predicting half-life of peptides (Sharma et al.
<xref ref-type="bibr" rid="CR30">2014</xref>
).</p>
</sec>
</sec>
<sec id="Sec7">
<title>Homology Modelling of Temporin AMPs</title>
<p id="Par7">The structural similarity of the sequences was performed using BLASTp search and the templates with similar structures in the PDB database were retrieved. Among the chosen 121 (AMPs) of temporins, 120 peptides were 3D-modelled using Modeller software Version: 9.14 and PEP-FOLD for obtaining the three-dimensional structure of the peptides. The structure of one of the temporin peptide (PDB ID: 2MAA) is retrieved from protein databank structure (Sali and Blundell
<xref ref-type="bibr" rid="CR29">1993</xref>
; Fiser et al.
<xref ref-type="bibr" rid="CR9">2000</xref>
; Martí-Renom et al.
<xref ref-type="bibr" rid="CR23">2000</xref>
; Thevenet et al.
<xref ref-type="bibr" rid="CR37">2012</xref>
; Shen et al.
<xref ref-type="bibr" rid="CR32">2014</xref>
; Webb and Sali
<xref ref-type="bibr" rid="CR43">2016</xref>
). The modeled peptide structures were compared and evaluated with the standard peptide structure and validated using the Ramachandran plot at RAMPAGE server (Lovell et al.
<xref ref-type="bibr" rid="CR20">2003</xref>
).</p>
</sec>
<sec id="Sec8">
<title>Phylogenetic Tree Construction</title>
<p id="Par8">A phylogenetic analysis based on the peptide sequence was carried out using the maximum-likelihood method with MEGA 6.0 (Tamura et al.
<xref ref-type="bibr" rid="CR36">2013</xref>
). The tree was evaluated using iTOL (interactive Tree of Life) package (Letunic and Bork
<xref ref-type="bibr" rid="CR18">2016</xref>
). The pairwise distance was calculated and interactively visualizes their data in the form of the heat map (Babicki et al.
<xref ref-type="bibr" rid="CR2">2016</xref>
).</p>
</sec>
<sec id="Sec9">
<title>Molecular Docking</title>
<p id="Par9">To determine the molecular interaction of tem_a and high half-life (in seconds) of temporin peptides with the antiviral protein (MERS-CoV) using Cluspro server, online based protein–protein, protein-peptide docking algorithm (Kozakov et al.
<xref ref-type="bibr" rid="CR14">2013</xref>
,
<xref ref-type="bibr" rid="CR15">2017</xref>
; Vajda et al.
<xref ref-type="bibr" rid="CR38">2017</xref>
). MERS-CoV spike protein retrieved from protein data bank database (PDB ID: 5X59). The selective temporin peptides were uploaded to the Cluspro server for docking analysis and the hydrogen bond interactions between the MERS-CoV antiviral protein with temporins are visualized by Discovery studio visualizer software 2017(Dassault Systemes, BIOVIA Corp., San Diego, CA, USA).</p>
</sec>
<sec id="Sec10">
<title>Results and Discussions</title>
<sec id="Sec11">
<title>Sequence and its Physicochemical Properties</title>
<p id="Par10">The amino acid sequence of temporin AMPs are listed from various Rana’s family, and these AMPs are showing high hydrophobicity and positive net charge (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
). Temporin AMPs sequence fasta file supplementary 1. The source and physicochemical properties of temporin AMPs were listed in Supplementary file 2. Most of the temporin AMPs are having more than 50% hydrophobicity (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
a), some of the temporin peptides (tem_hb1 ‘FLPLLAGLAAKWF’, tem_sh1 ‘FFFLSRIF’ and tem_1gd ‘FILPLIASFLSKFL’) has highest hydrophobicity percentage. In most cases, the hydrophobicity, length, net charges and other physicochemical parameters determined the antimicrobial activity of a peptide. In specific the hydrophobicity and charge of a peptide are critical factors determine the potency of an (AMPs) Any increase or decrease in the hydrophobicity index is directly proportional to the cationicity of a peptide. Most often the higher cationicity is attributing to greater binding efficiency, which results in effective binding of peptide over the bacterial surface (Malanovic and Lohner
<xref ref-type="bibr" rid="CR21">2016</xref>
). Once after binding the peptide takes its desired path to exert its action mechanism (Lee et al.
<xref ref-type="bibr" rid="CR17">2002</xref>
), while a decrease in hydrophobicity can reduce antimicrobial potency of the peptide (Kustanovich et al.
<xref ref-type="bibr" rid="CR16">2002</xref>
). During the synthesis of novel peptides, hydrophobicity is one of the perilous factors, for determining the range of target cells of AMP. Increasing the hydrophobicity of an AMP can alter the prospect of targets (Bahar and Ren
<xref ref-type="bibr" rid="CR3">2013</xref>
).
<fig id="Fig1">
<label>Fig. 1</label>
<caption>
<p>Pie chart depicting distribution of hydrophobicity and net charge of temporin AMPs</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig1_HTML" id="MO1"></graphic>
</fig>
</p>
<p id="Par11">The net charge of all temporin AMPs contains a positive charge, and the average net charge is 2 (Fig. 
<xref rid="Fig1" ref-type="fig">1</xref>
b). The selected AMPs of the net charge accounts for the ionizable groups of the peptide, resulting in the divergence from negative to positive and vice versa, which is the foremost constituent for the initial interaction with negatively charged cell membranes. The average length of the temporin AMPs is 13 residues. The length of an AMP is also a factor that attributes to the bioactivity of a peptide. A minimum of 7–8 amino acids are needed to form amphipathic structures with the hydrophobic and hydrophilic face on the opposite side of a peptide molecule (Zelezetsky and Tossi
<xref ref-type="bibr" rid="CR46">2006</xref>
). The overall height of the amino acids in (Fig. 
<xref rid="Fig2" ref-type="fig">2</xref>
) indicates the conserved residues at that position. We identified that non-polar amino acids like phenylalanine, proline, leucine, shows the conserved among the temporin AMPs.
<fig id="Fig2">
<label>Fig. 2</label>
<caption>
<p>Conserved residues of temporin AMPs</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig2_HTML" id="MO2"></graphic>
</fig>
</p>
<p id="Par12">Sequence alignment of temporins AMPs represents the conserved residues among the peptide sequences, most of the temporin sequences are 70% similar to each other. The secondary structure prediction between the peptides shows the alpha helix and beta sheets, 98% of temporin AMPs exhibit alpha helical form. Some of the temporins display activity against the microbial biofilms, which are highlighted by grey colour shading (Fig. 
<xref rid="Fig3" ref-type="fig">3</xref>
). From time to time, biofilms form a physical defense to protect bacteria from antibiotics.This might be due to slow development and reduced metabolic activity of a bacteria in such a population, the use of AMPs to inhibit biofilm formation could potentially be an efficient therapeutic option. In fact, due to the prevalent mechanism of action of AMPs, that depends on their ability to permeabilize or form pores within plasma membranes, they also have a strong capacity to act on increasing bacteria.(Batoni et al.
<xref ref-type="bibr" rid="CR4">2011</xref>
).A recent study on temporin anti-microbial peptides demonstrated significant anti-HSV-1 activity which was equivalent to that of Human cathelicidin LL-37 and a temporin synthetic analogue [K3]SHa. In addition, the study had emphasized its direct-acting mechanism for elimination of HSV-1(Roy et al.
<xref ref-type="bibr" rid="CR28">2019</xref>
). In an another in vitro anti-HSV-1 study using temporin B (TB), significant antiviral activity was observed which had resulted in a 5-log reduction of the viral titer. The disruption of the viral envelope was also confirmed upon observation using a transmission electron microscopy. Further, the TB was found to disturb the HSV-1 life cycle in different phases, including the attachment, entry into the host cell, and post-infection stage (Marcocci et al.
<xref ref-type="bibr" rid="CR22">2018</xref>
).
<fig id="Fig3">
<label>Fig. 3</label>
<caption>
<p>Multiple sequence alignment of temporin AMPs (Green colour indicates the sheet region; Magenta colour indicates the helix region; grey colour highlighted on temporins ID indicates the Bioactive peptides) (Color figure online)</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig3_HTML" id="MO3"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="Sec12">
<title>Homology Modeling of Temporin AMPs and its Validation</title>
<p id="Par13">Homology models of temporin AMPs have been constructed successfully for the identification of structural information. The result of all temporin peptides shows the α-helical conformation in modelled structures, which is an important class of AMPs holding higher amphipathicity. Moreover, the α-helical conformation allows effective interaction with biological membranes (Huang et al.
<xref ref-type="bibr" rid="CR12">2010a</xref>
,
<xref ref-type="bibr" rid="CR13">b</xref>
). The modelled 3D structures of 120 temporins (AMPs) evaluated using RAMPAGE helps to interpret the allowing and disallowing regions, which declares the evaluation of peptide structures in Supplementary file 3.</p>
</sec>
<sec id="Sec13">
<title>Evolutionary Relationship and Recognition of Half-Life of Temporin AMPs</title>
<p id="Par14">We have constructed a phylogeny tree of all the 121 temporin AMPs (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
) to evaluate the evolutionary relationship between sequences. Maximum likelihood approaches are used to evaluate the Phylogenetic trees for a set of species (Cho
<xref ref-type="bibr" rid="CR5">2012</xref>
), and it's a robust statistical foundation that allows comparison of different trees, parameters and models. Based on the phylogenetic tree (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
), the temporin peptide sequences classified into five clades (CLADE A, CLADE B, CLADE C, CLADE D, and CLADE E). Each clade node represents the individual colour to which the branched group has been recognized (Fig. 
<xref rid="Fig4" ref-type="fig">4</xref>
). The Pairwise distance matrix was calculated for all temporin peptides from MEGA software (Supplementary file 4) and a heatmap was constructed using HEATMAPPER, which shows the graphical representation of sequence pairwise between the temporin AMPs (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
).
<fig id="Fig4">
<label>Fig. 4</label>
<caption>
<p>The phylogenetic tree of temporin AMPs</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig4_HTML" id="MO4"></graphic>
</fig>
<fig id="Fig5">
<label>Fig. 5</label>
<caption>
<p>A heat map showing the sequence identity between the temporin AMPs (red colour indicates the most similar pairwise distance green colour indicates the least similiar pairwise distance) (Color figure online)</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig5_HTML" id="MO5"></graphic>
</fig>
</p>
<p id="Par15">Plenty of the (AMPs) have entered clinical trials, but not many have been supported by the U.S. Food and Drug Administration to date due to the reason of short half-life. In this work, we predicted the short half-life of temporin AMPs by
<italic>insilico</italic>
method. (Fig. 
<xref rid="Fig6" ref-type="fig">6</xref>
) shows the scatter visualization of predicted half-life values of temporin AMPs. Peptides like tem_1rnb, tem_1p, tem_1csb, tem_cg3, tem_lf1, tem_1ec, tem_eca are showing the higher half-life values in seconds. The lists of the half-life of all temporin AMPs Supplementary file 4.
<fig id="Fig6">
<label>Fig. 6</label>
<caption>
<p>A scatter plot showing the half-life of the temporin AMPs (Green colour represent the minimum half-life, canal blue colour represent the neutral half-life, navy colour represent the maximum half-life) (Color figure online)</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig6_HTML" id="MO6"></graphic>
</fig>
</p>
</sec>
<sec id="Sec14">
<title>Evaluation of MERS CoV – Temporin AMPs and its Interaction Analysis</title>
<p id="Par16">The molecular docking of selective temporin AMPs with antiviral protein (MERS-CoV) was performed by using cluspro online server. For further evauation, we selected eight antimicrobial peptides, namely, tem_a, tem_1rnb, tem_1p, tem_1csb, tem_cg3, tem_lf1, tem_1ec and tem_eca belonging to family of temporins. The modeled, validated structure of tem_1rnb, tem_1p, tem_1csb, tem_cg3, tem_lf1, tem_1ec and tem_ecahave been chosen as ligand for this protein-peptide docking studies. The docked pose with the best fit was selected for each peptide-protein complex based on same binding region (Fig. 
<xref rid="Fig7" ref-type="fig">7</xref>
). The cluspro result of MERS CoV – Temporin AMPs complex details presented in Table
<xref rid="Tab1" ref-type="table">1</xref>
.
<fig id="Fig7">
<label>Fig. 7</label>
<caption>
<p>Visualization of docked complexes (tem_a—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
a, tem_1rnb—MERS-CoV Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
b, tem_1csb—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
c, tem_cg3—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
d, tem_1ec—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
e, tem_eca—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
f, tem_1p—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
g, tem_lf1—MERS-CoV complex Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
h)</p>
</caption>
<graphic xlink:href="10989_2019_9951_Fig7_HTML" id="MO7"></graphic>
</fig>
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Energy of the docked complex based on cluster size (member), energy scores</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">Peptide</th>
<th align="left">Target</th>
<th align="left">Representative</th>
<th align="left">Member</th>
<th align="left">Energy score</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Tem_a</td>
<td align="left" rowspan="8">MERs-CoV</td>
<td align="left" rowspan="8">Center</td>
<td align="left">277</td>
<td align="left"> − 874.5</td>
</tr>
<tr>
<td align="left">Tem_1rnb</td>
<td align="left">115</td>
<td align="left"> − 789.6</td>
</tr>
<tr>
<td align="left">Tem_1p</td>
<td align="left">223</td>
<td align="left"> − 925.0</td>
</tr>
<tr>
<td align="left">Tem_1csb</td>
<td align="left">133</td>
<td align="left"> − 890.5</td>
</tr>
<tr>
<td align="left">Tem_cg3</td>
<td align="left">133</td>
<td align="left"> − 861.0</td>
</tr>
<tr>
<td align="left">Tem_1ec</td>
<td align="left">191</td>
<td align="left"> − 1000.8</td>
</tr>
<tr>
<td align="left">Tem_1f1</td>
<td align="left">133</td>
<td align="left"> − 882.1</td>
</tr>
<tr>
<td align="left">Tem_eca</td>
<td align="left">917</td>
<td align="left"> − 784.9</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p id="Par17">Further, the protein-peptide complexes were visualized by Discovery studio visualizer, to display hydrogen bond interaction involved in the protein-peptide docking. The tem_a peptide shows good binding with the MERS-CoV, it forms six hydrogen bond interaction with GLU793, SER1095, LYS1021, ARG841 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
a); tem_1rnb forms hydrogen bond interaction with GLN1084, ALA1080, THR1076 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
b); tem_1csb shows null hydrogen bond interaction with the target (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
c); tem_cg3 forms six hydrogen bond interaction with ARG841, GLN1097, LYS1021, ASN1028 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
d); tem_1ec shows 2 hydrogen bond interaction with ARG841, LYS1021(Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
E); tem_eca forms one hydrogen bond with SER1091 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
f); tem_1p forms three hydrogen bond interaction with SER1091, GLN1097 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
g); tem_lf1 shows good interactions, it forms five hydrogen bonds with LEU1094, SER845, ARG841, ASN1028 (Fig. 
<xref rid="Fig5" ref-type="fig">5</xref>
h). Recently, Mustafa et al.
<xref ref-type="bibr" rid="CR27">2019</xref>
had docked, investigated and validated the interactions between the various peptides (Cyclotides, Chicken beta defensin, Dermaseptin-s9, Human alpha defensin, Plectasin, Rat defensin, Rat alpha defensin) against MERS-CoV and has demonstrated prominant antiviral activity.</p>
</sec>
<sec id="Sec15">
<title>Conclusion</title>
<p id="Par18">In this present study, we have interpreted the sequence, modelled 3D structures, evolutionary relationship and docking studies with antiviral protein (MERS-CoV) of temporin AMPs through a homology modeling, phylogeny tree construction and protein peptide docking. The 3D structural of temporin antimicrobial peptides successfully predicted and results shows the alpha-helical structural diversity among the peptides. Phylogenetic analysis exposes that all temporin peptides are 70% evolutionary similar to each other. Some of the temporin peptides like tem_a and high scored half-life temporin peptides were docked to MERS-CoV protein, and results shows good interaction with the antiviral protein. These observations reinforce the idea that temporin AMPs may serve as a new therapeutic application for the future development. Furthermore, the findings reported above are preliminary and will certainly require experimental evaluation through in vitro and in vivo studies, which are crucial for their development into therapeutic targets against MERS-CoV.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec16">
<p>Below is the link to the electronic supplementary material.
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="10989_2019_9951_MOESM1_ESM.docx">
<caption>
<p>Supplementary file1 (DOCX 12 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM2">
<media xlink:href="10989_2019_9951_MOESM2_ESM.doc">
<caption>
<p>Supplementary file2 (DOC 203 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM3">
<media xlink:href="10989_2019_9951_MOESM3_ESM.pdf">
<caption>
<p>Supplementary file3 (PDF 20084 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM4">
<media xlink:href="10989_2019_9951_MOESM4_ESM.xlsx">
<caption>
<p>Supplementary file4 (XLSX 79 kb)</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="MOESM5">
<media xlink:href="10989_2019_9951_MOESM5_ESM.xlsx">
<caption>
<p>Supplementary file5 (XLSX 12 kb)</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<fn-group>
<fn>
<p>
<bold>Publisher's Note</bold>
</p>
<p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>A special thanks to Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli-620024 and Center for Research, Anna University, Chennai-600025, Tamil Nadu, for support and facilities provided.</p>
</ack>
<notes>
<title>Compliance with Ethical Standards</title>
<notes notes-type="COI-statement">
<title>Conflict of interest</title>
<p id="Par19">Authors declare no conflict of interest.</p>
</notes>
<notes>
<title>Research Involving Human and Animal Participants</title>
<p id="Par20">This article does not contain any studies with human participants or animals performed by any of the authors.</p>
</notes>
</notes>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ahmed</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Siman-Tov</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Human antimicrobial peptides as therapeutics for viral infections</article-title>
<source>Viruses</source>
<year>2019</year>
<volume>11</volume>
<fpage>704</fpage>
<pub-id pub-id-type="doi">10.3390/v11080704</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Babicki</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arndt</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Marcu</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heatmapper: web-enabled heat mapping for all</article-title>
<source>Nucleic Acids Res</source>
<year>2016</year>
<volume>44</volume>
<fpage>W147</fpage>
<lpage>W153</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw419</pub-id>
<pub-id pub-id-type="pmid">27190236</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bahar</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Ren</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Antimicrobial peptides</article-title>
<source>Pharmaceuticals (Basel)</source>
<year>2013</year>
<volume>6</volume>
<fpage>1543</fpage>
<lpage>1575</lpage>
<pub-id pub-id-type="doi">10.3390/ph6121543</pub-id>
<pub-id pub-id-type="pmid">24287494</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Batoni</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Maisetta</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Brancatisano</surname>
<given-names>FL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Use of antimicrobial peptides against microbial biofilms: advantages and limits</article-title>
<source>Curr Med Chem</source>
<year>2011</year>
<volume>18</volume>
<fpage>256</fpage>
<lpage>279</lpage>
<pub-id pub-id-type="doi">10.2174/092986711794088399</pub-id>
<pub-id pub-id-type="pmid">21110801</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<mixed-citation publication-type="other">Cho A (2012) Constructing phylogenetic trees using maximum likelihood. Scripps Sr Theses</mixed-citation>
</ref>
<ref id="CR6">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Crooks</surname>
<given-names>GE</given-names>
</name>
<name>
<surname>Hon</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Chandonia</surname>
<given-names>J-M</given-names>
</name>
<name>
<surname>Brenner</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>WebLogo: a sequence logo generator</article-title>
<source>Genome Res</source>
<year>2004</year>
<volume>14</volume>
<fpage>1188</fpage>
<lpage>1190</lpage>
<pub-id pub-id-type="doi">10.1101/gr.849004</pub-id>
<pub-id pub-id-type="pmid">15173120</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Du</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MERS-CoV spike protein: a key target for antivirals</article-title>
<source>Expert Opin Ther Targets</source>
<year>2017</year>
<volume>21</volume>
<fpage>131</fpage>
<lpage>143</lpage>
<pub-id pub-id-type="doi">10.1080/14728222.2017.1271415</pub-id>
<pub-id pub-id-type="pmid">27936982</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edgar</surname>
<given-names>RC</given-names>
</name>
</person-group>
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput</article-title>
<source>Nucleic Acids Res</source>
<year>2004</year>
<volume>32</volume>
<fpage>1792</fpage>
<lpage>1797</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkh340</pub-id>
<pub-id pub-id-type="pmid">15034147</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fiser</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>RKG</given-names>
</name>
<name>
<surname>Šali</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Modeling of loops in protein structures</article-title>
<source>Protein Sci</source>
<year>2000</year>
<volume>9</volume>
<fpage>1753</fpage>
<lpage>1773</lpage>
<pub-id pub-id-type="doi">10.1110/ps.9.9.1753</pub-id>
<pub-id pub-id-type="pmid">11045621</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hancock</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Chapple</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Peptide antibiotics</article-title>
<source>Antimicrob Agents Chemother</source>
<year>1999</year>
<volume>43</volume>
<fpage>1317</fpage>
<lpage>1323</lpage>
<pub-id pub-id-type="doi">10.1128/AAC.43.6.1317</pub-id>
<pub-id pub-id-type="pmid">10348745</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hancock</surname>
<given-names>REW</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Mookherjee</surname>
<given-names>N</given-names>
</name>
</person-group>
<article-title>Host defence peptides from invertebrates—emerging antimicrobial strategies</article-title>
<source>Immunobiology</source>
<year>2006</year>
<volume>211</volume>
<fpage>315</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="doi">10.1016/j.imbio.2005.10.017</pub-id>
<pub-id pub-id-type="pmid">16697922</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van t Hof</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Veerman</surname>
<given-names>ECI</given-names>
</name>
<name>
<surname>Helmerhorst</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Amerongen</surname>
<given-names>AVN</given-names>
</name>
</person-group>
<article-title>Antimicrobial peptides: properties and applicability</article-title>
<source>Biol Chem</source>
<year>2001</year>
<volume>382</volume>
<fpage>597</fpage>
<lpage>619</lpage>
<pub-id pub-id-type="doi">10.1515/BC.2001.072</pub-id>
<pub-id pub-id-type="pmid">11405223</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Alpha-helical cationic antimicrobial peptides: relationships of structure and function</article-title>
<source>Protein Cell</source>
<year>2010</year>
<volume>1</volume>
<fpage>143</fpage>
<lpage>152</lpage>
<pub-id pub-id-type="doi">10.1007/s13238-010-0004-3</pub-id>
<pub-id pub-id-type="pmid">21203984</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Niu</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CD-HIT suite: a web server for clustering and comparing biological sequences</article-title>
<source>Bioinformatics</source>
<year>2010</year>
<volume>26</volume>
<fpage>680</fpage>
<lpage>682</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btq003</pub-id>
<pub-id pub-id-type="pmid">20053844</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozakov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Beglov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Bohnuud</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>How good is automated protein docking?</article-title>
<source>Proteins Struct Funct Bioinforma</source>
<year>2013</year>
<volume>81</volume>
<fpage>2159</fpage>
<lpage>2166</lpage>
<pub-id pub-id-type="doi">10.1002/prot.24403</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kozakov</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>DR</given-names>
</name>
<name>
<surname>Xia</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The ClusPro web server for protein–protein docking</article-title>
<source>Nat Protoc</source>
<year>2017</year>
<volume>12</volume>
<fpage>255</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="doi">10.1038/nprot.2016.169</pub-id>
<pub-id pub-id-type="pmid">28079879</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kustanovich</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Shalev</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Mikhlin</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives</article-title>
<source>J Biol Chem</source>
<year>2002</year>
<volume>277</volume>
<fpage>16941</fpage>
<lpage>16951</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M111071200</pub-id>
<pub-id pub-id-type="pmid">11847217</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>HN</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Design of novel analogue peptides with potent antibiotic activity based on the antimicrobial peptide, HP (2–20), derived from N-terminus of Helicobacter pylori ribosomal protein L1</article-title>
<source>Biochim Biophys Acta</source>
<year>2002</year>
<volume>1598</volume>
<fpage>185</fpage>
<lpage>194</lpage>
<pub-id pub-id-type="doi">10.1016/S0167-4838(02)00373-4</pub-id>
<pub-id pub-id-type="pmid">12147359</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Letunic</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Bork</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees</article-title>
<source>Nucleic Acids Res</source>
<year>2016</year>
<volume>44</volume>
<fpage>W242</fpage>
<lpage>W245</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkw290</pub-id>
<pub-id pub-id-type="pmid">27095192</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Godzik</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences</article-title>
<source>Bioinformatics</source>
<year>2006</year>
<volume>22</volume>
<fpage>1658</fpage>
<lpage>1659</lpage>
<pub-id pub-id-type="doi">10.1093/bioinformatics/btl158</pub-id>
<pub-id pub-id-type="pmid">16731699</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovell</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Davis</surname>
<given-names>IW</given-names>
</name>
<name>
<surname>Arendall</surname>
<given-names>WB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure validation by Cα geometry: ϕ, ψ and Cβ deviation</article-title>
<source>Proteins Struct Funct Bioinforma</source>
<year>2003</year>
<volume>50</volume>
<fpage>437</fpage>
<lpage>450</lpage>
<pub-id pub-id-type="doi">10.1002/prot.10286</pub-id>
</element-citation>
</ref>
<ref id="CR21">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malanovic</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Lohner</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Antimicrobial peptides targeting Gram-positive bacteria</article-title>
<source>Pharmaceuticals</source>
<year>2016</year>
<volume>9</volume>
<fpage>59</fpage>
<pub-id pub-id-type="doi">10.3390/ph9030059</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marcocci</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Amatore</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Villa</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection</article-title>
<source>Antimicrob Agents Chemother</source>
<year>2018</year>
<volume>62</volume>
<fpage>e02367</fpage>
<pub-id pub-id-type="doi">10.1128/AAC.02367-17</pub-id>
<pub-id pub-id-type="pmid">29483113</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martí-Renom</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Stuart</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Fiser</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparative protein structure modeling of genes and genomes</article-title>
<source>Annu Rev Biophys Biomol Struct</source>
<year>2000</year>
<volume>29</volume>
<fpage>291</fpage>
<lpage>325</lpage>
<pub-id pub-id-type="doi">10.1146/annurev.biophys.29.1.291</pub-id>
<pub-id pub-id-type="pmid">10940251</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsuzaki</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes</article-title>
<source>Biochim Biophys Acta</source>
<year>1999</year>
<volume>1462</volume>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1016/S0005-2736(99)00197-2</pub-id>
<pub-id pub-id-type="pmid">10590299</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Melo</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Ferre</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Castanho</surname>
<given-names>MARB</given-names>
</name>
</person-group>
<article-title>Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations</article-title>
<source>Nat Rev Microbiol</source>
<year>2009</year>
<volume>7</volume>
<fpage>245</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="doi">10.1038/nrmicro2095</pub-id>
<pub-id pub-id-type="pmid">19219054</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Milne-Price</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Miazgowicz</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Munster</surname>
<given-names>VJ</given-names>
</name>
</person-group>
<article-title>The emergence of the middle east respiratory syndrome coronavirus</article-title>
<source>Pathog Dis</source>
<year>2014</year>
<volume>71</volume>
<fpage>121</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="doi">10.1111/2049-632X.12166</pub-id>
<pub-id pub-id-type="pmid">24585737</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mustafa</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Balkhy</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Gabere</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Peptide-protein interaction studies of antimicrobial peptides targeting middle east respiratory syndrome coronavirus spike protein: an in silico approach</article-title>
<source>Adv Bioinform</source>
<year>2019</year>
<volume>2019</volume>
<fpage>1</fpage>
<lpage>16</lpage>
<pub-id pub-id-type="doi">10.1155/2019/6815105</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lebeau</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Chessa</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and [K3]SHa to LL-37 and temporin-Tb against herpes simplex virus type 1</article-title>
<source>Viruses</source>
<year>2019</year>
<volume>11</volume>
<fpage>77</fpage>
<pub-id pub-id-type="doi">10.3390/v11010077</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Blundell</surname>
<given-names>TL</given-names>
</name>
</person-group>
<article-title>Comparative protein modelling by satisfaction of spatial restraints</article-title>
<source>J Mol Biol</source>
<year>1993</year>
<volume>234</volume>
<fpage>779</fpage>
<lpage>815</lpage>
<pub-id pub-id-type="doi">10.1006/jmbi.1993.1626</pub-id>
<pub-id pub-id-type="pmid">8254673</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Singla</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rashid</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Raghava</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Designing of peptides with desired half-life in intestine-like environment</article-title>
<source>BMC bioinform</source>
<year>2014</year>
<volume>15</volume>
<issue>1</issue>
<fpage>282</fpage>
<pub-id pub-id-type="doi">10.1186/1471-2105-15-282</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sharma</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Bhardwaj</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>dPABBs: a novel in silico approach for predicting and designing anti-biofilm peptides</article-title>
<source>Sci Rep</source>
<year>2016</year>
<volume>6</volume>
<fpage>21839</fpage>
<pub-id pub-id-type="doi">10.1038/srep21839</pub-id>
<pub-id pub-id-type="pmid">26912180</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maupetit</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Derreumaux</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Tufféry</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Improved PEP-FOLD approach for peptide and miniprotein structure prediction</article-title>
<source>J Chem Theory Comput</source>
<year>2014</year>
<volume>10</volume>
<fpage>4745</fpage>
<lpage>4758</lpage>
<pub-id pub-id-type="doi">10.1021/ct500592m</pub-id>
<pub-id pub-id-type="pmid">26588162</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Skalickova</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Heger</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Krejcova</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Perspective of use of antiviral peptides against influenza virus</article-title>
<source>Viruses</source>
<year>2015</year>
<volume>7</volume>
<fpage>5428</fpage>
<lpage>5442</lpage>
<pub-id pub-id-type="doi">10.3390/v7102883</pub-id>
<pub-id pub-id-type="pmid">26492266</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steinegger</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Söding</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets</article-title>
<source>Nat Biotechnol</source>
<year>2017</year>
<pub-id pub-id-type="doi">10.1038/nbt.3988</pub-id>
<pub-id pub-id-type="pmid">29035372</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Steiner</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Andreu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Merrifield</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects</article-title>
<source>Biochim Biophys Acta</source>
<year>1988</year>
<volume>939</volume>
<fpage>260</fpage>
<lpage>266</lpage>
<pub-id pub-id-type="doi">10.1016/0005-2736(88)90069-7</pub-id>
<pub-id pub-id-type="pmid">3128324</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Stecher</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MEGA6: molecular evolutionary genetics analysis version 6.0</article-title>
<source>Mol Biol Evol</source>
<year>2013</year>
<volume>30</volume>
<fpage>2725</fpage>
<lpage>2729</lpage>
<pub-id pub-id-type="doi">10.1093/molbev/mst197</pub-id>
<pub-id pub-id-type="pmid">24132122</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thevenet</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Maupetit</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides</article-title>
<source>Nucleic Acids Res</source>
<year>2012</year>
<volume>40</volume>
<fpage>W288</fpage>
<lpage>W293</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gks419</pub-id>
<pub-id pub-id-type="pmid">22581768</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vajda</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yueh</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Beglov</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>New additions to the ClusPro server motivated by CAPRI</article-title>
<source>Proteins Struct Funct Bioinform</source>
<year>2017</year>
<volume>85</volume>
<fpage>435</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="doi">10.1002/prot.25219</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>APD: the antimicrobial peptide database</article-title>
<source>Nucleic Acids Res</source>
<year>2004</year>
<volume>32</volume>
<fpage>590D</fpage>
<lpage>592</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkh025</pub-id>
<pub-id pub-id-type="pmid">14752047</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>APD2: the updated antimicrobial peptide database and its application in peptide design</article-title>
<source>Nucleic Acids Res</source>
<year>2009</year>
<volume>37</volume>
<fpage>D933</fpage>
<lpage>D937</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkn823</pub-id>
<pub-id pub-id-type="pmid">18957441</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Z</given-names>
</name>
</person-group>
<article-title>APD3: the antimicrobial peptide database as a tool for research and education</article-title>
<source>Nucleic Acids Res</source>
<year>2016</year>
<volume>44</volume>
<fpage>D1087</fpage>
<lpage>D1093</lpage>
<pub-id pub-id-type="doi">10.1093/nar/gkv1278</pub-id>
<pub-id pub-id-type="pmid">26602694</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webb</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Sali</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Comparative protein structure modeling using MODELLER</article-title>
<source>Curr Protoc Protein Sci</source>
<year>2016</year>
<volume>86</volume>
<fpage>2.9.1</fpage>
<lpage>2.9.37</lpage>
<pub-id pub-id-type="doi">10.1002/cpps.20</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yeaman</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Yount</surname>
<given-names>NY</given-names>
</name>
</person-group>
<article-title>Mechanisms of antimicrobial peptide action and resistance</article-title>
<source>Pharmacol Rev</source>
<year>2003</year>
<volume>55</volume>
<fpage>27</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1124/pr.55.1.2</pub-id>
<pub-id pub-id-type="pmid">12615953</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zasloff</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Antimicrobial peptides of multicellular organisms</article-title>
<source>Nature</source>
<year>2002</year>
<volume>415</volume>
<fpage>389</fpage>
<lpage>395</lpage>
<pub-id pub-id-type="doi">10.1038/415389a</pub-id>
<pub-id pub-id-type="pmid">11807545</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zelezetsky</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Tossi</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Alpha-helical antimicrobial peptides—using a sequence template to guide structure—activity relationship studies</article-title>
<source>Biochim Biophys Acta</source>
<year>2006</year>
<volume>1758</volume>
<fpage>1436</fpage>
<lpage>1449</lpage>
<pub-id pub-id-type="doi">10.1016/j.bbamem.2006.03.021</pub-id>
<pub-id pub-id-type="pmid">16678118</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zimmermann</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Stephens</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Nam</surname>
<given-names>S-Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A completely reimplemented MPI bioinformatics toolkit with a new hhpred server at its core</article-title>
<source>J Mol Biol</source>
<year>2018</year>
<volume>430</volume>
<fpage>2237</fpage>
<lpage>2243</lpage>
<pub-id pub-id-type="doi">10.1016/J.JMB.2017.12.007</pub-id>
<pub-id pub-id-type="pmid">29258817</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000383  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000383  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021