Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues

Identifieur interne : 000132 ( Pmc/Corpus ); précédent : 000131; suivant : 000133

Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues

Auteurs : Ji-Seong Yoon ; Gyudong Kim ; Dnyandev B. Jarhad ; Hong-Rae Kim ; Young-Sup Shin ; Shuhao Qu ; Pramod K. Sahu ; Hea Ok Kim ; Hyuk Woo Lee ; Su Bin Wang ; Yun Jeong Kong ; Tong-Shin Chang ; Natacha S. Ogando ; Kristina Kovacikova ; Eric J. Snijder ; Clara C. Posthuma ; Martijn J. Van Hemert ; Lak Shin Jeong

Source :

RBID : PMC:7075649

Abstract

The 6′-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell S-adenosyl-l-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6′-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and N6-methyladenosine analogues 2a–e showed potent inhibition against SAH hydrolase, while only the adenosine derivatives 2a–c exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6′,6′-Difluoroaristeromycin (2c) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug 3a also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6′-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.


Url:
DOI: 10.1021/acs.jmedchem.9b00781
PubMed: 31244113
PubMed Central: 7075649

Links to Exploration step

PMC:7075649

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues</title>
<author>
<name sortKey="Yoon, Ji Seong" sort="Yoon, Ji Seong" uniqKey="Yoon J" first="Ji-Seong" last="Yoon">Ji-Seong Yoon</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Gyudong" sort="Kim, Gyudong" uniqKey="Kim G" first="Gyudong" last="Kim">Gyudong Kim</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">College of Pharmacy and Research Institute of Drug Development,
<institution>Chonnam National University</institution>
, Gwangju 500-757,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jarhad, Dnyandev B" sort="Jarhad, Dnyandev B" uniqKey="Jarhad D" first="Dnyandev B." last="Jarhad">Dnyandev B. Jarhad</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hong Rae" sort="Kim, Hong Rae" uniqKey="Kim H" first="Hong-Rae" last="Kim">Hong-Rae Kim</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shin, Young Sup" sort="Shin, Young Sup" uniqKey="Shin Y" first="Young-Sup" last="Shin">Young-Sup Shin</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qu, Shuhao" sort="Qu, Shuhao" uniqKey="Qu S" first="Shuhao" last="Qu">Shuhao Qu</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">College of Pharmaceutical Engineering,
<institution>Henan University of Animal Husbandry and Economy</institution>
, Zhengzhou, 450046,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Pramod K" sort="Sahu, Pramod K" uniqKey="Sahu P" first="Pramod K." last="Sahu">Pramod K. Sahu</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hea Ok" sort="Kim, Hea Ok" uniqKey="Kim H" first="Hea Ok" last="Kim">Hea Ok Kim</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Hyuk Woo" sort="Lee, Hyuk Woo" uniqKey="Lee H" first="Hyuk Woo" last="Lee">Hyuk Woo Lee</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Su Bin" sort="Wang, Su Bin" uniqKey="Wang S" first="Su Bin" last="Wang">Su Bin Wang</name>
<affiliation>
<nlm:aff id="aff4">College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kong, Yun Jeong" sort="Kong, Yun Jeong" uniqKey="Kong Y" first="Yun Jeong" last="Kong">Yun Jeong Kong</name>
<affiliation>
<nlm:aff id="aff4">College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chang, Tong Shin" sort="Chang, Tong Shin" uniqKey="Chang T" first="Tong-Shin" last="Chang">Tong-Shin Chang</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ogando, Natacha S" sort="Ogando, Natacha S" uniqKey="Ogando N" first="Natacha S." last="Ogando">Natacha S. Ogando</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kovacikova, Kristina" sort="Kovacikova, Kristina" uniqKey="Kovacikova K" first="Kristina" last="Kovacikova">Kristina Kovacikova</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J." last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Posthuma, Clara C" sort="Posthuma, Clara C" uniqKey="Posthuma C" first="Clara C." last="Posthuma">Clara C. Posthuma</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Hemert, Martijn J" sort="Van Hemert, Martijn J" uniqKey="Van Hemert M" first="Martijn J." last="Van Hemert">Martijn J. Van Hemert</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Lak Shin" sort="Jeong, Lak Shin" uniqKey="Jeong L" first="Lak Shin" last="Jeong">Lak Shin Jeong</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">31244113</idno>
<idno type="pmc">7075649</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7075649</idno>
<idno type="RBID">PMC:7075649</idno>
<idno type="doi">10.1021/acs.jmedchem.9b00781</idno>
<date when="2019">2019</date>
<idno type="wicri:Area/Pmc/Corpus">000132</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000132</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues</title>
<author>
<name sortKey="Yoon, Ji Seong" sort="Yoon, Ji Seong" uniqKey="Yoon J" first="Ji-Seong" last="Yoon">Ji-Seong Yoon</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Gyudong" sort="Kim, Gyudong" uniqKey="Kim G" first="Gyudong" last="Kim">Gyudong Kim</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">College of Pharmacy and Research Institute of Drug Development,
<institution>Chonnam National University</institution>
, Gwangju 500-757,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jarhad, Dnyandev B" sort="Jarhad, Dnyandev B" uniqKey="Jarhad D" first="Dnyandev B." last="Jarhad">Dnyandev B. Jarhad</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hong Rae" sort="Kim, Hong Rae" uniqKey="Kim H" first="Hong-Rae" last="Kim">Hong-Rae Kim</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Shin, Young Sup" sort="Shin, Young Sup" uniqKey="Shin Y" first="Young-Sup" last="Shin">Young-Sup Shin</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Qu, Shuhao" sort="Qu, Shuhao" uniqKey="Qu S" first="Shuhao" last="Qu">Shuhao Qu</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff6">College of Pharmaceutical Engineering,
<institution>Henan University of Animal Husbandry and Economy</institution>
, Zhengzhou, 450046,
<country>China</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Sahu, Pramod K" sort="Sahu, Pramod K" uniqKey="Sahu P" first="Pramod K." last="Sahu">Pramod K. Sahu</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hea Ok" sort="Kim, Hea Ok" uniqKey="Kim H" first="Hea Ok" last="Kim">Hea Ok Kim</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Lee, Hyuk Woo" sort="Lee, Hyuk Woo" uniqKey="Lee H" first="Hyuk Woo" last="Lee">Hyuk Woo Lee</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wang, Su Bin" sort="Wang, Su Bin" uniqKey="Wang S" first="Su Bin" last="Wang">Su Bin Wang</name>
<affiliation>
<nlm:aff id="aff4">College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kong, Yun Jeong" sort="Kong, Yun Jeong" uniqKey="Kong Y" first="Yun Jeong" last="Kong">Yun Jeong Kong</name>
<affiliation>
<nlm:aff id="aff4">College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chang, Tong Shin" sort="Chang, Tong Shin" uniqKey="Chang T" first="Tong-Shin" last="Chang">Tong-Shin Chang</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff4">College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ogando, Natacha S" sort="Ogando, Natacha S" uniqKey="Ogando N" first="Natacha S." last="Ogando">Natacha S. Ogando</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kovacikova, Kristina" sort="Kovacikova, Kristina" uniqKey="Kovacikova K" first="Kristina" last="Kovacikova">Kristina Kovacikova</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Snijder, Eric J" sort="Snijder, Eric J" uniqKey="Snijder E" first="Eric J." last="Snijder">Eric J. Snijder</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Posthuma, Clara C" sort="Posthuma, Clara C" uniqKey="Posthuma C" first="Clara C." last="Posthuma">Clara C. Posthuma</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Van Hemert, Martijn J" sort="Van Hemert, Martijn J" uniqKey="Van Hemert M" first="Martijn J." last="Van Hemert">Martijn J. Van Hemert</name>
<affiliation>
<nlm:aff id="aff5">Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Lak Shin" sort="Jeong, Lak Shin" uniqKey="Jeong L" first="Lak Shin" last="Jeong">Lak Shin Jeong</name>
<affiliation>
<nlm:aff id="aff1">Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Medicinal Chemistry</title>
<idno type="ISSN">0022-2623</idno>
<idno type="eISSN">1520-4804</idno>
<imprint>
<date when="2019">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p content-type="toc-graphic">
<graphic xlink:href="jm9b00781_0010" id="ab-tgr1"></graphic>
</p>
<p>The 6′-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell
<italic>S</italic>
-adenosyl-
<sc>l</sc>
-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6′-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and
<italic>N</italic>
<sup>6</sup>
-methyladenosine analogues
<bold>2a–e</bold>
showed potent inhibition against SAH hydrolase, while only the adenosine derivatives
<bold>2a–c</bold>
exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6′,6′-Difluoroaristeromycin (
<bold>2c</bold>
) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug
<bold>3a</bold>
also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6′-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Baltimore, D" uniqKey="Baltimore D">D. Baltimore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V. Thiel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zumla, A" uniqKey="Zumla A">A. Zumla</name>
</author>
<author>
<name sortKey="Hui, D S" uniqKey="Hui D">D. S. Hui</name>
</author>
<author>
<name sortKey="Perlman, S" uniqKey="Perlman S">S. Perlman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caglioti, C" uniqKey="Caglioti C">C. Caglioti</name>
</author>
<author>
<name sortKey="Lalle, E" uniqKey="Lalle E">E. Lalle</name>
</author>
<author>
<name sortKey="Castilletti, C" uniqKey="Castilletti C">C. Castilletti</name>
</author>
<author>
<name sortKey="Carletti, F" uniqKey="Carletti F">F. Carletti</name>
</author>
<author>
<name sortKey="Capobianchi, M R" uniqKey="Capobianchi M">M. R. Capobianchi</name>
</author>
<author>
<name sortKey="Bordi, L" uniqKey="Bordi L">L. Bordi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musso, D" uniqKey="Musso D">D. Musso</name>
</author>
<author>
<name sortKey="Gubler, D J" uniqKey="Gubler D">D. J. Gubler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Forgie, S" uniqKey="Forgie S">S. Forgie</name>
</author>
<author>
<name sortKey="Marrie, T" uniqKey="Marrie T">T. Marrie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwartz, O" uniqKey="Schwartz O">O. Schwartz</name>
</author>
<author>
<name sortKey="Albert, M L" uniqKey="Albert M">M. L. Albert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abushouk, A I" uniqKey="Abushouk A">A. I. Abushouk</name>
</author>
<author>
<name sortKey="Negida, A" uniqKey="Negida A">A. Negida</name>
</author>
<author>
<name sortKey="Ahmed, H" uniqKey="Ahmed H">H. Ahmed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Musso, D" uniqKey="Musso D">D. Musso</name>
</author>
<author>
<name sortKey="Roche, C" uniqKey="Roche C">C. Roche</name>
</author>
<author>
<name sortKey="Robin, E" uniqKey="Robin E">E. Robin</name>
</author>
<author>
<name sortKey="Nhan, T" uniqKey="Nhan T">T. Nhan</name>
</author>
<author>
<name sortKey="Teissier, A" uniqKey="Teissier A">A. Teissier</name>
</author>
<author>
<name sortKey="Cao Lormeau, V M" uniqKey="Cao Lormeau V">V.-M. Cao-Lormeau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ahlquist, P" uniqKey="Ahlquist P">P. Ahlquist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coutard, B" uniqKey="Coutard B">B. Coutard</name>
</author>
<author>
<name sortKey="Barral, K" uniqKey="Barral K">K. Barral</name>
</author>
<author>
<name sortKey="Lichiere, J" uniqKey="Lichiere J">J. Lichière</name>
</author>
<author>
<name sortKey="Selisko, B" uniqKey="Selisko B">B. Selisko</name>
</author>
<author>
<name sortKey="Martin, B" uniqKey="Martin B">B. Martin</name>
</author>
<author>
<name sortKey="Aouadi, W" uniqKey="Aouadi W">W. Aouadi</name>
</author>
<author>
<name sortKey="Lombardia, M O" uniqKey="Lombardia M">M. O. Lombardia</name>
</author>
<author>
<name sortKey="Debart, F" uniqKey="Debart F">F. Debart</name>
</author>
<author>
<name sortKey="Vasseur, J J" uniqKey="Vasseur J">J.-J. Vasseur</name>
</author>
<author>
<name sortKey="Guillemot, J C" uniqKey="Guillemot J">J. C. Guillemot</name>
</author>
<author>
<name sortKey="Canard, B" uniqKey="Canard B">B. Canard</name>
</author>
<author>
<name sortKey="Decroly, E" uniqKey="Decroly E">E. Decroly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Decroly, E" uniqKey="Decroly E">E. Decroly</name>
</author>
<author>
<name sortKey="Ferron, F" uniqKey="Ferron F">F. Ferron</name>
</author>
<author>
<name sortKey="Lescar, J" uniqKey="Lescar J">J. Lescar</name>
</author>
<author>
<name sortKey="Canard, B" uniqKey="Canard B">B. Canard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Turner, M A" uniqKey="Turner M">M. A. Turner</name>
</author>
<author>
<name sortKey="Yang, X" uniqKey="Yang X">X. Yang</name>
</author>
<author>
<name sortKey="Yin, D" uniqKey="Yin D">D. Yin</name>
</author>
<author>
<name sortKey="Kuczera, K" uniqKey="Kuczera K">K. Kuczera</name>
</author>
<author>
<name sortKey="Borchardt, R T" uniqKey="Borchardt R">R. T. Borchardt</name>
</author>
<author>
<name sortKey="Howell, P L" uniqKey="Howell P">P. L. Howell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolfe, M S" uniqKey="Wolfe M">M. S. Wolfe</name>
</author>
<author>
<name sortKey="Borchardt, R T" uniqKey="Borchardt R">R. T. Borchardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jordheim, L P" uniqKey="Jordheim L">L. P. Jordheim</name>
</author>
<author>
<name sortKey="Durantel, D" uniqKey="Durantel D">D. Durantel</name>
</author>
<author>
<name sortKey="Zoulim, F" uniqKey="Zoulim F">F. Zoulim</name>
</author>
<author>
<name sortKey="Dumontet, C" uniqKey="Dumontet C">C. Dumontet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kusaka, T" uniqKey="Kusaka T">T. Kusaka</name>
</author>
<author>
<name sortKey="Yamamoto, H" uniqKey="Yamamoto H">H. Yamamoto</name>
</author>
<author>
<name sortKey="Shibata, M" uniqKey="Shibata M">M. Shibata</name>
</author>
<author>
<name sortKey="Muroi, M" uniqKey="Muroi M">M. Muroi</name>
</author>
<author>
<name sortKey="Kishi, T" uniqKey="Kishi T">T. Kishi</name>
</author>
<author>
<name sortKey="Mizuno, K" uniqKey="Mizuno K">K. Mizuno</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, L L" uniqKey="Bennett L">L. L. Bennett</name>
</author>
<author>
<name sortKey="Allan, P W" uniqKey="Allan P">P. W. Allan</name>
</author>
<author>
<name sortKey="Rose, L M" uniqKey="Rose L">L. M. Rose</name>
</author>
<author>
<name sortKey="Comber, R N" uniqKey="Comber R">R. N. Comber</name>
</author>
<author>
<name sortKey="Secrist, J A" uniqKey="Secrist J">J. A. Secrist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madhavan, G V B" uniqKey="Madhavan G">G. V. B. Madhavan</name>
</author>
<author>
<name sortKey="Mcgee, D P C" uniqKey="Mcgee D">D. P. C. McGee</name>
</author>
<author>
<name sortKey="Rydzewski, R M" uniqKey="Rydzewski R">R. M. Rydzewski</name>
</author>
<author>
<name sortKey="Boehme, R" uniqKey="Boehme R">R. Boehme</name>
</author>
<author>
<name sortKey="Martin, J C" uniqKey="Martin J">J. C. Martin</name>
</author>
<author>
<name sortKey="Prisbe, E J" uniqKey="Prisbe E">E. J. Prisbe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, G" uniqKey="Kim G">G. Kim</name>
</author>
<author>
<name sortKey="Yoon, J S" uniqKey="Yoon J">J.-S. Yoon</name>
</author>
<author>
<name sortKey="Jarhad, D B" uniqKey="Jarhad D">D. B. Jarhad</name>
</author>
<author>
<name sortKey="Shin, Y S" uniqKey="Shin Y">Y. S. Shin</name>
</author>
<author>
<name sortKey="Majik, M S" uniqKey="Majik M">M. S. Majik</name>
</author>
<author>
<name sortKey="Mulamoottil, V A" uniqKey="Mulamoottil V">V. A. Mulamoottil</name>
</author>
<author>
<name sortKey="Hou, X" uniqKey="Hou X">X. Hou</name>
</author>
<author>
<name sortKey="Qu, S" uniqKey="Qu S">S. Qu</name>
</author>
<author>
<name sortKey="Park, J" uniqKey="Park J">J. Park</name>
</author>
<author>
<name sortKey="Baik, M H" uniqKey="Baik M">M.-H. Baik</name>
</author>
<author>
<name sortKey="Jeong, L S" uniqKey="Jeong L">L. S. Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Siddiqui, A X0a Q" uniqKey="Siddiqui A">A. Q. Siddiqui</name>
</author>
<author>
<name sortKey="Ballatore, C" uniqKey="Ballatore C">C. Ballatore</name>
</author>
<author>
<name sortKey="Mcguigan, C" uniqKey="Mcguigan C">C. McGuigan</name>
</author>
<author>
<name sortKey="De Clercq, E" uniqKey="De Clercq E">E. De Clercq</name>
</author>
<author>
<name sortKey="Balzarini, J" uniqKey="Balzarini J">J. Balzarini</name>
</author>
<author>
<name sortKey="De Clercq, E" uniqKey="De Clercq E">E. De Clercq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Choi, W J" uniqKey="Choi W">W. J. Choi</name>
</author>
<author>
<name sortKey="Park, J G" uniqKey="Park J">J. G. Park</name>
</author>
<author>
<name sortKey="Yoo, S J" uniqKey="Yoo S">S. J. Yoo</name>
</author>
<author>
<name sortKey="Kim, H O" uniqKey="Kim H">H. O. Kim</name>
</author>
<author>
<name sortKey="Moon, H R" uniqKey="Moon H">H. R. Moon</name>
</author>
<author>
<name sortKey="Chun, M W" uniqKey="Chun M">M. W. Chun</name>
</author>
<author>
<name sortKey="Jung, Y H" uniqKey="Jung Y">Y. H. Jung</name>
</author>
<author>
<name sortKey="Jeong, L S" uniqKey="Jeong L">L. S. Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilman, H" uniqKey="Gilman H">H. Gilman</name>
</author>
<author>
<name sortKey="Jones, R G" uniqKey="Jones R">R. G. Jones</name>
</author>
<author>
<name sortKey="Woods, L A" uniqKey="Woods L">L. A. Woods</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rubottom, G M" uniqKey="Rubottom G">G. M. Rubottom</name>
</author>
<author>
<name sortKey="Gruber, J M" uniqKey="Gruber J">J. M. Gruber</name>
</author>
<author>
<name sortKey="Boeckman, R K" uniqKey="Boeckman R">R. K. Boeckman</name>
</author>
<author>
<name sortKey="Ramaiah, M" uniqKey="Ramaiah M">M. Ramaiah</name>
</author>
<author>
<name sortKey="Medwid, J B" uniqKey="Medwid J">J. B. Medwid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montgomery, J A" uniqKey="Montgomery J">J. A. Montgomery</name>
</author>
<author>
<name sortKey="Temple, C" uniqKey="Temple C">C. Temple</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shaw, G" uniqKey="Shaw G">G. Shaw</name>
</author>
<author>
<name sortKey="Warrener, R N" uniqKey="Warrener R">R. N. Warrener</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Divakar, K J" uniqKey="Divakar K">K. J. Divakar</name>
</author>
<author>
<name sortKey="Reese, C B" uniqKey="Reese C">C. B. Reese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, B S" uniqKey="Ross B">B. S. Ross</name>
</author>
<author>
<name sortKey="Ganapati Reddy, P" uniqKey="Ganapati Reddy P">P. Ganapati Reddy</name>
</author>
<author>
<name sortKey="Zhang, H R" uniqKey="Zhang H">H.-R. Zhang</name>
</author>
<author>
<name sortKey="Rachakonda, S" uniqKey="Rachakonda S">S. Rachakonda</name>
</author>
<author>
<name sortKey="Sofia, M J" uniqKey="Sofia M">M. J. Sofia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lozada Ramirez, J D" uniqKey="Lozada Ramirez J">J. D. Lozada-Ramírez</name>
</author>
<author>
<name sortKey="Martinez Martinez, I" uniqKey="Martinez Martinez I">I. Martínez-Martínez</name>
</author>
<author>
<name sortKey="Sanchez Ferrer, A" uniqKey="Sanchez Ferrer A">A. Sánchez-Ferrer</name>
</author>
<author>
<name sortKey="Garcia Carmona, F" uniqKey="Garcia Carmona F">F. García-Carmona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Scholte, F E M" uniqKey="Scholte F">F. E. M. Scholte</name>
</author>
<author>
<name sortKey="Tas, A" uniqKey="Tas A">A. Tas</name>
</author>
<author>
<name sortKey="Martina, B E E" uniqKey="Martina B">B. E. E. Martina</name>
</author>
<author>
<name sortKey="Cordioli, P" uniqKey="Cordioli P">P. Cordioli</name>
</author>
<author>
<name sortKey="Narayanan, K" uniqKey="Narayanan K">K. Narayanan</name>
</author>
<author>
<name sortKey="Makino, S" uniqKey="Makino S">S. Makino</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E. J. Snijder</name>
</author>
<author>
<name sortKey="Van Hemert, M J" uniqKey="Van Hemert M">M. J. van Hemert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van X0a Boheemen, S" uniqKey="Van X0a Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="Tas, A" uniqKey="Tas A">A. Tas</name>
</author>
<author>
<name sortKey="Anvar, S Y" uniqKey="Anvar S">S. Y. Anvar</name>
</author>
<author>
<name sortKey="Van Grootveld, R" uniqKey="Van Grootveld R">R. van Grootveld</name>
</author>
<author>
<name sortKey="Albulescu, I C" uniqKey="Albulescu I">I. C. Albulescu</name>
</author>
<author>
<name sortKey="Bauer, M P" uniqKey="Bauer M">M. P. Bauer</name>
</author>
<author>
<name sortKey="Feltkamp, M C" uniqKey="Feltkamp M">M. C. Feltkamp</name>
</author>
<author>
<name sortKey="Bredenbeek, P J" uniqKey="Bredenbeek P">P. J. Bredenbeek</name>
</author>
<author>
<name sortKey="Van Hemert, M J" uniqKey="Van Hemert M">M. J. van Hemert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van X0a Boheemen, S" uniqKey="Van X0a Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="De Graaf, M" uniqKey="De Graaf M">M. de Graaf</name>
</author>
<author>
<name sortKey="Lauber, C" uniqKey="Lauber C">C. Lauber</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T. M. Bestebroer</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V. S. Raj</name>
</author>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A. M. Zaki</name>
</author>
<author>
<name sortKey="Osterhaus, A D M E" uniqKey="Osterhaus A">A. D. M. E. Osterhaus</name>
</author>
<author>
<name sortKey="Haagmans, B L" uniqKey="Haagmans B">B. L. Haagmans</name>
</author>
<author>
<name sortKey="Gorbalenya, A E" uniqKey="Gorbalenya A">A. E. Gorbalenya</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E. J. Snijder</name>
</author>
<author>
<name sortKey="Fouchier, R A M" uniqKey="Fouchier R">R. A. M. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Albulescu, I C" uniqKey="Albulescu I">I. C. Albulescu</name>
</author>
<author>
<name sortKey="Kovacikova, K" uniqKey="Kovacikova K">K. Kovacikova</name>
</author>
<author>
<name sortKey="Tas, A" uniqKey="Tas A">A. Tas</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E. J. Snijder</name>
</author>
<author>
<name sortKey="Van Hemert, M J" uniqKey="Van Hemert M">M. J. van Hemert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van X0a Den Worm, S H E" uniqKey="Van X0a Den Worm S">S. H. E. van den Worm</name>
</author>
<author>
<name sortKey="Eriksson, K K" uniqKey="Eriksson K">K. K. Eriksson</name>
</author>
<author>
<name sortKey="Zevenhoven, J C" uniqKey="Zevenhoven J">J. C. Zevenhoven</name>
</author>
<author>
<name sortKey="Weber, F" uniqKey="Weber F">F. Weber</name>
</author>
<author>
<name sortKey="Zust, R" uniqKey="Zust R">R. Züst</name>
</author>
<author>
<name sortKey="Kuri, T" uniqKey="Kuri T">T. Kuri</name>
</author>
<author>
<name sortKey="Dijkman, R" uniqKey="Dijkman R">R. Dijkman</name>
</author>
<author>
<name sortKey="Chang, G" uniqKey="Chang G">G. Chang</name>
</author>
<author>
<name sortKey="Siddell, S G" uniqKey="Siddell S">S. G. Siddell</name>
</author>
<author>
<name sortKey="Snijder, E J" uniqKey="Snijder E">E. J. Snijder</name>
</author>
<author>
<name sortKey="Thiel, V" uniqKey="Thiel V">V. Thiel</name>
</author>
<author>
<name sortKey="Davidson, A D" uniqKey="Davidson A">A. D. Davidson</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Med Chem</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Med. Chem</journal-id>
<journal-id journal-id-type="publisher-id">jm</journal-id>
<journal-id journal-id-type="coden">jmcmar</journal-id>
<journal-title-group>
<journal-title>Journal of Medicinal Chemistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">0022-2623</issn>
<issn pub-type="epub">1520-4804</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">31244113</article-id>
<article-id pub-id-type="pmc">7075649</article-id>
<article-id pub-id-type="doi">10.1021/acs.jmedchem.9b00781</article-id>
<article-categories>
<subj-group>
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Design, Synthesis, and Anti-RNA Virus Activity of 6′-Fluorinated-Aristeromycin Analogues</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name>
<surname>Yoon</surname>
<given-names>Ji-seong</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath2">
<name>
<surname>Kim</surname>
<given-names>Gyudong</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath3">
<name>
<surname>Jarhad</surname>
<given-names>Dnyandev B.</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath4">
<name>
<surname>Kim</surname>
<given-names>Hong-Rae</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath5">
<name>
<surname>Shin</surname>
<given-names>Young-Sup</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath6">
<name>
<surname>Qu</surname>
<given-names>Shuhao</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff6" ref-type="aff">#</xref>
</contrib>
<contrib contrib-type="author" id="ath7">
<name>
<surname>Sahu</surname>
<given-names>Pramod K.</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
</contrib>
<contrib contrib-type="author" id="ath8">
<name>
<surname>Kim</surname>
<given-names>Hea Ok</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
</contrib>
<contrib contrib-type="author" id="ath9">
<name>
<surname>Lee</surname>
<given-names>Hyuk Woo</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
</contrib>
<contrib contrib-type="author" id="ath10">
<name>
<surname>Wang</surname>
<given-names>Su Bin</given-names>
</name>
<xref rid="aff4" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath11">
<name>
<surname>Kong</surname>
<given-names>Yun Jeong</given-names>
</name>
<xref rid="aff4" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath12">
<name>
<surname>Chang</surname>
<given-names>Tong-Shin</given-names>
</name>
<xref rid="aff1" ref-type="aff"></xref>
<xref rid="aff4" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath13">
<name>
<surname>Ogando</surname>
<given-names>Natacha S.</given-names>
</name>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath14">
<name>
<surname>Kovacikova</surname>
<given-names>Kristina</given-names>
</name>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath15">
<name>
<surname>Snijder</surname>
<given-names>Eric J.</given-names>
</name>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath16">
<name>
<surname>Posthuma</surname>
<given-names>Clara C.</given-names>
</name>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath17">
<name>
<surname>van Hemert</surname>
<given-names>Martijn J.</given-names>
</name>
<xref rid="aff5" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath18">
<name>
<surname>Jeong</surname>
<given-names>Lak Shin</given-names>
</name>
<xref rid="cor1" ref-type="other">*</xref>
<xref rid="aff1" ref-type="aff"></xref>
</contrib>
<aff id="aff1">
<label></label>
Research Institute of Pharmaceutical Sciences, College of Pharmacy,
<institution>Seoul National University</institution>
, Seoul 151-742,
<country>Korea</country>
</aff>
<aff id="aff2">
<label></label>
College of Pharmacy and Research Institute of Drug Development,
<institution>Chonnam National University</institution>
, Gwangju 500-757,
<country>Korea</country>
</aff>
<aff id="aff3">
<label>§</label>
<institution>Future Medicine Co., Ltd.</institution>
, Seoul 06665,
<country>Korea</country>
</aff>
<aff id="aff4">
<label></label>
College of Pharmacy,
<institution>Ewha Womans University</institution>
, Seoul 120-750,
<country>Korea</country>
</aff>
<aff id="aff5">
<label></label>
Department of Medical Microbiology,
<institution>Leiden University Medical Center</institution>
, Albinusdreef 2, 2333ZA Leiden,
<country>The Netherlands</country>
</aff>
<aff id="aff6">
<label>#</label>
College of Pharmaceutical Engineering,
<institution>Henan University of Animal Husbandry and Economy</institution>
, Zhengzhou, 450046,
<country>China</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
E-mail:
<email>lakjeong@snu.ac.kr</email>
. Phone:
<phone>82-2-880-7850</phone>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>07</day>
<month>06</month>
<year>2019</year>
</pub-date>
<pub-date pub-type="ppub">
<day>11</day>
<month>07</month>
<year>2019</year>
</pub-date>
<volume>62</volume>
<issue>13</issue>
<fpage>6346</fpage>
<lpage>6362</lpage>
<history>
<date date-type="received">
<day>13</day>
<month>05</month>
<year>2019</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2019 American Chemical Society</copyright-statement>
<copyright-year>2019</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
<license license-type="open-access">
<license-p>This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract>
<p content-type="toc-graphic">
<graphic xlink:href="jm9b00781_0010" id="ab-tgr1"></graphic>
</p>
<p>The 6′-fluorinated aristeromycins were designed as dual-target antiviral compounds aimed at inhibiting both the viral RNA-dependent RNA polymerase (RdRp) and the host cell
<italic>S</italic>
-adenosyl-
<sc>l</sc>
-homocysteine (SAH) hydrolase, which would indirectly target capping of viral RNA. The introduction of a fluorine at the 6′-position enhanced the inhibition of SAH hydrolase and the activity against RNA viruses. The adenosine and
<italic>N</italic>
<sup>6</sup>
-methyladenosine analogues
<bold>2a–e</bold>
showed potent inhibition against SAH hydrolase, while only the adenosine derivatives
<bold>2a–c</bold>
exhibited potent antiviral activity against all tested RNA viruses such as Middle East respiratory syndrome-coronavirus (MERS-CoV), severe acute respiratory syndrome-coronavirus, chikungunya virus, and/or Zika virus. 6′,6′-Difluoroaristeromycin (
<bold>2c</bold>
) showed the strongest antiviral effect for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titer in viral load reduction assay. The phosphoramidate prodrug
<bold>3a</bold>
also demonstrated potent broad-spectrum antiviral activity, possibly by inhibiting the viral RdRp. This study shows that 6′-fluorinated aristeromycins can serve as starting points for the development of broad-spectrum antiviral agents that target RNA viruses.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>jm9b00781</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>jm9b00781</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value></meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="notes-d1e21-autogenerated">
<fn-group>
<fn fn-type="" id="d30e308">
<p>This article is made available for a limited time sponsored by ACS under the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/page/policy/freetoread/index.html">ACS Free to Read License</ext-link>
, which permits copying and redistribution of the article for non-commercial scholarly purposes.</p>
</fn>
</fn-group>
</notes>
</front>
<body>
<sec id="sec1">
<title>Introduction</title>
<p>Over the past 15 years, outbreaks of a number of emerging positive-stranded RNA (+RNA) viruses,
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
</sup>
such as the severe acute respiratory syndrome coronavirus (SARS-CoV),
<sup>
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
Middle East respiratory syndrome coronavirus (MERS-CoV),
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
</sup>
chikungunya virus (CHIKV),
<sup>
<xref ref-type="bibr" rid="ref4">4</xref>
</sup>
and Zika virus (ZIKV)
<sup>
<xref ref-type="bibr" rid="ref5">5</xref>
</sup>
have seriously threatened human health and have had a substantial socio-economic impact. SARS-CoV and MERS-CoV cause serious respiratory diseases
<sup>
<xref ref-type="bibr" rid="ref6">6</xref>
</sup>
that can be fatal in approximately 10 and 35% of cases, respectively. CHIKV is transmitted by mosquitoes and causes a painful arthritis that can persist for months.
<sup>
<xref ref-type="bibr" rid="ref7">7</xref>
</sup>
ZIKV is also transmitted by mosquitoes,
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
</sup>
although sexual transmission
<sup>
<xref ref-type="bibr" rid="ref8">8</xref>
</sup>
occurs as well. This virus usually causes mild disease, but can cause neurological complications in adults and fetal death or severe complications, including microcephaly in infants when women are infected during pregnancy.
<sup>
<xref ref-type="bibr" rid="ref9">9</xref>
</sup>
CHIKV and ZIKV have caused massive outbreaks, totaling millions of infections over the past decade. Currently, there are no effective chemotherapeutic agents or vaccines that can prevent or cure infections of any of these four serious pathogens.</p>
<p>The aforementioned viruses belong to the +RNA virus group (Baltimore class IV),
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
</sup>
which indicates that their genomic RNA has the same polarity as mRNA and can be directly translated by host ribosomes upon release into the cytoplasm of a host cell. After infection, the genomes of these viruses are translated into polyproteins that are subsequently cleaved into individual proteins by viral and/or host proteases. The nonstructural proteins (nsps) of these viruses harbor a variety of enzymatic activities that are required for the replication of the viral RNA and invariably include a RNA-dependent RNA polymerase (RdRp),
<sup>
<xref ref-type="bibr" rid="ref10">10</xref>
</sup>
an enzyme which is not present in uninfected cells. The RdRp transcribes the genomic RNA into a complementary negative-stranded RNA that subsequently serves as the template for the synthesis of new positive-stranded RNA.</p>
<p>Many +RNA viruses (including coronaviruses, CHIKV, and ZIKV) also encode methyltransferases (MTases)
<sup>
<xref ref-type="bibr" rid="ref11">11</xref>
</sup>
that are required for methylations of viral mRNA cap structures.
<sup>
<xref ref-type="bibr" rid="ref12">12</xref>
</sup>
Because this capping is crucial for stability and translation of the viral RNA, and evasion of the host innate immune response, the viral MTases are considered promising targets for the development of antiviral therapy.
<sup>
<xref ref-type="bibr" rid="ref12">12</xref>
</sup>
Inhibition of MTases can be indirectly achieved by the inhibition of
<italic>S</italic>
-adenosyl-
<sc>l</sc>
-homocysteine (SAH) hydrolase.
<sup>
<xref ref-type="bibr" rid="ref13">13</xref>
</sup>
The SAH hydrolase catalyzes the interconversion of SAH into adenosine and
<sc>l</sc>
-homocysteine. Inhibition of this enzyme leads to the accumulation of SAH in the cell, which in turn inhibits
<italic>S</italic>
-adenosyl-
<sc>l</sc>
-methionine (SAM)-dependent transmethylase reactions by feedback inhibition.
<sup>
<xref ref-type="bibr" rid="ref13">13</xref>
,
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
Most of the viral MTases are dependent on SAM as the only methyl donor. Compounds that target cellular proteins might exhibit a broader spectrum of activity, are less likely to lead to drug-resistance, but have a higher likelihood of toxicity. Compounds that are specifically aimed at viral proteins are expected to be less cytotoxic, but might have a narrower spectrum of antiviral activity and might have a lower barrier antiviral drug-resistance
<sup>
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
Thus, the approach of targeting cellular proteins such as SAH hydrolase can be considered as a promising strategy for the development of broad-spectrum antiviral agents.
<sup>
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
A number of compounds have been reported to act as SAH hydrolase inhibitors.
<sup>
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
Type I inhibitors act through inactivation of the NAD
<sup>+</sup>
cofactor, and their inhibitory effect on the catalytic activity of the enzyme can be reversed by the addition of excess NAD
<sup>+</sup>
.
<sup>
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
Type II inhibitors are irreversible inhibitors of the SAH hydrolase that form covalent bonds with amino acid residues in the active site of the enzyme. This irreversible inhibition cannot be reversed by the addition of NAD
<sup>+</sup>
or adenosine or by dialysis.
<sup>
<xref ref-type="bibr" rid="ref14">14</xref>
</sup>
</p>
<p>Because both the viral RdRp and host SAH hydrolase are critical for virus replication, we aimed to design broad-spectrum nucleoside analogue inhibitors that could directly target RdRp activity and/or indirectly inhibit the methylation of viral RNA through their effect on the host SAH hydrolase. Modified nucleosides are usually taken up by the cell via nucleoside transporters and can be successively converted into mono-, di-, and triphosphates by cellular kinases.
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
Then, these modified nucleoside triphosphates (NTPs) can compete with natural NTPs during RNA synthesis or can be incorporated into the nascent viral RNA, leading to chain termination or detrimental mutations.
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
</p>
<p>(−)-Aristeromycin (
<bold>1</bold>
) is a naturally occurring carbocyclic nucleoside that was originally identified as a metabolite of
<italic>Streptomyces citricolor</italic>
in 1967.
<sup>
<xref ref-type="bibr" rid="cit16a">16a</xref>
</sup>
The first synthesis of
<bold>1</bold>
as racemate was reported by Clayton and his co-worker,
<sup>
<xref ref-type="bibr" rid="cit16b">16b</xref>
<xref ref-type="bibr" rid="cit16d">16d</xref>
</sup>
and its asymmetric syntheses have since been reported.
<sup>
<xref ref-type="bibr" rid="cit16e">16e</xref>
<xref ref-type="bibr" rid="cit16h">16h</xref>
</sup>
It is a type I SAH hydrolase inhibitor and exhibits potent antiviral activity against many viruses.
<sup>
<xref ref-type="bibr" rid="cit14a">14a</xref>
</sup>
However, it could not be further advanced into clinical development because of its cytotoxicity.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
Compound
<bold>1</bold>
was found to be toxic at low concentrations in both adenosine kinase-positive (AK
<sup>+</sup>
) and AK
<sup></sup>
cells. AK
<sup>+</sup>
cells were presumably killed by the 5′-phosphorylated form of
<bold>1</bold>
, while the toxicity in AK
<sup></sup>
cells was caused by
<bold>1</bold>
itself.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
However, this compound is also metabolized into a triphosphate form and has been observed to exert a variety of metabolic effects.
<sup>
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
We aimed to use
<bold>1</bold>
as a prototype for the design of dual-target compounds intended at directly inhibiting the viral RdRp and indirectly inhibiting the capping process through targeting of cellular SAH hydrolase.</p>
<p>Since the introduction of a fluorine at the 6′-position of carbocyclic nucleosides has been known to affect biological activities to a significant extent,
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
</sup>
we aimed to synthesize the 6′-fluorinated-aristeromycin analogues
<bold>2</bold>
by introducing fluorine at the 6′-position of
<bold>1</bold>
(
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
). Prisbe and his co-workers
<sup>
<xref ref-type="bibr" rid="cit18a">18a</xref>
</sup>
have reported the synthesis of (±)-6′-α- and (±)-6′-β-fluorinated aristeromycins and their inhibitory activity on SAH hydrolase, but the synthesis and biological activity of (±)-6′,6′-difluoroaristeromycin was not reported, despite the fact that the structure was claimed in the patent.
<sup>
<xref ref-type="bibr" rid="cit18b">18b</xref>
</sup>
Thus, we set out to synthesize the 6′-fluorinated-aristeromycin analogues
<bold>2</bold>
in the optically pure
<sc>d</sc>
-forms because biological activity can generally be attributed to one enantiomer, the
<sc>d</sc>
-isomer. Yin and co-workers
<sup>
<xref ref-type="bibr" rid="cit18c">18c</xref>
</sup>
reported the elegant synthesis of optically pure (−)-6′-β-fluoro-aristeromycin, but its biological activity was not reported. Their synthetic route involved the 6-β-fluoroazide as the key intermediate, which was synthesized by employing S
<sub>N</sub>
2 fluorination of the 6-α-triflic azide with tris(dimethylamino)sulfur(trimethylsilyl)difluoride, whereas our current approach
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
included the stereoselective electrophilic fluorination of silyl enol ether with Selectfluor as the fluorine source. In addition to the adenosine analogues, aimed at inhibiting SAH hydrolase and/or RdRp, we have also synthesized 6′-fluorinated purine and pyrimidine nucleosides (changes in B of the structures in
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
), which could interfere with viral RNA synthesis by targeting the viral RdRp after their phosphorylation by cellular kinases.
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
To bypass the first and rate-limiting 5′-monophosphorylation step, we have also synthesized a phosphoramidate prodrug
<bold>3</bold>
of nucleoside
<bold>2</bold>
, using the McGuigan ProTides.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
Herein, we report the synthesis of the 6′-fluoro-aristeromycin analogues
<bold>2</bold>
and
<bold>3</bold>
and a preliminary characterization of their effect on several +RNA viruses, which provided insight into structure–activity relationships (SARs).</p>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Rationale for the design of the target nucleosides
<bold>2</bold>
and
<bold>3</bold>
.</p>
</caption>
<graphic xlink:href="jm9b00781_0001" id="gr1" position="float"></graphic>
</fig>
</sec>
<sec id="sec2">
<title>Results and Discussion</title>
<sec id="sec2.1">
<title>Chemistry</title>
<p>For the synthesis of the target nucleosides
<bold>2</bold>
, the key fluorosugars
<bold>8a–c</bold>
were synthesized from
<sc>d</sc>
-ribose via electrophilic fluorination, as shown in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
.</p>
<fig id="sch1" position="float">
<label>Scheme 1</label>
<caption>
<title>Synthesis of 6-β-Fluoro-, 6-α-Fluoro-, and 6-Difluorosugar
<bold>8a–c</bold>
</title>
<p id="s1fn1">Reagents and conditions: (a) LiCu(CH
<sub>2</sub>
O
<italic>t</italic>
-Bu)
<sub>2</sub>
; (b) TESCl, LiHMDS, THF, −78 °C, 10 min; (c) Selectfluor, DMF, 0 °C, 12 h; (d) NaBH
<sub>4</sub>
, MeOH, 0 °C, 30 min. (e) LiBH
<sub>4</sub>
, MeOH, 0 °C, 30 min.</p>
</caption>
<graphic xlink:href="jm9b00781_0004" id="gr4" position="float"></graphic>
</fig>
<p>
<sc>d</sc>
-Ribose was converted to
<sc>d</sc>
-cyclopentenone
<bold>4</bold>
according to our previously published procedure.
<sup>
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
The 1,4-conjugated addition of
<bold>4</bold>
with Gilman reagent yielded the
<sc>d</sc>
-cyclopentanone derivative
<bold>5</bold>
.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
,
<xref ref-type="bibr" rid="ref22">22</xref>
</sup>
Treatment of
<bold>5</bold>
with lithium hexamethyldisilazide (LiHMDS) followed by trapping with triethylsilyl chloride (TESCl) gave silylenol ether
<bold>6</bold>
, which was treated with (1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate): Selectfluor) in dimethylformamide (DMF) at 0 °C to yield a 5:1 ratio of 6-β-fluorosugar
<bold>7a</bold>
to 6-α-fluorosugar
<bold>7b</bold>
.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
The stereochemistry of the fluorine in
<bold>7a</bold>
and
<bold>7b</bold>
was confirmed by
<sup>1</sup>
H NOE experiments. Irradiation of 6-H of
<bold>7b</bold>
gave NOE effects on its 2-H and 5-H, indicating the 6-α-fluoro configuration, but no NOE effects were observed on the same experiment in the case of
<bold>7a</bold>
, confirming the 6-β-fluoro configuration. The configuration of the fluorine in
<bold>7b</bold>
was further confirmed by the X-ray crystal structure obtained after it was converted to the final uracil derivative
<bold>2g</bold>
(
<xref rid="sch5" ref-type="scheme">Scheme
<xref rid="sch5" ref-type="scheme">5</xref>
</xref>
). Further electrophilic fluorination of 6-β-fluorosugar
<bold>7a</bold>
or 6-α-fluorosugar
<bold>7b</bold>
under the same conditions yielded the 6,6-difluorosugar
<bold>7c</bold>
, which was equilibrated to form a geminal diol because of the presence of electronegative fluorine atoms. Electrophilic fluorinations with other electrophilic fluorines such as
<italic>N</italic>
-fluorobenzenesulfonimide (NFSI) or
<italic>N</italic>
-fluoro-
<italic>O</italic>
-benzenedisulfonimide (NFOBS) were problematic, resulting in low yields with many side spots. The reduction of
<bold>7a–c</bold>
with sodium borohydride (NaBH
<sub>4</sub>
) or lithium borohydride (LiBH
<sub>4</sub>
) in MeOH resulted in the production of the 1-hydroxyl derivatives
<bold>8a–c</bold>
.</p>
<p>As the α-fluoro derivative
<bold>8b</bold>
was obtained as the minor isomer, as shown in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
, we wanted to improve the stereoselective synthesis of
<bold>8b</bold>
, by using Rubottom
<sup>
<xref ref-type="bibr" rid="ref23">23</xref>
</sup>
oxidation as the key step, as illustrated in
<xref rid="sch2" ref-type="scheme">Scheme
<xref rid="sch2" ref-type="scheme">2</xref>
</xref>
. Rubottom oxidation of silylenol ether
<bold>6</bold>
with osmium tetroxide (OsO
<sub>4</sub>
) and
<italic>N</italic>
-methylmorpholine-
<italic>N</italic>
-oxide (NMO) followed by trapping with
<italic>t</italic>
-butyldimethylsilyl chloride (TBSCl) produced 6-β-alkoxyketone
<bold>9</bold>
as a single stereoisomer in 53% yield. The reduction of ketone
<bold>9</bold>
with NaBH
<sub>4</sub>
gave alcohol
<bold>10</bold>
, which was protected with a benzyl group to give
<bold>11</bold>
. Removal of the
<italic>t</italic>
-butyldimethylsilyl (TBS) group in
<bold>11</bold>
with tetra-
<italic>n</italic>
-butylammonium fluoride (TBAF) yielded the 6-β-alcohol
<bold>12</bold>
. To our disappointment, the treatment of
<bold>12</bold>
with
<italic>N</italic>
,
<italic>N</italic>
-diethylaminosulfur trifluoride (DAST) gave the desired product, 6-α-fluoride
<bold>13a</bold>
, but also the undesired product 1-β-fluoride
<bold>13b</bold>
at a 1:1 ratio. The formation of
<bold>13a</bold>
(route I) resulted from the direct S
<sub>N</sub>
2 reaction of
<bold>12a</bold>
with fluoride, while
<bold>12a</bold>
was readily converted into the oxonium ion
<bold>12b</bold>
(route II) via its participation of the neighboring benzyl group, which was attacked exclusively by the fluoride at the less sterically hindered 1-position to yield the undesired product
<bold>13b</bold>
(route III). However, the product via route IV was not formed because of the steric effect of the
<italic>t</italic>
-butyloxymethyl substituent.</p>
<fig id="sch2" position="float">
<label>Scheme 2</label>
<caption>
<title>Synthetic Approach to 6-α-Fluorosugar
<bold>8b</bold>
via Rubottom Oxidation</title>
<p id="s2fn1">Reagents and conditions: (a) (i) OsO
<sub>4</sub>
, NMO·H
<sub>2</sub>
O, THF, rt, 1 h, then NaHCO
<sub>3</sub>
, MeOH, rt, 3 h; (ii) TBSCl, imidazole, DMF, rt, 3 h; (b) NaBH
<sub>4</sub>
, MeOH, rt, 1 h; (c) BnBr, NaH, DMF, 0 °C to rt, 12 h; (d) TBAF, THF, rt, 12 h; (e) DAST, toluene, 0 °C to rt, 2 h.</p>
</caption>
<graphic xlink:href="jm9b00781_0005" id="gr5" position="float"></graphic>
</fig>
<p>To avoid the participation of the neighboring group, we considered using a cyclic sulfate substrate with electron-withdrawing property and conformational restraint to be the best choice. Furthermore, cyclic sulfate has the advantage that it can be utilized as a surrogate for epoxide during nucleobase condensation, as shown in
<xref rid="sch3" ref-type="scheme">Scheme
<xref rid="sch3" ref-type="scheme">3</xref>
</xref>
. The regioselective cleavage of the 2,3-acetonide in
<bold>10</bold>
with trimethylaluminum (AlMe
<sub>3</sub>
) followed by treatment of the resulting diol with thionyl chloride (SOCl
<sub>2</sub>
) yielded the 6-β-hydroxyl cyclic sulfite
<bold>14</bold>
after the removal of the TBS group. The treatment of
<bold>14</bold>
with DAST yielded the desired 6-α-fluoro cyclic sulfite
<bold>15</bold>
as a single stereoisomer. The cyclic sulfite
<bold>15</bold>
was oxidized to form cyclic sulfate
<bold>16</bold>
, which was subsequently condensed with 6-chloropurine anions; however, this resulted in decomposition.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
Thus, we decided to synthesize the 6-α-fluoro derivative
<bold>8b</bold>
according to
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
.</p>
<fig id="sch3" position="float">
<label>Scheme 3</label>
<caption>
<title>Synthetic Approach to
<bold>2b</bold>
via Cyclic Sulfate</title>
<p id="s3fn1">Reagents and conditions: (a) AlMe
<sub>3</sub>
, CH
<sub>2</sub>
Cl
<sub>2</sub>
, −78 °C to rt, 12 h; (b) SOCl
<sub>2</sub>
, Et
<sub>3</sub>
N, CH
<sub>2</sub>
Cl
<sub>2</sub>
, 0 °C, 10 min; (c) TBAF, AcOH, THF, rt, 12 h; (d) DAST, CH
<sub>2</sub>
Cl
<sub>2</sub>
, 0 °C to rt, 4 h; (e) RuCl
<sub>3</sub>
, NaIO
<sub>4</sub>
, CCl
<sub>4</sub>
/CH
<sub>3</sub>
CN/H
<sub>2</sub>
O (1/1/1.5), rt, 20 min; (f) (i) 6-chloropurine, 18-crown-6, NaH, THF, 65 °C, 15 h; (ii) 20% H
<sub>2</sub>
SO
<sub>4</sub>
, rt, 1 h.</p>
</caption>
<graphic xlink:href="jm9b00781_0006" id="gr6" position="float"></graphic>
</fig>
<p>
<xref rid="sch4" ref-type="scheme">Scheme
<xref rid="sch4" ref-type="scheme">4</xref>
</xref>
depicts the synthesis of the aristeromycin analogues
<bold>2a–e</bold>
from the 6-β-fluoro-, 6-α-fluoro-, and 6,6-difluorosugars
<bold>8a–c</bold>
.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
Compounds
<bold>8a–c</bold>
were treated with triflic anhydride (Tf
<sub>2</sub>
O) followed by treatment with sodium azide to give azido derivatives
<bold>18a–c</bold>
. The catalytic hydrogenation of
<bold>18a–c</bold>
yielded the amino derivatives
<bold>19a–c</bold>
, respectively, which are starting compounds for the base-building process. The treatment of
<bold>19a–c</bold>
with 5-amino-4,6-dichloropyrimidine
<sup>
<xref ref-type="bibr" rid="cit18a">18a</xref>
<xref ref-type="bibr" rid="cit18c">18c</xref>
,
<xref ref-type="bibr" rid="ref24">24</xref>
</sup>
in the presence of
<italic>N</italic>
,
<italic>N</italic>
-diisopropylethylamine (DIPEA) under microwave radiation conditions yielded
<bold>20a–c</bold>
, which were cyclized with diethoxymethyl acetate
<sup>
<xref ref-type="bibr" rid="cit18a">18a</xref>
<xref ref-type="bibr" rid="cit18c">18c</xref>
,
<xref ref-type="bibr" rid="ref24">24</xref>
</sup>
in the presence of microwave radiation to produce the 6-chloropurine derivatives
<bold>21a–c</bold>
. The treatment of
<bold>21a–c</bold>
with
<italic>t</italic>
-butanolic ammonia followed by the removal of protective groups under acidic conditions yielded the 6′-β-fluoro-, 6′-α-fluoro-, and 6′,6′-difluoroaristeromycins
<bold>2a–c</bold>
, respectively. The structure of compound
<bold>2c</bold>
was confirmed by a single-crystal X-ray analysis (see the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00781/suppl_file/jm9b00781_si_001.pdf">Supporting Information</ext-link>
).
<sup>
<xref ref-type="bibr" rid="ref25">25</xref>
</sup>
The treatment of
<bold>21a</bold>
and
<bold>21c</bold>
with 40% aqueous methylamine followed by aqueous trifluoroacetic acid (TFA) resulted in
<italic>N</italic>
<sup>6</sup>
-methyl-aristeromycin analogues
<bold>2d</bold>
and
<bold>2e</bold>
, respectively.</p>
<fig id="sch4" position="float">
<label>Scheme 4</label>
<caption>
<title>Synthesis of β-Fluoro-, α-Fluoro-, and Difluoro-Aristeromycin Analogues
<bold>2a–e</bold>
</title>
<p id="s4fn1">Reagents and conditions: (a) (i) Tf
<sub>2</sub>
O, pyridine, 0 °C, 30 min; (ii) NaN
<sub>3</sub>
, DMF, 60–100 °C, 4–15 h; (b) Pd/C, H
<sub>2</sub>
, MeOH, rt, 18 h; (c) 5-amino-4,6-dichloropyrimidine, DIPEA,
<italic>n</italic>
-BuOH, 170–200 °C, 4–7 h, MW; (d) CH
<sub>3</sub>
C(O)OCH(OEt)
<sub>2</sub>
, 140 °C, 3 h, MW; (e) NH
<sub>3</sub>
/
<italic>t</italic>
-BuOH, 120 °C, 15 h; (f) NH
<sub>2</sub>
Me/H
<sub>2</sub>
O, (40 wt %), EtOH, 30 °C, 2 h; (g) 67% aq TFA, 50 °C, 15 h.</p>
</caption>
<graphic xlink:href="jm9b00781_0007" id="gr7" position="float"></graphic>
</fig>
<p>The amino derivatives
<bold>19a–c</bold>
were also converted into the pyrimidine nucleoside derivatives
<bold>2f–j</bold>
, as shown in
<xref rid="sch5" ref-type="scheme">Scheme
<xref rid="sch5" ref-type="scheme">5</xref>
</xref>
. Treatment of
<bold>19a–c</bold>
with (
<italic>E</italic>
)-3-methoxy-2-propenoyl isocyanate, which was prepared by reacting 3-methoxyacryloyl chloride with silver cyanate,
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
</sup>
in benzene produced
<bold>22a–c</bold>
, respectively, which were cyclized with 2 M H
<sub>2</sub>
SO
<sub>4</sub>
to yield the uridine derivatives
<bold>2f–h</bold>
, respectively. The structures of
<bold>2g</bold>
and
<bold>2h</bold>
were confirmed by the X-ray crystallography (see the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00781/suppl_file/jm9b00781_si_001.pdf">Supporting Information</ext-link>
) (
<xref rid="sch5" ref-type="scheme">Scheme
<xref rid="sch5" ref-type="scheme">5</xref>
</xref>
).
<sup>
<xref ref-type="bibr" rid="ref27">27</xref>
</sup>
To synthesize the cytidine derivatives
<bold>2i</bold>
and
<bold>2j</bold>
, compounds
<bold>2f</bold>
and
<bold>2h</bold>
were benzoylated to give
<bold>23a</bold>
and
<bold>23b</bold>
, respectively, which were converted to the cytidine derivatives
<bold>2i</bold>
and
<bold>2j</bold>
using conventional three-step procedures.
<sup>
<xref ref-type="bibr" rid="ref28">28</xref>
</sup>
</p>
<fig id="sch5" position="float">
<label>Scheme 5</label>
<caption>
<title>Synthesis of Fluorinated Pyrimidine Nucleoside Analogues
<bold>2f–j</bold>
</title>
<p id="s5fn1">Reagents and conditions: (a) (
<italic>E</italic>
)-3-methoxy-2-propenoyl isocyanate, benzene, 4 Å-MS, DMF, −20 °C to rt, 15 h; (b) 2 M H
<sub>2</sub>
SO
<sub>4</sub>
, dioxane, reflux, 1.5 h; (c) BzCl, pyridine, CH
<sub>2</sub>
Cl
<sub>2</sub>
, rt, 15 h; (d) (i) 1,2,4-triazole, POCl
<sub>3</sub>
, Et
<sub>3</sub>
N, CH
<sub>3</sub>
CN, rt, 15 h. (ii) NH
<sub>4</sub>
OH, dioxane, rt, 15 h. (iii) NH
<sub>3</sub>
/MeOH, rt, 15 h.</p>
</caption>
<graphic xlink:href="jm9b00781_0008" id="gr8" position="float"></graphic>
</fig>
<p>The uracil phosphoramidate analogue Sofosbuvir
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
is used in the clinic as a powerful anti-hepatitis C virus agent. Therefore, we have also synthesized the uracil phosphoramidate prodrugs
<bold>3b–c</bold>
and the adenine phosphoramidate prodrug
<bold>3a</bold>
derived from the purine and pyrimidine nucleoside analogues
<bold>2a–j</bold>
by using McGuigan’s ProTide prodrug methodology,
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
as shown in
<xref rid="sch6" ref-type="scheme">Scheme
<xref rid="sch6" ref-type="scheme">6</xref>
</xref>
. 6′,6′-Difluoro-aristeromycin (
<bold>2c</bold>
) was treated with acetone under acidic conditions to give 2,3-acetonide
<bold>24</bold>
. The treatment of
<bold>24</bold>
with di-
<italic>tert</italic>
-butyl dicarbonate (Boc
<sub>2</sub>
O) yielded a mixture of
<bold>25a</bold>
and
<bold>25b</bold>
in a 2:1 ratio, which was converted to the phosphoramidate prodrug
<bold>26</bold>
by treating with phosphoramiditing reagent (
<bold>A</bold>
)
<sup>
<xref ref-type="bibr" rid="ref29">29</xref>
</sup>
in the presence of
<italic>t</italic>
-butylmagnesium chloride. The treatment of
<bold>26</bold>
with 50% formic acid produced the final product, prodrug
<bold>3a</bold>
. The monofluoro- and difluoropyrimidine derivatives
<bold>2f</bold>
and
<bold>2h</bold>
were similarly converted to the final prodrugs
<bold>3b</bold>
and
<bold>3c</bold>
.</p>
<fig id="sch6" position="float">
<label>Scheme 6</label>
<caption>
<title>Synthesis of Phosphoramidate Prodrugs
<bold>3a–c</bold>
</title>
<p id="s6fn1">Reagents and conditions: (a) cH
<sub>2</sub>
SO
<sub>4</sub>
, acetone, rt, 4 h; (b) (i) TMSOTf, DMAP, HMDS, 75 °C, 2 h; (ii) Boc
<sub>2</sub>
O, THF, rt, 4 h; (iii) MeOH/Et
<sub>3</sub>
N (5:1), 55 °C, 16 h; (c)
<bold>A</bold>
,
<italic>t</italic>
-BuMgCl, 4 Å-MS, THF, 0 °C to rt, 36 h; (d) 50% HCOOH, rt, 8 h.</p>
</caption>
<graphic xlink:href="jm9b00781_0009" id="gr9" position="float"></graphic>
</fig>
</sec>
<sec id="sec2.2">
<title>Inhibition of SAH Hydrolase</title>
<p>All compounds
<bold>1</bold>
,
<bold>2a–j</bold>
, and
<bold>3a–c</bold>
were assayed for their ability to inhibit recombinant human SAH hydrolase protein, expressed in
<italic>Escherichia coli</italic>
JM109, using a 5,5′-dithiobis-2-nitrobenzoate (DTNB) coupled assay as described by Lozada-Ramírez et al.
<sup>
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
As expected, all adenosine derivatives
<bold>2a–e</bold>
potently inhibited SAH hydrolase, but none of the pyrimidine analogues
<bold>2f–j</bold>
showed any inhibitory activity at concentrations up to 100 μM. None of the prodrugs
<bold>3a–c</bold>
exhibited inhibitory activity at concentrations up to 100 μM. This result is not surprising because adenosine is the substrate for SAH hydrolase. Among the adenosine analogues, 6′-β-fluoroaristeromycin (
<bold>2a</bold>
) exhibited the most potent inhibitory activity (IC
<sub>50</sub>
= 0.37 μM), which was 3.6-fold more potent than the control
<bold>1</bold>
(IC
<sub>50</sub>
= 1.32 μM). However, 6′-α-fluoroaristeromycin (
<bold>2b</bold>
, IC
<sub>50</sub>
= 9.70 μM) was 26-fold less potent than the corresponding 6′-β-fluoro analogue
<bold>2a</bold>
and 7.4-fold less active than the 6′-unsubstituted compound
<bold>1</bold>
. This indicates that the stereochemistry at the 6′-position is important for inhibitory activity. Interestingly, the introduction of two fluorines at the 6′-position resulted in
<bold>2c</bold>
(IC
<sub>50</sub>
= 1.06 μM), which was slightly more potent than the control
<bold>1</bold>
. The inhibitory activity of the 6′-fluoro-aristeromycin series can be ranked in the following order: 6′-β-F > 6′,6′-F,F > 6′-H > 6′-α-F. The introduction of a methyl group at the
<italic>N</italic>
<sup>6</sup>
-amino group of
<bold>2a</bold>
, resulting in
<bold>2d</bold>
, decreased the inhibitory activity (IC
<sub>50</sub>
= 4.39 μM) by 11.9-fold, while the addition of a methyl group to the
<italic>N</italic>
<sup>6</sup>
-amino group of
<bold>2c</bold>
, resulting in
<bold>2e</bold>
, increased the inhibitory activity (IC
<sub>50</sub>
= 0.76 μM) by 1.7-fold. These results demonstrate that the
<italic>N</italic>
<sup>6</sup>
-methyladenine and the adenine moieties do not lead to a decrease in inhibitory activity.</p>
</sec>
<sec id="sec2.3">
<title>Antiviral Activity</title>
<p>The novel 6′-fluoro-aristeromycin analogues
<bold>2a–j</bold>
and
<bold>3a–c</bold>
were screened for antiviral activity against a variety of +RNA viruses. The compounds were tested for antiviral activity in cytopathic effect (CPE) reduction assays at 4 concentrations, that is, 150, 50, 16.7, and 5.6 μM by preparing 3-fold serial dilutions. Compounds that demonstrated antiviral activity in this primary screen were further tested more extensively in dose response experiments at 8 different concentrations to determine the EC
<sub>50</sub>
. Cytotoxicity (CC
<sub>50</sub>
) was determined in parallel in uninfected cells (
<xref rid="tbl1" ref-type="other">Table
<xref rid="tbl1" ref-type="other">1</xref>
</xref>
).</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<title>Inhibition of SAH Hydrolase and the Replication of Several +RNA Viruses by All Final Nucleoside Analogues
<bold>2a–j</bold>
and
<bold>3a–c</bold>
<xref rid="t1fn1" ref-type="table-fn">a</xref>
<sup>,</sup>
<xref rid="t1fn2" ref-type="table-fn">b</xref>
<sup>,</sup>
<xref rid="t1fn3" ref-type="table-fn">c</xref>
<sup>,</sup>
<xref rid="t1fn4" ref-type="table-fn">d</xref>
</title>
</caption>
<table frame="hsides" rules="groups" border="0">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead>
<tr>
<th style="border:none;" align="center"> </th>
<th style="border:none;" align="center"> </th>
<th colspan="3" align="center">MERS-CoV
<hr></hr>
</th>
<th colspan="3" align="center">SARS-CoV
<hr></hr>
</th>
<th colspan="3" align="center">ZIKV
<hr></hr>
</th>
<th colspan="3" align="center">CHIKV
<hr></hr>
</th>
</tr>
<tr>
<th style="border:none;" align="center">compound no.</th>
<th style="border:none;" align="center">SAH hydrolase IC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">EC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">CC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">SI</th>
<th style="border:none;" align="center">EC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">CC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">SI</th>
<th style="border:none;" align="center">EC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">CC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">SI</th>
<th style="border:none;" align="center">EC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">CC
<sub>50</sub>
(μM)</th>
<th style="border:none;" align="center">SI</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border:none;" align="left">1</td>
<td style="border:none;" align="left">1.32</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">2</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">>5</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">0.64</td>
<td style="border:none;" align="left">2.4</td>
<td style="border:none;" align="left">3.8</td>
<td style="border:none;" align="left">0.8</td>
<td style="border:none;" align="left">6.3</td>
<td style="border:none;" align="left">7.9</td>
</tr>
<tr>
<td style="border:none;" align="left">2a</td>
<td style="border:none;" align="left">0.37</td>
<td style="border:none;" align="left">0.20</td>
<td style="border:none;" align="left">0.60</td>
<td style="border:none;" align="left">3</td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2b</td>
<td style="border:none;" align="left">9.70</td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left">ND</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">2.54</td>
<td style="border:none;" align="left">3.97</td>
<td style="border:none;" align="left">1.56</td>
<td style="border:none;" align="left">0.53</td>
<td style="border:none;" align="left">1.32</td>
<td style="border:none;" align="left">2.49</td>
</tr>
<tr>
<td style="border:none;" align="left">2c</td>
<td style="border:none;" align="left">1.06</td>
<td style="border:none;" align="left">0.2</td>
<td style="border:none;" align="left">3.2</td>
<td style="border:none;" align="left">16</td>
<td style="border:none;" align="left">0.5</td>
<td style="border:none;" align="left">5.9</td>
<td style="border:none;" align="left">11.8</td>
<td style="border:none;" align="left">0.26</td>
<td style="border:none;" align="left">>2.5</td>
<td style="border:none;" align="left">>9.6</td>
<td style="border:none;" align="left">0.13</td>
<td style="border:none;" align="left">>1.25</td>
<td style="border:none;" align="left">>9.6</td>
</tr>
<tr>
<td style="border:none;" align="left">2d</td>
<td style="border:none;" align="left">4.39</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2e</td>
<td style="border:none;" align="left">0.76</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">12.5</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2f</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2g</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2h</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2i</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">2j</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">3a</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">9.3</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">6.8</td>
<td style="border:none;" align="left">>25</td>
<td style="border:none;" align="left">>3.7</td>
<td style="border:none;" align="left">1.75</td>
<td style="border:none;" align="left">>25</td>
<td style="border:none;" align="left">>14.3</td>
<td style="border:none;" align="left">1.95</td>
<td style="border:none;" align="left">>12.5</td>
<td style="border:none;" align="left">>6.4</td>
</tr>
<tr>
<td style="border:none;" align="left">3b</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">3c</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left">>50</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left">>100</td>
<td style="border:none;" align="left"> </td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="t1fn1">
<label>a</label>
<p>ND: not determined; SI = CC
<sub>50</sub>
/EC
<sub>50</sub>
.</p>
</fn>
<fn id="t1fn2">
<label>b</label>
<p>EC
<sub>50</sub>
: effective concentration to inhibit the replication of the virus by 50%.</p>
</fn>
<fn id="t1fn3">
<label>c</label>
<p>CC
<sub>50</sub>
: cytotoxic concentration to inhibit the replication of normal cells by 50%.</p>
</fn>
<fn id="t1fn4">
<label>d</label>
<p>EC
<sub>50</sub>
> 100 indicates that no antiviral activity was observed at the highest concentration tested because either there was no protection or the compound was toxic.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<p>As shown in
<xref rid="tbl1" ref-type="other">Table
<xref rid="tbl1" ref-type="other">1</xref>
</xref>
, only the adenosine derivatives
<bold>2a–c</bold>
exhibited potent antiviral activities against +RNA viruses, while the other purine
<italic>N</italic>
<sup>6</sup>
-methyladenine derivatives
<bold>2d</bold>
and
<bold>2e</bold>
and pyrimidine derivatives
<bold>2f–j</bold>
did not show significant antiviral activities, not even at 100 μM. This result suggests that the antiviral activity might be due to an (indirect) effect on viral MTase activity through the inhibition of host SAH hydrolase. Inhibition of the viral RdRp appears not to be important. The mechanism of action of these compounds has been studied in more detail and results will be published elsewhere.</p>
<p>Compound
<bold>2a</bold>
inhibited MERS-CoV replication with an EC
<sub>50</sub>
of 0.20 μM; however, it was also rather cytotoxic, resulting in a selectivity index (SI) of 3. Replacement of the remaining 6′-H in
<bold>2a</bold>
with F resulted in compound
<bold>2c</bold>
, which exhibited a > 5-fold reduction in cytotoxicity, while its antiviral activity remained unchanged, with an EC
<sub>50</sub>
of ∼0.20 μM and an SI of 15 for MERS-CoV. This compound was also active against SARS-CoV with an SI of 12.5, suggesting that it may be a broad-spectrum coronavirus inhibitor. In addition, it also inhibited ZIKV replication with an EC
<sub>50</sub>
of 0.26 μM (SI > 10) and was active against CHIKV with an EC
<sub>50</sub>
of 0.13 μM. Compound
<bold>2b</bold>
showed some inhibitory effects on CHIKV and ZIKV replication, but this was likely due to pleiotropic cytotoxic effects, as the SI was <3. Among the phosphoramidate prodrugs
<bold>3a–c</bold>
, only the adenosine prodrug
<bold>3a</bold>
exhibited significant broad-spectrum antiviral activities, demonstrating that it may inhibit the RdRp of RNA viruses after conversion into the triphosphate form, although it remains to be determined in biochemical assays whether the triphosphate form affects RdRp activity.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
Compound
<bold>3a</bold>
had an EC
<sub>50</sub>
of 9.3 μM for MERS-CoV and 6.8 μM for SARS-CoV, but it also had an SI < 10, and it was therefore not considered a potent inhibitor of coronavirus replication. However, for CHIKV and ZIKV,
<bold>3a</bold>
had EC
<sub>50</sub>
values of 1.95 and 1.75 μM, respectively, with good selectivity indices. Interestingly, the prodrug
<bold>3a</bold>
was less potent, but also much less cytotoxic than the parent compound
<bold>2c</bold>
, which is unusual as regularly the phosphoramidate is more potent than the parent drug.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
The phosphoramidate
<bold>3a</bold>
might be slowly hydrolyzed to the 5′-monophosphate by metabolic enzymes, or to the parent drug
<bold>2c</bold>
by a phosphatase, which could inhibit SAH hydrolase, explaining the observed antiviral effect. Viral load reduction assays were performed with compound
<bold>2c</bold>
by infecting cells with CHIKV, ZIKV, SARS-CoV, and MERS-CoV, followed by treatment with different concentrations of
<bold>2c</bold>
. At 30 hpi (CHIKV) or 48 hpi (ZIKV, SARS- and MERS-CoV), infectious progeny titers in the medium were determined by plaque assay (
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
). Treatment with concentrations higher than 1 μM of
<bold>2c</bold>
reduced infectious CHIKV titers by more than 2 log. The effect on ZIKV infectious progeny titers was limited and showed a ∼1 log reduction. For SARS-CoV, the reduction in infectious progeny titer was ∼1.5 log at 2c concentrations above 0.3 μM. The strongest antiviral effect was observed for MERS-CoV, with a ∼2.5 log reduction in infectious progeny titers when infected cells were treated with 2c concentrations above 0.3 μM. Follow-up studies to gain more insights into the mode of action of
<bold>2c</bold>
and
<bold>3a</bold>
and related compounds are currently ongoing, and results will be published elsewhere.</p>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Effect of
<bold>2c</bold>
on the infectious progeny of CHIKV, ZIKV, SARS-CoV, and MERS-CoV. Cells were infected with the virus indicated on the y-axis of the graph in medium with various concentrations of
<bold>2c</bold>
. Infectious progeny titers were determined by plaque assay (
<italic>n</italic>
= 4) and viability of noninfected cells was monitored using the CellTiter 96AQueous Non-Radioactive Cell Proliferation Assay (Promega). Significant differences are indicated by *: *,
<italic>p</italic>
< 0.05; **,
<italic>p</italic>
< 0.01; ***,
<italic>p</italic>
< 0.001; ****,
<italic>p</italic>
< 0.0001.</p>
</caption>
<graphic xlink:href="jm9b00781_0002" id="gr2" position="float"></graphic>
</fig>
<p>Finally, we measured the log
<italic>P</italic>
of the most active compound
<bold>2c</bold>
by the pH-metric method, using a T3 Sirius instrument, because the lipophilicity is a major determinant for compound absorption, distribution in the body, penetration across biological barriers, metabolism, and excretion. The measured log
<italic>P</italic>
was 0.02, indicating that it is almost equally partitioned between the lipid and aqueous phases. The relatively low log
<italic>P</italic>
of
<bold>2c</bold>
is expected to be overcome by converting it to the phosphoramidate
<bold>3a</bold>
.</p>
</sec>
</sec>
<sec id="sec3">
<title>Conclusions</title>
<p>We have synthesized the 6′-fluorinated aristeromycin analogues
<bold>2a–j</bold>
, which were designed as dual-target antiviral compounds aimed at inhibiting both the viral RdRp and the host SAH hydrolase. The electrophilic fluorination of silyl enol ether with Selectfluor was the key step in the synthesis. We have also synthesized the phosphoramidate prodrugs
<bold>3a–c</bold>
to determine whether these would inhibit virus replication through an effect on the viral RNA polymerase.
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
depicts the summarized SAR of the synthesized 6′-fluorinated final nucleoside analogues
<bold>2a–j</bold>
and
<bold>3a–c</bold>
concerning the inhibition of human SAH hydrolase and the inhibition of the replication of various +RNA viruses with capped genomes. It was discovered that the introduction of fluorine at the 6′-position increases the inhibitory activity on SAH hydrolase and the replication of selected +RNA viruses. Compared to the 6′-unsubstituted compound
<bold>1</bold>
, the 6′-fluorinated aristeromycin analogues
<bold>2a</bold>
and
<bold>2c</bold>
more potently inhibited SAH hydrolase activity and the replication of MERS-CoV, SARS-CoV, ZIKV, and CHIKV. Among these compounds, 6′-β-fluoroaristeromycin (
<bold>2a</bold>
) was the most potent with an IC
<sub>50</sub>
of 0.37 μM for SAH hydrolase activity and an EC
<sub>50</sub>
of 0.20 μM for MERS-CoV replication. There was a correlation between the inhibition of SAH hydrolase and the antiviral activity of the compounds, suggesting that the latter was mainly due to indirect targeting of viral methylation reactions. The SAR studies and a lack of antiviral effects of several purine and pyrimidine analogues suggest that the antiviral effect of
<bold>1</bold>
,
<bold>2a</bold>
, and
<bold>2c</bold>
is unlikely due to targeting of the viral RdRp. Compound
<bold>2c</bold>
appears to be an interesting compound for further development and evaluation as a broad-spectrum antiviral agent, as it inhibited several coronaviruses, CHIKV, and ZIKV. More detailed biological studies on the efficacy of these compounds in virus-infected cells and into their mode of action are currently ongoing and will be published elsewhere.</p>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Summarized SAR of 6′-fluorinated aristeromycin analogues
<bold>2</bold>
and
<bold>3</bold>
.</p>
</caption>
<graphic xlink:href="jm9b00781_0003" id="gr3" position="float"></graphic>
</fig>
</sec>
<sec id="sec4">
<title>Experimental Section</title>
<sec id="sec4.1">
<title>Chemical Synthesis</title>
<sec id="sec4.1.1">
<title>General Methods</title>
<p>Proton (
<sup>1</sup>
H) and carbon (
<sup>13</sup>
C) NMR spectra were obtained on a Bruker AV 400 (400/100 MHz), Bruker AMX 500 (500/125 MHz), JEOL JNM-ECA600 (600/150 MHz), or Bruker AVANCE III 800 (800/200 MHz) spectrometer. Chemical shifts are reported as parts per million (δ) relative to the solvent peak. Coupling constants (
<italic>J</italic>
) are reported in hertz. Mass spectra were recorded on a Thermo LCQ XP instrument. Optical rotations were determined on Jasco III in appropriate solvent. UV spectra were recorded on U-3000 made by Hitachi in methanol or water. Infrared spectra were recorded on FT-IR (FTS-135) made by Bio-Rad. Melting points were determined on a Buchan B-540 instrument and are uncorrected. The crude compounds were purified by column chromatography on a silica gel (Kieselgel 60, 70–230 mesh, Merck). Elemental analyses (C, H, and N) were used to determine the purity of all synthesized compounds, and the results were within ±0.4% of the calculated values, confirming ≥95% purity.</p>
</sec>
<sec id="sec4.1.2">
<title>(((3a
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-2,2-dimethyl-6,6a-dihydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)oxy)triethylsilane (
<bold>6</bold>
)</title>
<p>To a cooled (−78 °C) solution of
<bold>5</bold>
(1568.0 mg, 6.470 mmol) in anhydrous tetrahydrofuran (THF; 32.0 mL, 0.2 M) was dropwise added chlorotriethylsilane (5.4 mL, 32.355 mmol), followed by addition of LiHMDS (19.0 mL, 1.0 M solution in THF, 19.0 mmol) under N
<sub>2</sub>
. After being stirred at the same temperature for 10 min, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (80 mL). The layers were separated, and the aqueous layer was extracted with ethyl acetate (EtOAc; 150 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 100/1 to 30/1) to give
<bold>6</bold>
(2267.0 mg, 98%) as colorless oil: [α]
<sub>D</sub>
<sup arrange="stack">20</sup>
= +36.48 (
<italic>c</italic>
1.23, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 4.73 (dd,
<italic>J</italic>
= 1.1, 6.0 Hz, 1H), 4.58 (d,
<italic>J</italic>
= 2.1 Hz, 1H), 4.36 (d,
<italic>J</italic>
= 6.1 Hz, 1H), 3.27 (dd,
<italic>J</italic>
= 5.6, 8.6 Hz, 1H), 3.15 (dd,
<italic>J</italic>
= 6.6, 8.6 Hz, 1H), 2.72 (dd,
<italic>J</italic>
= 5.9, 5.9 Hz, 1H), 1.42 (s, 3H), 1.32 (s, 3H), 1.12 (s, 9H), 0.96 (t,
<italic>J</italic>
= 8.0 Hz, 9H), 0.66–0.72 (m, 6H);
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ 154.1, 110.3, 104.4, 82.8, 79.7, 72.5, 63.9, 47.9, 27.4 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.3, 25.8, 6.5 (3 × triethylsilyl), 4.6 (3 × triethylsilyl); IR (neat): 2973, 1648, 1363, 1262, 1204, 1056, 851, 748 cm
<sup>–1</sup>
; HRMS (FAB): found, 356.2388 [calcd for C
<sub>19</sub>
H
<sub>36</sub>
O
<sub>4</sub>
Si
<sup>+</sup>
(M + H)
<sup>+</sup>
, 356.2383].</p>
</sec>
<sec id="sec4.1.3">
<title>(3a
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyldihydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4(5
<italic>H</italic>
)-one (
<bold>7a</bold>
) and (3a
<italic>R</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyldihydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4(5
<italic>H</italic>
)-one (
<bold>7b</bold>
)</title>
<p>To a cooled (0 °C) solution of silyl enol ether
<bold>6</bold>
(8.75 g, 24.548 mmol) in anhydrous DMF (123.0 mL, 0.20 M) was added 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) (13.04 g, 36.824 mmol, Selectfluor) in one portion under N
<sub>2</sub>
. After being stirred at the same temperature for 12 h, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (130 mL), diluted with EtOAc (130 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 40/1 to 20/1) to give
<bold>7a</bold>
and
<bold>7b</bold>
(5.80 g, 91%, total yield,
<bold>7a</bold>
/
<bold>7b</bold>
= 5.2:1 by
<sup>1</sup>
H NMR analysis).</p>
<sec id="sec4.1.3.1">
<title>Compound
<bold>7a</bold>
</title>
<p>It was obtained as a white solid; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −156.69 (
<italic>c</italic>
0.735, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 5.29 (dd,
<italic>J</italic>
= 8.2, 49.5 Hz, 1H), 4.70 (t,
<italic>J</italic>
= 5.7 Hz, 1H), 4.20 (dd,
<italic>J</italic>
= 2.4, 6.1 Hz, 1H), 3.61 (dd,
<italic>J</italic>
= 1.6, 8.6 Hz, 1H) 3.38–3.41 (m, 1H), 2.75 (d,
<italic>J</italic>
= 8.2 Hz, 1H), 1.41 (s, 3H), 1.30 (s, 3H), 1.06 (s, 9H);
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ 203.0 (d,
<italic>J</italic>
= 12.9 Hz), 111.4, 88.5 (d,
<italic>J</italic>
= 201.5 Hz), 78.2 (d,
<italic>J</italic>
= 6.9 Hz), 75.0 (d,
<italic>J</italic>
= 3.1 Hz), 74.3, 56.6 (d,
<italic>J</italic>
= 6.6 Hz), 40.5 (d,
<italic>J</italic>
= 15.5 Hz), 26.8 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.2, 23.6;
<sup>19</sup>
F NMR (376 MHz, CDCl
<sub>3</sub>
): δ −220.60 to –221.14 (m); LRMS (ESI
<sup>+</sup>
): found, 283.13 [calcd for C
<sub>13</sub>
H
<sub>21</sub>
FO
<sub>4</sub>
Na
<sup>+</sup>
(M + Na)
<sup>+</sup>
, 283.1322]; Anal. Calcd for C
<sub>13</sub>
H
<sub>21</sub>
FO
<sub>4</sub>
: C, 59.98; H, 8.13. Found: C, 59.99; H, 8.53.</p>
</sec>
<sec id="sec4.1.3.2">
<title>Compound
<bold>7b</bold>
</title>
<p>It was obtained as a white solid; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −83.72 (
<italic>c</italic>
0.495, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (600 MHz, CDCl
<sub>3</sub>
): δ 5.21–5.36 (ddd,
<italic>J</italic>
= 1.3, 4.5, 50.8 Hz, 1H), 4.55 (d,
<italic>J</italic>
= 5.9 Hz, 1H), 4.50 (d,
<italic>J</italic>
= 5.9 Hz, 1H), 3.63 (d,
<italic>J</italic>
= 2.2 Hz, 2H), 2.52–2.58 (m, 1H), 1.41 (s, 3H), 1.33 (s, 3H), 1.13 (s, 9H);
<sup>13</sup>
C NMR (150 MHz, CDCl
<sub>3</sub>
): δ 207.8 (d,
<italic>J</italic>
= 12.9 Hz), 112.2, 91.9 (d,
<italic>J</italic>
= 192.4 Hz), 78.78 (d,
<italic>J</italic>
= 3.5 Hz), 78.74, 73.6, 60.5 (d,
<italic>J</italic>
= 4.3 Hz), 45.0 (d,
<italic>J</italic>
= 17.9 Hz), 27.2 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.8, 25.2;
<sup>19</sup>
F NMR (376 MHz, CDCl
<sub>3</sub>
): δ −196.0 to –196.2 (m); HRMS (FAB): found, 262.1679 [calcd for C
<sub>13</sub>
H
<sub>22</sub>
FO
<sub>4</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 261.1505]; Anal. Calcd for C
<sub>13</sub>
H
<sub>21</sub>
FO
<sub>4</sub>
: C, 59.98; H, 8.13. Found: C, 59.77; H, 8.45.</p>
</sec>
</sec>
<sec id="sec4.1.4">
<title>(3a
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5,5-difluoro-2,2-dimethyldihydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4(5
<italic>H</italic>
)-one (
<bold>7c</bold>
)</title>
<p>It was obtained in 70% yield (mixture of
<bold>7c</bold>
and
<bold>7d</bold>
) as a white solid; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −4.34 (
<italic>c</italic>
0.21, MeOH);
<sup>1</sup>
H NMR (
<bold>7c</bold>
and
<bold>7d</bold>
mixture, 400 MHz, CDCl
<sub>3</sub>
;
<bold>7c</bold>
and
<bold>7d</bold>
mixture): δ 4.82 (s, 1H), 4.72 (t,
<italic>J</italic>
= 6.1 Hz, 1H), 4.52–4.57 (m, 1H), 4.35–4.41 (m, 1H), 4.25 (dd,
<italic>J</italic>
= 8.0, 4.0 Hz, 1H), 3.74 (s, 1H), 3.69 (d,
<italic>J</italic>
= 8.0 Hz, 1H), 3.67–3.60 (m, 1H), 3.54–3.59 (m, 1H), 3.46 (d,
<italic>J</italic>
= 8.3 Hz, 1H), 2.68 (d,
<italic>J</italic>
= 17.4 Hz, 1H), 2.53–2.62 (m, 1H), 1.48 (s, 3H), 1.44 (s, 3H), 1.34 (s, 3H), 1.32 (s, 3H), 1.21 (s, 9H), 1.06 (s, 9H).</p>
</sec>
<sec id="sec4.1.5">
<title>General Procedure for the Synthesis of
<bold>8a–c</bold>
</title>
<p>To a cooled (0 °C) solution of
<bold>7a–c</bold>
(1 equiv) in MeOH (0.18 M), sodium borohydride or lithium borohydride was added in a single portion in a N
<sub>2</sub>
atmosphere. After stirring for 30 min at the same temperature, the reaction mixture was neutralized with acetic acid (2 mL) and evaporated. The residue was diluted with saturated aqueous NH
<sub>4</sub>
Cl, and the aqueous layer was extracted with EtOAc (2 × 100 mL). The combined organic layers were dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 20/1) to give
<bold>8a–c</bold>
.</p>
<sec id="sec4.1.5.1">
<title>(3a
<italic>S</italic>
,4
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-ol (
<bold>8a</bold>
)</title>
<p>It was obtained in 71% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −47.46 (
<italic>c</italic>
0.395, CHCl
<sub>3</sub>
);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 4.91 (td,
<italic>J</italic>
= 6.6, 52.5 Hz, 1H), 4.51–4.52 (m, 1H), 4.47 (ddd,
<italic>J</italic>
= 1.6, 6.3, 7.8 Hz, 1H), 4.26–4.34 (m, 1H), 3.52 (dd,
<italic>J</italic>
= 3.3, 8.8 Hz, 1H), 3.36–3.39 (m, 1H), 2.67 (d,
<italic>J</italic>
= 7.9 Hz, 1H), 2.46 (br s, 1H), 1.45 (s, 3H), 1.32 (s, 3H), 1.14 (s, 9H);
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ 111.1, 99.5 (d,
<italic>J</italic>
= 185.9 Hz), 81.2 (d,
<italic>J</italic>
= 4.4 Hz), 76.3 (d,
<italic>J</italic>
= 9.0 Hz), 74.0 (d,
<italic>J</italic>
= 23.4 Hz), 73.0, 56.8 (d,
<italic>J</italic>
= 8.2 Hz), 44.6 (d,
<italic>J</italic>
= 18.1 Hz), 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.1, 24.1;
<sup>19</sup>
F NMR (376 MHz, CDCl
<sub>3</sub>
) −211.0 to −211.21 (m); HRMS (FAB): found, 263.1662 [calcd for C
<sub>13</sub>
H
<sub>24</sub>
FO
<sub>4</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 263.1659]; Anal. Calcd for C
<sub>13</sub>
H
<sub>23</sub>
FO
<sub>4</sub>
: C, 59.52; H, 8.84. Found: C, 59.32; H, 9.15.</p>
</sec>
<sec id="sec4.1.5.2">
<title>(3a
<italic>S</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-ol (
<bold>8b</bold>
)</title>
<p>It was obtained in 67% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −40.42 (
<italic>c</italic>
0.22, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 4.68 (dd,
<italic>J</italic>
= 4.1, 52.4 Hz, 1H), 4.46–4.53 (m, 2H), 4.13–4.24 (m, 1H), 3.33–3.40 (m, 1H), 2.81 (d,
<italic>J</italic>
= 11.4 Hz, 1H), 2.50 (dt,
<italic>J</italic>
= 2.9, 22.9 Hz, 1H), 1.46 (s, 3H), 1.30 (s, 3H), 1.08 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 111.4, 98.4 (d,
<italic>J</italic>
= 181.5 Hz), 82.8, 79.3, 73.8 (d,
<italic>J</italic>
= 16.3 Hz), 73.0, 60.6 (d,
<italic>J</italic>
= 12.1 Hz), 49.2 (d,
<italic>J</italic>
= 18.3 Hz), 27.1 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.2, 24.2; HRMS (ESI
<sup>+</sup>
): found, 285.1480 [calcd for C
<sub>13</sub>
H
<sub>23</sub>
FNaO
<sub>4</sub>
<sup>+</sup>
(M + Na)
<sup>+</sup>
, 285.1478]; Anal. Calcd for C
<sub>13</sub>
H
<sub>23</sub>
FO
<sub>4</sub>
: C, 55.70; H, 7.91. Found: C, 55.40; H, 7.75.</p>
</sec>
<sec id="sec4.1.5.3">
<title>(3a
<italic>S</italic>
,4
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-ol (
<bold>8c</bold>
)</title>
<p>It was obtained in 74% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= 22.37 (
<italic>c</italic>
0.28, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 4.53 (t,
<italic>J</italic>
= 5.7 Hz, 1H), 4.44 (ddd,
<italic>J</italic>
= 2.6, 6.4, 8.9 Hz, 1H), 4.20–4.29 (m, 1H), 3.55 (d,
<italic>J</italic>
= 8.7 Hz, 1H), 3.39 (d,
<italic>J</italic>
= 8.8 Hz, 1H), 2.76 (d,
<italic>J</italic>
= 11.5 Hz, 1H), 2.43 (d,
<italic>J</italic>
= 17.2 Hz, 1H), 1.46 (s, 3H), 1.31 (s, 3H), 1.12 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 126.9 (dd,
<italic>J</italic>
= 252.3, 260.3 Hz), 110.9, 79.6 (d,
<italic>J</italic>
= 5.9 Hz), 75.5 (d,
<italic>J</italic>
= 11.3 Hz), 73.7 (dd,
<italic>J</italic>
= 18.5, 25.8 Hz), 73.4, 57.6 (dd,
<italic>J</italic>
= 4.6, 8.5 Hz), 48.7 (t,
<italic>J</italic>
= 20.8 Hz), 27.2 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 25.9, 24.2; HRMS (ESI
<sup>+</sup>
): found, 298.1834 [calcd for C
<sub>13</sub>
H
<sub>26</sub>
F
<sub>2</sub>
NO
<sub>4</sub>
<sup>+</sup>
(M + NH
<sub>4</sub>
)
<sup>+</sup>
, 298.1830 ]; Anal. Calcd for C
<sub>13</sub>
H
<sub>22</sub>
F
<sub>2</sub>
O
<sub>4</sub>
: C, 55.70; H, 7.91. Found: C, 55.45; H, 7.56.</p>
</sec>
</sec>
<sec id="sec4.1.6">
<title>(3a
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-((
<italic>tert</italic>
-butyldimethylsilyl)oxy)-2,2-dimethyldihydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4(5
<italic>H</italic>
)-one (
<bold>9</bold>
)</title>
<p>To a cooled (0 °C) solution of
<bold>6</bold>
(1275 mg, 3.57 mmol) in anhydrous THF (12 mL, 0.3 M) were added 4-methylmorpholine
<italic>N</italic>
-oxide monohydrate (967 mg, 7.15 mmol, 2 equiv) and osmium tetroxide (1000 mg, 3.93 mmol, 1.1 equiv) under a N
<sub>2</sub>
atmosphere. After stirring for 30 min, to the reaction mixture were added sodium thiosulfate pentahydrate (300 mg), sodium sulfite (300 mg), and acetone (30 mL) and stirred for additional 1 h at the same temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (100 mL). The combined organic layers were washed with H
<sub>2</sub>
O followed by saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was used for the next step without further purification. To a solution of above generated intermediate in anhydrous DMF (18 mL, 0.19 M) were added TBSCl (1614 mg, 10.71 mmol) and imidazole (729 mg, 10.71 mmol) under a N
<sub>2</sub>
atmosphere. After stirring for 3 h at room temperature, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (50 mL) and diluted with EtOAc (50 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 40/1 to 20/1) to give
<bold>9</bold>
(705 mg, 53%) as a colorless syrup: [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −103.19 (
<italic>c</italic>
0.30, MeOH);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 4.65 (d,
<italic>J</italic>
= 6.4 Hz, 1H), 4.53 (d,
<italic>J</italic>
= 8.0 Hz, 1H), 4.11 (d,
<italic>J</italic>
= 6.3 Hz, 1H), 3.61 (dd,
<italic>J</italic>
= 1.6, 8.0 Hz, 1H), 3.30 (dd,
<italic>J</italic>
= 2.4, 8.1 Hz, 1H), 2.41–2.46 (m, 1H), 1.42 (s, 3H), 1.30 (s, 3H), 1.03 (s, 9H), 0.88 (s, 9H), 0.13 (s, 3H), 0.05 (s, 3H);
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ 207.2, 110.9, 78.1, 75.8, 73.7, 71.3, 56.9, 42.3, 27.0 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.4, 25.7 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 23.8, 18.3, −4.4, −5.6; HRMS (FAB
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 373.2398 [calcd for C
<sub>19</sub>
H
<sub>37</sub>
O
<sub>5</sub>
Si
<sup>+</sup>
(M + H)
<sup>+</sup>
, 373.2410]; Anal. Calcd for C
<sub>19</sub>
H
<sub>36</sub>
O
<sub>5</sub>
Si: C, 61.25; H, 9.74. Found: C, 61.26; H, 9.75.</p>
</sec>
<sec id="sec4.1.7">
<title>(3a
<italic>S</italic>
,4
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-((
<italic>tert</italic>
-butyldimethylsilyl)oxy)-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-ol (
<bold>10</bold>
)</title>
<p>To a cooled (0 °C) solution of
<bold>9</bold>
(471 mg, 1.26 mmol) in methanol (6.3 mL, 0.2 M) was added sodium borohydride (144 mg, 3.79 mmol, 3 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at the same temperature for 1 h, the reaction mixture was diluted with H
<sub>2</sub>
O (20 mL) and EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 30/1 to 20/1) to give
<bold>10</bold>
(415 mg, 88%) as a colorless syrup: [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −40.39 (
<italic>c</italic>
0.32, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 4.49 (d,
<italic>J</italic>
= 6.1 Hz, 1H), 4.41 (t,
<italic>J</italic>
= 6.2 Hz, 1H), 4.07 (t,
<italic>J</italic>
= 6.9 Hz, 1H), 3.95 (dd,
<italic>J</italic>
= 6.8, 14.7 Hz, 1H), 3.48 (dd,
<italic>J</italic>
= 3.9, 8.5 Hz, 1H), 3.32 (dd,
<italic>J</italic>
= 4.6, 8.5 Hz, 1H), 2.43 (d,
<italic>J</italic>
= 8.4 Hz, 1H), 2.12–2.18 (m, 1H), 1.45 (s, 3H), 1.32 (s, 3H), 1.12 (s, 9H), 0.87 (s, 9H), 0.09 (s, 3H), 0.05 (s, 3H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 110.4, 81.0, 78.8, 77.0, 76.1, 72.6, 57.3, 46.0, 27.4 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.2, 25.8 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 24.0, 18.1, −4.5, −5.1; HRMS (FAB
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 375.2584 [calcd for C
<sub>19</sub>
H
<sub>39</sub>
O
<sub>5</sub>
Si
<sup>+</sup>
(M + H)
<sup>+</sup>
, 375.2567]; Anal. Calcd for C
<sub>19</sub>
H
<sub>38</sub>
O
<sub>5</sub>
Si: C, 60.92; H, 10.23. Found: C, 60.91; H, 10.25.</p>
</sec>
<sec id="sec4.1.8">
<title>(((3a
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-4-(Benzyloxy)-6-(
<italic>tert</italic>
-butoxymethyl)-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-5-yl)oxy)(
<italic>tert</italic>
-butyl)dimethylsilane (
<bold>11</bold>
)</title>
<p>To a cooled (0 °C) solution of
<bold>10</bold>
(193 mg, 0.515 mmol) in DMF (5.2 mL, 0.1 M) was added benzyl chloride (0.12 mL, 1.030 mmol, 2.0 equiv) and sodium hydride (41 mg, 1.030 mmol, 2.0 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was diluted with H
<sub>2</sub>
O (20 mL) and EtOAc (20 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 50/1) to give
<bold>11</bold>
(204 mg, 85%) as a colorless syrup: [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −46.64 (
<italic>c</italic>
0.66, MeOH);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 7.22–7.39 (m, 5H), 4.76 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 4.59 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 4.45 (d,
<italic>J</italic>
= 6.0 Hz, 1H), 4.33–4.37 (m, 2H), 3.83 (dd,
<italic>J</italic>
= 5.6, 8.8 Hz, 1H), 3.39 (dd,
<italic>J</italic>
= 4.4, 8.8 Hz, 1H), 3.32 (dd,
<italic>J</italic>
= 4.0, 8.4 Hz, 1H), 2.05–2.11 (m, 1H), 1.48 (s, 3H), 1.29 (s, 3H), 1.03 (s, 9H), 0.88 (s, 9H), 0.09 (s, 3H), 0.05 (s, 3H);
<sup>13</sup>
C NMR (200 MHz, CDCl
<sub>3</sub>
): δ 138.9, 128.4, 128.1, 127.9, 127.7, 127.2, 110.0, 82.1, 80.2, 76.0, 75.6, 72.4, 71.7, 57.5, 45.7, 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.4, 25.8 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 24.2, −4.7, −4.9; HRMS (FAB
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 465.3001 [calcd for C
<sub>26</sub>
H
<sub>45</sub>
O
<sub>5</sub>
Si
<sup>+</sup>
(M + H)
<sup>+</sup>
, 465.3029]; Anal. Calcd for C
<sub>26</sub>
H
<sub>44</sub>
O
<sub>5</sub>
Si: C, 67.20; H, 9.54. Found: C, 67.22; H, 9.55.</p>
</sec>
<sec id="sec4.1.9">
<title>(3a
<italic>R</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
,6
<italic>S</italic>
,6a
<italic>R</italic>
)-4-(Benzyloxy)-6-(
<italic>tert</italic>
-butoxymethyl)-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-5-ol (
<bold>12</bold>
)</title>
<p>To a cooled (0 °C) solution of
<bold>11</bold>
(179 mg, 0.385 mmol) in anhydrous THF (3.8 mL, 0.1 M) was added TBAF solution (1.2 mL, 1.0 M solution in THF, 1.2 mmol, 3.0 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was diluted with H
<sub>2</sub>
O (30 mL) and EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 8/1) to give
<bold>12</bold>
(129 mg, 88%) as a colorless syrup: [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −49.04 (
<italic>c</italic>
0.28, MeOH);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 7.39 (d,
<italic>J</italic>
= 7.2 Hz, 2H), 7.29–7.35 (m, 2H), 7.23–7.28 (m, 1H), 4.85 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 4.62 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 4.51 (t,
<italic>J</italic>
= 6.0 Hz, 1H), 4.40–4.45 (m, 2H), 3.81 (dd,
<italic>J</italic>
= 4.8, 7.2 Hz, 1H), 3.58 (dd,
<italic>J</italic>
= 3.6, 8.8 Hz, 1H), 3.44 (dd,
<italic>J</italic>
= 4.4, 8.8 Hz, 1H), 2.70 (br s, 1H), 2.26–2.32 (m, 1H), 1.48 (s, 3H), 1.31 (s, 3H), 1.08 (s, 9H);
<sup>13</sup>
C NMR (200 MHz, CDCl
<sub>3</sub>
): δ 138.5, 128.3 (2 × CH-benzene), 128.0 (2 × CH-benzene), 127.5, 111.1, 82.7, 80.6, 77.2, 76.7, 73.4, 71.9, 59.3, 45.4, 27.2 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.5, 24.6; Anal. Calcd for C
<sub>20</sub>
H
<sub>30</sub>
O
<sub>5</sub>
: C, 68.54; H, 8.63. Found: C, 68.52; H, 8.64.</p>
</sec>
<sec id="sec4.1.10">
<title>(3a
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-4-(Benzyloxy)-6-(
<italic>tert</italic>
-butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxole (
<bold>13a</bold>
)</title>
<p>To a cooled (0 °C) solution of
<bold>12</bold>
(20 mg, 0.052 mmol) in anhydrous toluene (2.0 mL, 0.026 M) was dropwise added diethylaminosulfur trifluoride (30 μL, 0.210 mmol, 4.0 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 2 h, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (30 mL) and EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 30/1) to give
<bold>13a</bold>
(5.6 mg, 30%) and
<bold>13b</bold>
(5.6 mg, 30%) as a colorless syrup.</p>
<sec id="sec4.1.10.1">
<title>Compound
<bold>13a</bold>
</title>
<p>[α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −26.59 (
<italic>c</italic>
0.22, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 7.25–7.34 (m, 5H), 4.96 (ddd,
<italic>J</italic>
= 2.6, 6.8, 52.7 Hz, 1H), 4.72 (dd,
<italic>J</italic>
= 0.8, 11.6 Hz, 1H), 4.54 (d,
<italic>J</italic>
= 11.6 Hz, 1H), 4.44–4.52 (m, 2H), 4.02–4.09 (m, 1H), 3.41–3.47 (m, 2H), 2.15–2.18 (m, 1H), 1.47 (s, 3H), 1.28 (s, 3H), 1.12 (s, 9H);
<sup>13</sup>
C NMR (200 MHz, CDCl
<sub>3</sub>
): δ 137.8, 128.3 (2 × CH-benzyl), 128.1 (2 × CH-benzyl), 127.8, 111.8, 96.0 (d,
<italic>J</italic>
= 187.1 Hz), 81.6, 79.3, 78.2 (d,
<italic>J</italic>
= 15.7 Hz), 72.6, 71.8, 60.6 (d,
<italic>J</italic>
= 11.0 Hz), 50.2 (d,
<italic>J</italic>
= 18.7 Hz), 27.0 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.6, 24.4; HRMS (FAB
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 353.2121 [calcd for C
<sub>20</sub>
H
<sub>30</sub>
FO
<sub>4</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 353.2128]; Anal. Calcd for C
<sub>20</sub>
H
<sub>29</sub>
FO
<sub>4</sub>
: C, 68.16; H, 8.29. Found: C, 68.13; H, 8.27.</p>
</sec>
<sec id="sec4.1.10.2">
<title>Compound
<bold>13b</bold>
</title>
<p>[α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −61.72 (
<italic>c</italic>
0.42, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 7.38 (t,
<italic>J</italic>
= 7.3 Hz, 2H), 7.31 (t,
<italic>J</italic>
= 7.2 Hz, 2H), 7.25 (d,
<italic>J</italic>
= 7.2 Hz, 1H), 5.18 (dt,
<italic>J</italic>
= 7.8, 53.7 Hz, 1H), 4.76 (d,
<italic>J</italic>
= 12.2 Hz, 1H), 4.66 (d,
<italic>J</italic>
= 12.2 Hz, 1H), 4.45–4.49 (m, 1H), 4.41–4.44 (m, 1H), 4.19 (ddd,
<italic>J</italic>
= 5.9, 7.7, 16.5 Hz, 1H), 3.45 (dd,
<italic>J</italic>
= 3.0, 8.8 Hz, 1H), 3.31–3.34 (m, 1H), 2.37–2.43 (m, 1H), 1.47 (s, 3H), 1.28 (s, 3H), 1.01 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 138.0, 128.3, 127.9 (2 × CH-benzyl), 127.7 (2 × CH-benzyl), 112.2, 103.5, 102.1, 81.5 (d,
<italic>J</italic>
= 27.5 Hz), 81.1 (d,
<italic>J</italic>
= 20.0 Hz), 72.6, 72.4, 57.6, 48.8 (d,
<italic>J</italic>
= 6.2 Hz), 27.4 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.1, 25.0; HRMS (FAB
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 353.2131 [calcd for C
<sub>20</sub>
H
<sub>30</sub>
FO
<sub>4</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 353.2128]; Anal. Calcd for C
<sub>20</sub>
H
<sub>29</sub>
FO
<sub>4</sub>
: C, 68.16; H, 8.29. Found: C, 68.13; H, 8.27.</p>
</sec>
</sec>
<sec id="sec4.1.11">
<title>(3a
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>S</italic>
)-4-(
<italic>tert</italic>
-Butoxy)-5-(
<italic>tert</italic>
-butoxymethyl)-6-hydroxytetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3,2]dioxathiole 2-Oxide (
<bold>14</bold>
)</title>
<p>To perform regioselective cleavage, to a cooled (−78 °C) solution of
<bold>10</bold>
(420 mg, 1.121 mmol) in anhydrous CH
<sub>2</sub>
Cl
<sub>2</sub>
(5.6 mL, 0.2 M) was dropwise added trimethylaluminum (3.4 mL, 2.0 M solution in hexane, 6.727 mmol, 6.0 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (30 mL) and EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to give diol intermediate (245 mg, 56%) 10a as a colorless syrup. For the introduction of cyclic sulfite, to a cooled (0 °C) solution of diol intermediate
<bold>10a</bold>
(250 mg, 0.639 mmol) in anhydrous CH
<sub>2</sub>
Cl
<sub>2</sub>
(6.4 mL, 0.1 M) was dropwise added triethylamine (0.3 mL, 2.239 mmol, 3.5 equiv) followed by thionyl chloride (70 μL, 0.959 mmol) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 30 min, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (30 mL) and diluted with EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc, 10/1) to give cyclic sulfite intermediate
<bold>10b</bold>
(249 mg, 89%) as a colorless syrup. For TBS deprotection, to a cooled (0 °C) solution of
<bold>10b</bold>
(286 mg, 0.654 mmol) in anhydrous THF (6.5 mL, 0.1 M) was added acetic acid (0.13 mL, 0.131 mmol, 0.2 equiv) followed by TBAF solution (2.6 mL, 1.0 M solution in THF, 2.6 mmol, 4.0 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 12 h, the reaction mixture was quenched with H
<sub>2</sub>
O (30 mL) and diluted with EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 6/1) to give
<bold>14</bold>
(202 mg, 96%, two diastereomers
<bold>A</bold>
and
<bold>B</bold>
were generated from sulfoxide stereogenic center) as a colorless syrup: for
<bold>A</bold>
:
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 5.27 (t,
<italic>J</italic>
= 5.4 Hz, 1H), 5.02 (d,
<italic>J</italic>
= 5.9 Hz, 1H), 4.79 (s, 1H), 4.44 (dd,
<italic>J</italic>
= 4.8, 11.4 Hz, 1H), 4.19 (d,
<italic>J</italic>
= 3.9 Hz, 1H), 3.80 (dd,
<italic>J</italic>
= 2.6, 9.3 Hz, 1H), 1.90–1.94 (m, 1H), 1.27 (s, 9H), 1.21 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 86.9, 82.6, 74.9, 74.5, 74.1, 69.4, 58.2, 43.6, 28.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.2 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl); HRMS (FAB
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 323.1530 [calcd for C
<sub>14</sub>
H
<sub>27</sub>
O
<sub>6</sub>
S
<sup>+</sup>
(M + H)
<sup>+</sup>
, 323.1528]; for
<bold>B</bold>
:
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 4.98–5.07 (m, 2H), 4.79 (d,
<italic>J</italic>
= 6.4 Hz, 1H), 4.36 (dd,
<italic>J</italic>
= 4.6, 11.5 Hz, 1H), 4.31 (d,
<italic>J</italic>
= 4.1 Hz, 1H), 3.84 (d,
<italic>J</italic>
= 9.2 Hz, 1H), 3.77 (d,
<italic>J</italic>
= 9.3 Hz, 1H), 2.65 (d,
<italic>J</italic>
= 10.1 Hz, 1H), 1.25 (s, 9H), 1.21 (s, 9H).</p>
</sec>
<sec id="sec4.1.12">
<title>(3a
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>S</italic>
,6a
<italic>R</italic>
)-4-(
<italic>tert</italic>
-Butoxy)-5-(
<italic>tert</italic>
-butoxymethyl)-6-fluorotetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3,2]dioxathiole 2-Oxide (
<bold>15</bold>
)</title>
<p>To a cooled (0 °C) solution of
<bold>14</bold>
(33 mg, 0.102 mmol) in anhydrous CH
<sub>2</sub>
Cl
<sub>2</sub>
(1.5 mL, 0.068 M) was dropwise added diethylaminosulfur trifluoride (60 μL, 0.434 mmol, 4.0 equiv) under a N
<sub>2</sub>
atmosphere. After being stirred at room temperature for 4 h, the reaction mixture was quenched with saturated aqueous NH
<sub>4</sub>
Cl (30 mL) and diluted with EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by flash column chromatography (silica gel, hexanes/EtOAc, 15/1) to give
<bold>15</bold>
(12 mg, 37%) as a colorless syrup:
<sup>1</sup>
H NMR (600 MHz, CDCl
<sub>3</sub>
): δ 5.17 (ddd,
<italic>J</italic>
= 4.6, 7.8, 52.7 Hz, 1H), 5.03 (t,
<italic>J</italic>
= 8.2 Hz, 1H), 4.92 (ddd,
<italic>J</italic>
= 5.0, 8.7, 17.8 Hz, 1H), 4.06 (ddd,
<italic>J</italic>
= 7.8, 11.0, 16.5 Hz, 1H), 3.53 (ddd,
<italic>J</italic>
= 2.7, 2.7, 6.8 Hz, 1H), 3.44 (dd,
<italic>J</italic>
= 2.2, 9.1 Hz, 1H), 2.54–2.58 (m, 1H), 1.17 (s, 18H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 102.1 (d,
<italic>J</italic>
= 191.2 Hz), 87.2 (d,
<italic>J</italic>
= 28.2 Hz), 81.9 (d,
<italic>J</italic>
= 5.8 Hz), 74.5, 72.8, 72.4 (d,
<italic>J</italic>
= 19.2 Hz), 55.5, 50.4 (d,
<italic>J</italic>
= 6.5 Hz), 28.6 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.5 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl).</p>
</sec>
<sec id="sec4.1.13">
<title>(3a
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>R</italic>
,6
<italic>S</italic>
,6a
<italic>R</italic>
)-4-(
<italic>tert</italic>
-Butoxy)-5-(
<italic>tert</italic>
-butoxymethyl)-6-fluorotetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3,2]dioxathiole 2,2-Dioxide (
<bold>16</bold>
)</title>
<p>To a solution of cyclic sulfite
<bold>15</bold>
(13 mg, 0.040 mmol) in CCl
<sub>4</sub>
/CH
<sub>3</sub>
CN/H
<sub>2</sub>
O (1:1:1.5, total 1.75 mL, 0.14 M) was added in one portion sodium periodate (26 mg, 0.120 mmol), followed by ruthenium(III) chloride trihydrate (2 mg, 0.008 mmol) at room temperature under a N
<sub>2</sub>
atmosphere. After being stirred at the same temperature for 20 min, the reaction mixture was quenched with H
<sub>2</sub>
O (20 mL) and diluted with CH
<sub>2</sub>
Cl
<sub>2</sub>
(20 mL). The layers were separated, and the aqueous layer was extracted with CH
<sub>2</sub>
Cl
<sub>2</sub>
(2 × 50 mL). The combined organic layers were washed successively with H
<sub>2</sub>
O and saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The crude product
<bold>16</bold>
was used for the next step without further purification.</p>
</sec>
<sec id="sec4.1.14">
<title>General Procedure for the Synthesis of
<bold>18a–c</bold>
</title>
<sec id="sec4.1.14.1">
<title>Triflation</title>
<p>To a cooled (0 °C) solution of
<bold>8a–c</bold>
(1 equiv) in anhydrous pyridine (0.32 M), trifluoromethanesulfonic anhydride (2 equiv) was added dropwise in a N
<sub>2</sub>
atmosphere. After stirring at the same temperature for 30 min, the reaction mixture was quenched with H
<sub>2</sub>
O (50 mL) and diluted with EtOAc (30 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 30 mL). The combined organic layers were washed with saturated aqueous CuSO
<sub>4</sub>
followed by water, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was used for the next step without further purification.</p>
</sec>
<sec id="sec4.1.14.2">
<title>Azidation</title>
<p>To a solution of triflate intermediate (1 equiv) in anhydrous DMF (0.19 M), sodium azide (3 equiv) was added in a single portion at room temperature. After being heated to 60–100 °C and stirred for 4–15 h, the reaction mixture was cooled to room temperature, quenched with H
<sub>2</sub>
O (50 mL), and diluted with EtOAc (50 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (2 × 50 mL). The combined organic layers were washed with H
<sub>2</sub>
O followed by saturated brine, dried over anhydrous MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to give
<bold>18a–c</bold>
.</p>
</sec>
<sec id="sec4.1.14.3">
<title>(3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-4-Azido-6-(
<italic>tert</italic>
-butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxole (
<bold>18a</bold>
)</title>
<p>It was obtained in 45% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −24.42 (
<italic>c</italic>
0.016, CH
<sub>2</sub>
Cl
<sub>2</sub>
);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 5.16 (td,
<italic>J</italic>
= 52.4, 3.1 Hz, 1H), 4.66 (t,
<italic>J</italic>
= 6.0 Hz, 1H), 4.41 (t,
<italic>J</italic>
= 6.5 Hz, 1H), 3.62–3.69 (m, 1H), 3.54 (s, 1H), 3.50 (s, 1H), 2.27–2.36 (m, 1H), 1.47 (s, 3H), 1.29 (s, 3H), 1.16 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 114.1, 96.9 (d,
<italic>J</italic>
= 182.6 Hz), 82.0, 80.2, 73.1, 67.9 (d,
<italic>J</italic>
= 15.7 Hz), 57.8 (d,
<italic>J</italic>
= 7.2 Hz), 49.4 (d,
<italic>J</italic>
= 17.6 Hz), 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.1, 24.6;
<sup>19</sup>
F NMR (376 MHz, CDCl
<sub>3</sub>
) −206.9 to –207.2 (m); IR (neat): 2108 cm
<sup>–1</sup>
; LR-MS (ESI
<sup>+</sup>
): 310.15 [calcd for C
<sub>13</sub>
H
<sub>22</sub>
FN
<sub>2</sub>
NaO
<sub>3</sub>
<sup>+</sup>
(M + Na)
<sup>+</sup>
, 310.1543]; Anal. Calcd for C
<sub>13</sub>
H
<sub>22</sub>
FN
<sub>3</sub>
O
<sub>3</sub>
: C, 54.34; H, 7.72; N, 14.62. Found: C, 54.35; H, 7.45; N, 14.23.</p>
</sec>
<sec id="sec4.1.14.4">
<title>(3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-4-Azido-6-(
<italic>tert</italic>
-butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxole (
<bold>18b</bold>
)</title>
<p>It was obtained in 88% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= 9.66 (
<italic>c</italic>
0.51, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 4.75 (dt,
<italic>J</italic>
= 7.7, 53.0 Hz, 1H), 4.41 (dd,
<italic>J</italic>
= 4.5, 6.7 Hz, 1H), 4.22 (t,
<italic>J</italic>
= 5.7 Hz, 1H), 4.00 (ddd,
<italic>J</italic>
= 5.5, 7.4, 16.6 Hz, 1H), 3.43–3.50 (m, 2H), 2.33–2.44 (m, 1H), 1.50 (s, 3H), 1.27 (s, 3H), 1.15 (s, 9H);
<sup>13</sup>
C NMR (150 MHz, CDCl
<sub>3</sub>
): δ 112.7, 95.8 (d,
<italic>J</italic>
= 188.9 Hz), 81.0 (d,
<italic>J</italic>
= 8.6 Hz), 77.8 (d,
<italic>J</italic>
= 7.2 Hz), 73.0, 70.9 (d,
<italic>J</italic>
= 20.1 Hz), 57.9, 49.1 (d,
<italic>J</italic>
= 18.7 Hz), 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.2, 25.0; IR (neat): 2111 cm
<sup>–1</sup>
; Anal. Calcd for C
<sub>13</sub>
H
<sub>22</sub>
FN
<sub>3</sub>
O
<sub>3</sub>
: C, 54.34; H, 7.72; N, 14.62. Found: C, 54.12; H, 7.94; N, 14.33.</p>
</sec>
<sec id="sec4.1.14.5">
<title>(3a
<italic>S</italic>
,4
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-4-Azido-6-(
<italic>tert</italic>
-butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-3a
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxole (
<bold>18c</bold>
)</title>
<p>It was obtained in 75% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −43.39 (
<italic>c</italic>
0.36, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 4.40–4.44 (m, 1H), 4.34–4.39 (m, 1H), 3.87–3.95 (m, 1H), 3.61 (dd,
<italic>J</italic>
= 6.5, 9.3 Hz, 1H), 3.48 (t,
<italic>J</italic>
= 7.6 Hz, 1H), 2.54–2.66 (m, 1H), 1.49 (s, 3H), 1.28 (s, 3H), 1.17 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 127.1 (dd,
<italic>J</italic>
= 255.9, 260.9 Hz), 113.0, 80.0 (d,
<italic>J</italic>
= 5.9 Hz), 78.4 (d,
<italic>J</italic>
= 5.6 Hz), 73.4, 69.1 (dd,
<italic>J</italic>
= 18.8, 25.1 Hz), 57.2 (d,
<italic>J</italic>
= 6.4 Hz), 50.8 (t,
<italic>J</italic>
= 20.0 Hz), 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.9, 24.7; IR (neat): 2116 cm
<sup>–1</sup>
; Anal. Calcd for C
<sub>13</sub>
H
<sub>21</sub>
F
<sub>2</sub>
N
<sub>3</sub>
O
<sub>3</sub>
: C, 51.14; H, 6.93; N, 13.76. Found: C, 51.45; H, 7.21; N, 14.10.</p>
</sec>
</sec>
<sec id="sec4.1.15">
<title>General Procedure for the Synthesis of
<bold>19a–c</bold>
</title>
<p>To a suspension of
<bold>18a–c</bold>
(1 equiv) in methanol (0.2 M), 10% palladium on activated carbon (0.03 equiv) was added and stirred overnight at room temperature in a H
<sub>2</sub>
atmosphere. After filtration, the solvent was removed, and the residue was used for the next step without further purification.</p>
</sec>
<sec id="sec4.1.16">
<title>General Procedure for the Synthesis of
<bold>20a–c</bold>
</title>
<p>To a solution of
<bold>19a–c</bold>
(1 equiv) in
<italic>n</italic>
-butanol (0.38 M), 5-amino-4,6-dichloro pyrimidine (3–10 equiv) and diisopropylamine (10 equiv) were added. The reaction mixture was placed under microwave irradiation at 170–200 °C for 4–7 h. The solvent was co-evaporated with MeOH, and the residue was purified with column chromatography (silica gel, hexane/EtOAc, 4/1) to give
<bold>20a–c</bold>
, respectively.</p>
<sec id="sec4.1.16.1">
<title>
<italic>N</italic>
<sup>4</sup>
-((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-6-chloropyrimidine-4,5-diamine (
<bold>20a</bold>
)</title>
<p>It was obtained in 66% yield from
<bold>18a</bold>
; yellow foam; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −53.8 (
<italic>c</italic>
0.10, CH
<sub>2</sub>
Cl
<sub>2</sub>
);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 8.08 (s, 1H), 5.27–5.33 (br s, 1H), 5.24 (td,
<italic>J</italic>
= 3.5, 52.9 Hz, 1H), 4.71–4.81 (m, 1H), 4.57 (t,
<italic>J</italic>
= 6.1 Hz, 1H), 4.44 (t,
<italic>J</italic>
= 6.3 Hz, 1H), 3.58–3.63 (m, 1H), 3.53 (t,
<italic>J</italic>
= 9.2 Hz, 1H), 3.39 (br s, 2H), 2.42–2.55 (m, 1H), 1.52 (s, 3H), 1.30 (s, 3H), 1.18 (s, 9H);
<sup>13</sup>
C NMR (200 MHz, CDCl
<sub>3</sub>
): δ 154.4, 149.0, 122.4, 113.8, 95.9 (d,
<italic>J</italic>
= 178.7 Hz), 84.2, 80.1, 77.1, 73.3, 59.8 (d,
<italic>J</italic>
= 15.9 Hz), 58.0 (d,
<italic>J</italic>
= 7.0 Hz), 49.4 (d,
<italic>J</italic>
= 17.6 Hz), 27.4 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.2, 24.8;
<sup>19</sup>
F NMR (376 MHz, CDCl
<sub>3</sub>
) −212.8 to –213.1 (m); UV (CH
<sub>2</sub>
Cl
<sub>2</sub>
): λ
<sub>max</sub>
287 nm; LRMS (ESI
<sup>+</sup>
): found, 388.17 [calcd for C
<sub>17</sub>
H
<sub>27</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 389.1756]; Anal. Calcd for C
<sub>17</sub>
H
<sub>26</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
: C, 52.51; H, 6.50; N, 14.45. Found: C, 52.45; H, 6.13; N, 14.15.</p>
</sec>
<sec id="sec4.1.16.2">
<title>
<italic>N</italic>
<sup>4</sup>
-((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-6-chloropyrimidine-4,5-diamine (
<bold>20b</bold>
)</title>
<p>It was obtained in 47% yield from
<bold>18b</bold>
; yellow foam; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −11.79 (
<italic>c</italic>
0.36, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 8.10 (s, 1H), 5.56 (d,
<italic>J</italic>
= 9.2 Hz, 1H), 4.89 (dt,
<italic>J</italic>
= 3.1, 51.0 Hz, 1H), 4.77 (dd,
<italic>J</italic>
= 9.1, 21.2 Hz, 1H), 4.61 (dd,
<italic>J</italic>
= 2.5, 5.0 Hz, 1H), 4.51 (dd,
<italic>J</italic>
= 2.4, 6.0 Hz, 1H), 3.60 (dd,
<italic>J</italic>
= 2.6, 9.2 Hz, 1H), 3.55 (dd,
<italic>J</italic>
= 2.5, 9.3 Hz, 1H), 3.39 (br s, 2H), 2.60 (d,
<italic>J</italic>
= 23.5 Hz, 1H), 1.54 (s, 3H), 1.29 (s, 3H), 1.21 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 154.2, 149.6, 143.4, 122.4, 111.7, 101.3 (d,
<italic>J</italic>
= 185.1 Hz), 85.5 (d,
<italic>J</italic>
= 3.3 Hz), 82.0 (d,
<italic>J</italic>
= 2.6 Hz), 74.0, 63.7 (d,
<italic>J</italic>
= 26.6 Hz), 60.6 (d,
<italic>J</italic>
= 7.1 Hz), 51.3 (d,
<italic>J</italic>
= 20.5 Hz), 27.5 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.1, 24.9; UV (MeOH): λ
<sub>max</sub>
297.60, 265.07 nm; HRMS (ESI
<sup>+</sup>
): found, 389.1762 [calcd for C
<sub>17</sub>
H
<sub>27</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 389.1756]; Anal. Calcd for C
<sub>17</sub>
H
<sub>26</sub>
lFN
<sub>4</sub>
O
<sub>3</sub>
: C, 52.51; H, 6.50; N, 14.45. Found: C, 52.56; H, 6.51; N, 14.43.</p>
</sec>
<sec id="sec4.1.16.3">
<title>
<italic>N</italic>
<sup>4</sup>
-((3a
<italic>S</italic>
,4
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-6-chloropyrimidine-4,5-diamine (
<bold>20c</bold>
)</title>
<p>It was obtained in 67% yield from
<bold>18c</bold>
; yellow foam; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −61.76 (
<italic>c</italic>
0.23, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 8.11 (s, 1H), 5.71 (d,
<italic>J</italic>
= 10.1 Hz, 1H), 5.03 (t,
<italic>J</italic>
= 12.7 Hz, 1H), 4.56 (t,
<italic>J</italic>
= 4.6 Hz, 1H), 4.40–4.45 (m, 1H), 3.69 (dd,
<italic>J</italic>
= 2.6, 9.5 Hz, 1H), 3.57 (dd,
<italic>J</italic>
= 4.4, 9.4 Hz, 1H), 3.38 (br s, 2H), 2.72 (d,
<italic>J</italic>
= 14.7 Hz, 1H), 1.53 (s, 3H), 1.44 (s, 3H), 1.25 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 154.5, 149.6, 143.9, 128.0 (dd,
<italic>J</italic>
= 257.3, 260.0 Hz), 122.3, 111.7, 84.5, 79.7 (d,
<italic>J</italic>
= 4.1 Hz), 74.5, 61.7 (dd,
<italic>J</italic>
= 18.1, 31.9 Hz), 58.3 (t,
<italic>J</italic>
= 5.8 Hz), 51.6 (t,
<italic>J</italic>
= 22.6 Hz), 27.5 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 26.7, 24.6; UV (MeOH): λ
<sub>max</sub>
297.39, 263.29 nm; HRMS (ESI
<sup>+</sup>
): found, 407.1658 [calcd for C
<sub>17</sub>
H
<sub>26</sub>
ClF
<sub>2</sub>
N
<sub>4</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 407.1661]; Anal. Calcd for C
<sub>17</sub>
H
<sub>25</sub>
ClF
<sub>2</sub>
N
<sub>4</sub>
O
<sub>3</sub>
: C, 50.19; H, 6.19; N, 13.77. Found: C, 50.11; H, 6.23; N, 13.65.</p>
</sec>
</sec>
<sec id="sec4.1.17">
<title>General Procedure for the Synthesis of
<bold>21a–c</bold>
</title>
<p>A solution of
<bold>20a–c</bold>
in diethoxymethyl acetate (0.15 M) was placed under microwave irradiation at 140 °C for 3 h. The mixture was then co-evaporated with MeOH three times, and the resulting residue was purified with column chromatography (silica gel, hexane/EtOAc, 7/1) to give
<bold>21a–c</bold>
.</p>
<sec id="sec4.1.17.1">
<title>9-((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-6-chloro-9
<italic>H</italic>
-purine (
<bold>21a</bold>
)</title>
<p>It was obtained in 96% yield as yellow foam; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −29.2 (
<italic>c</italic>
0.17, CH
<sub>2</sub>
Cl
<sub>2</sub>
);
<sup>1</sup>
H NMR (400 MHz, CDCl
<sub>3</sub>
): δ 8.74 (s, 1H), 8.34 (d,
<italic>J</italic>
= 2.4 Hz, 1H), 5.28–5.43 (td,
<italic>J</italic>
= 2.8, 52.8 Hz, 1H), 5.12–5.23 (m, 2H), 4.61 (t,
<italic>J</italic>
= 5.0 Hz, 1H), 3.65–3.69 (m, 1H), 3.61 (t,
<italic>J</italic>
= 9.2 Hz, 1H), 2.56–2.71 (m, 1H), 1.56 (s, 3H), 1.32 (s, 3H), 1.17 (s, 9H);
<sup>13</sup>
C NMR (100 MHz, CDCl
<sub>3</sub>
): δ 152.3, 151.4, 144.2, 144.1, 131.4, 115.4, 97.7–95.9 (d,
<italic>J</italic>
= 181.2 Hz), 82.9, 80.1, 73.5, 63.1 (d,
<italic>J</italic>
= 16.1 Hz), 58.0 (d,
<italic>J</italic>
= 7.4 Hz), 50.0 (d,
<italic>J</italic>
= 17.5 Hz), 27.6 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.5, 25.1;
<sup>19</sup>
F NMR (376 MHz, CDCl
<sub>3</sub>
) −202.6–202.9 (m); UV (CH
<sub>2</sub>
Cl
<sub>2</sub>
): λ
<sub>max</sub>
271 nm; LRMS (ESI
<sup>+</sup>
): found, 399.16 [calcd for C
<sub>18</sub>
H
<sub>25</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 399.1599]; Anal. Calcd for C
<sub>18</sub>
H
<sub>24</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
: C, 54.20; H, 6.06; N, 14.05. Found: C, 54.12; H, 6.34; N, 14.23.</p>
</sec>
<sec id="sec4.1.17.2">
<title>9-((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-6-chloro-9
<italic>H</italic>
-purine (
<bold>21b</bold>
)</title>
<p>It was obtained in 76% yield as yellow foam; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −31.54 (
<italic>c</italic>
0.54, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 8.67 (s, 1H), 8.15 (s, 1H), 5.55 (dt,
<italic>J</italic>
= 8.4, 53.6 Hz, 1H), 5.02 (t,
<italic>J</italic>
= 6.4 Hz, 1H), 4.84–4.94 (m, 1H), 4.65 (t,
<italic>J</italic>
= 5.1 Hz, 1H), 3.53–3.63 (m, 2H), 2.47–2.57 (m, 1H), 1.54 (s, 3H), 1.25 (s, 3H), 1.17 (s, 9H);
<sup>13</sup>
C NMR (150 MHz, CDCl
<sub>3</sub>
): δ 151.7, 151.5, 151.3, 144.8, 132.3, 113.1, 93.9 (d,
<italic>J</italic>
= 191.0 Hz), 79.1 (d,
<italic>J</italic>
= 7.9 Hz), 77.6 (d,
<italic>J</italic>
= 7.9 Hz), 73.1, 67.8 (d,
<italic>J</italic>
= 20.8 Hz), 58.1, 48.7 (d,
<italic>J</italic>
= 18.7 Hz) 27.5 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.3, 25.0; UV (MeOH): λ
<sub>max</sub>
264.36 nm; HRMS (ESI
<sup>+</sup>
): found, 399.1589 [calcd for C
<sub>18</sub>
H
<sub>25</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 399.1599]; Anal. Calcd for C
<sub>18</sub>
H
<sub>24</sub>
ClFN
<sub>4</sub>
O
<sub>3</sub>
: C, 54.20; H, 6.06; N, 14.05. Found: C, 54.34; H, 6.46; N, 13.99.</p>
</sec>
<sec id="sec4.1.17.3">
<title>9-((3a
<italic>S</italic>
,4
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-6-chloro-9
<italic>H</italic>
-purine (
<bold>21c</bold>
)</title>
<p>It was obtained in 92% yield as yellow foam; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −46.05 (
<italic>c</italic>
0.43, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 8.73 (s, 1H), 8.28 (d,
<italic>J</italic>
= 2.1 Hz, 1H), 5.30 (dt,
<italic>J</italic>
= 6.9, 20.1 Hz, 1H), 5.10 (t,
<italic>J</italic>
= 6.7 Hz, 1H), 4.57–4.62 (m, 1H), 3.63–3.73 (m, 2H), 2.81–2.93 (m, 1H), 1.56 (s, 3H), 1.30 (s, 3H), 1.18 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 152.4, 152.4, 151.3, 143.9 (d,
<italic>J</italic>
= 4.0 Hz), 131.2, 125.6 (dd,
<italic>J</italic>
= 253.4, 264.6 Hz), 114.0, 79.5 (d,
<italic>J</italic>
= 7.7 Hz), 77.9 (d,
<italic>J</italic>
= 7.5 Hz), 73.7, 64.6 (dd,
<italic>J</italic>
= 19.3, 24.3 Hz), 57.1 (d,
<italic>J</italic>
= 7.1 Hz), 50.3 (t,
<italic>J</italic>
= 19.8 Hz), 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.2, 25.0; UV (MeOH): λ
<sub>max</sub>
263.74 nm; HRMS (ESI
<sup>+</sup>
): found, 417.1500 [calcd for C
<sub>18</sub>
H
<sub>24</sub>
ClF
<sub>2</sub>
N
<sub>4</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 417.1505]; Anal. Calcd for C
<sub>18</sub>
H
<sub>23</sub>
ClF
<sub>2</sub>
N
<sub>4</sub>
O
<sub>3</sub>
: C, 51.86; H, 5.56; N, 13.44. Found: C, 51.56; H, 5.96; N, 13.13.</p>
</sec>
</sec>
<sec id="sec4.1.18">
<title>General Procedure for the Synthesis of
<bold>2a–c</bold>
</title>
<p>To a solution of
<bold>21a–c</bold>
in
<italic>tert</italic>
-butanol (2 mL, 0.27 M) contained in a stainless steel bomb reactor, saturated ammonia in
<italic>tert</italic>
-butanol (15 mL) was added and the reactor was locked. After being heated to 120 °C with stirring for 15 h, the mixture was cooled to room temperature and co-evaporated with MeOH. Without purification, the residue was added to a TFA/H
<sub>2</sub>
O solution (2:1, v/v, total 15 mL) and heated to 50 °C with stirring for 15 h. After the reaction mixture was evaporated, the residue was purified by column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 9/1) to give
<bold>2a–c</bold>
.</p>
<sec id="sec4.1.18.1">
<title>(1
<italic>R</italic>
,2
<italic>S</italic>
,3
<italic>S</italic>
,4
<italic>R</italic>
,5
<italic>R</italic>
)-3-(6-Amino-9
<italic>H</italic>
-purin-9-yl)-4-fluoro-5-(hydroxymethyl)cyclopentane-1,2-diol (
<bold>2a</bold>
)</title>
<p>It was obtained in 43% yield as a white solid; mp 172–177 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −64.49 (
<italic>c</italic>
0.22, MeOH);
<sup>1</sup>
H NMR (800 MHz, CD
<sub>3</sub>
OD-
<italic>d</italic>
<sub>6</sub>
): δ 8.26 (d,
<italic>J</italic>
= 2.0 Hz, 1H), 8.21 (s, 1H), 5.21 (dt,
<italic>J</italic>
= 4.0, 54.6, 1H), 4.99 (ddd,
<italic>J</italic>
= 3.4, 10.8, 29.5 Hz, 1H), 4.75 (dd,
<italic>J</italic>
= 6.7, 9.4 Hz, 1H), 4.02 (dd,
<italic>J</italic>
= 4.8, 6.4 Hz, 1H), 3.79–3.85 (m, 2H), 2.42–2.51 (m, 1H);
<sup>13</sup>
C NMR (200 MHz, CD
<sub>3</sub>
OD): δ 158.1, 154.6, 152.2, 142.4 (d,
<italic>J</italic>
= 3.3 Hz), 120.5, 92.8 (d,
<italic>J</italic>
= 180.7 Hz), 74.3, 71.8, 64.0 (d,
<italic>J</italic>
= 17.0 Hz), 60.6 (d,
<italic>J</italic>
= 10.7 Hz), 54.3 (d,
<italic>J</italic>
= 17.9 Hz);
<sup>19</sup>
F NMR (376 MHz, CD
<sub>3</sub>
OD): δ −204.7 to −205.4 (m); UV (MeOH): λ
<sub>max</sub>
259.90 nm; HRMS (ESI
<sup>+</sup>
): found, 284.1161 [calcd for C
<sub>11</sub>
H
<sub>15</sub>
FN
<sub>5</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 284.1159]; Anal. Calcd for C
<sub>11</sub>
H
<sub>14</sub>
FN
<sub>5</sub>
O
<sub>3</sub>
: C, 46.64; H, 4.98; N, 24.72. Found: C, 46.65; H, 5.38; N, 25.10.</p>
</sec>
<sec id="sec4.1.18.2">
<title>(1
<italic>R</italic>
,2
<italic>S</italic>
,3
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
)-3-(6-Amino-9
<italic>H</italic>
-purin-9-yl)-4-fluoro-5-(hydroxymethyl)cyclopentane-1,2-diol (
<bold>2b</bold>
)</title>
<p>It was obtained in 71% yield as a white solid; mp 182–186 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −11.85 (
<italic>c</italic>
0.26, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.19 (s, 1H), 8.18 (s, 1H), 5.40 (ddd,
<italic>J</italic>
= 5.2, 7.3, 54.4 Hz, 1H), 5.03 (ddd,
<italic>J</italic>
= 7.5, 9.8, 20.7 Hz, 1H), 4.60 (dd,
<italic>J</italic>
= 5.1, 9.9 Hz, 1H), 4.05–4.09 (m, 1H), 3.80 (d,
<italic>J</italic>
= 5.8 Hz, 2H), 2.28–2.40 (m, 1H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 158.0, 154.3, 151.9, 143.4, 121.6, 95.8 (d,
<italic>J</italic>
= 186.4 Hz), 74.2 (d,
<italic>J</italic>
= 7.4 Hz), 73.2 (d,
<italic>J</italic>
= 3.3 Hz), 68.6 (d,
<italic>J</italic>
= 21.1 Hz), 62.6, 54.6 (d,
<italic>J</italic>
= 19.0 Hz);
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −185.244 (dt,
<italic>J</italic>
= 23.8, 53.7 Hz); UV (MeOH): λ
<sub>max</sub>
260.88 nm; HRMS (ESI
<sup>+</sup>
): found, 284.1155 [calcd for C
<sub>11</sub>
H
<sub>15</sub>
FN
<sub>5</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 284.1159]; Anal. Calcd for C
<sub>11</sub>
H
<sub>14</sub>
FN
<sub>5</sub>
O
<sub>3</sub>
: C, 46.64; H, 4.98; N, 24.72. Found: C, 46.38; H, 5.12; N, 24.33.</p>
</sec>
<sec id="sec4.1.18.3">
<title>(1
<italic>R</italic>
,2
<italic>S</italic>
,3
<italic>S</italic>
,5
<italic>R</italic>
)-3-(6-Amino-9
<italic>H</italic>
-purin-9-yl)-4,4-difluoro-5-(hydroxymethyl)cyclopentane-1,2-diol (
<bold>2c</bold>
)</title>
<p>It was obtained in 61% yield as a white solid; mp 180–185 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −56.51 (
<italic>c</italic>
0.30, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.26 (d,
<italic>J</italic>
= 19.5 Hz, 1H), 8.20 (s, 1H), 5.33 (dt,
<italic>J</italic>
= 10.0, 17.0 Hz, 1H), 4.79 (dd,
<italic>J</italic>
= 5.2, 10.6 Hz, 1H, merged with solvent peak), 4.13–4.17 (m, 1H), 3.79–3.91 (m, 2H), 2.60–2.71 (m, 1H);
<sup>13</sup>
C NMR (200 MHz, CD
<sub>3</sub>
OD): δ 158.2, 154.8, 152.6, 142.7 (d,
<italic>J</italic>
= 2.4 Hz), 125.9 (dd,
<italic>J</italic>
= 252.3, 258.4 Hz), 120.6, 73.7 (d,
<italic>J</italic>
= 7.3 Hz), 71.8 (d,
<italic>J</italic>
= 3.3 Hz), 64.8 (dd,
<italic>J</italic>
= 19.4, 23.8 Hz), 59.6 (d,
<italic>J</italic>
= 10.8 Hz), 56.4 (t,
<italic>J</italic>
= 19.9 Hz);
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −97.5 (d,
<italic>J</italic>
= 238.5 Hz), −115.4 (dt,
<italic>J</italic>
= 15.9, 238.9 Hz); UV (MeOH): λ
<sub>max</sub>
259.92 nm; HRMS (ESI
<sup>+</sup>
): found, 302.1066 [calcd for C
<sub>11</sub>
H
<sub>14</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 302.1065]; Anal. Calcd for C
<sub>11</sub>
H
<sub>13</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>3</sub>
: C, 43.86; H, 4.35; N, 23.25. Found: C, 44.17; H, 4.14; N, 23.05.</p>
</sec>
</sec>
<sec id="sec4.1.19">
<title>General Procedure for the Synthesis of
<bold>2d</bold>
and
<bold>2e</bold>
</title>
<p>To a solution of
<bold>21a</bold>
and
<bold>21c</bold>
(0.283 mmol) in EtOH (1.5 mL, 0.19 M) in a sealed glass tube, methylamine (40 wt % in H
<sub>2</sub>
O, 10 mL) was added. After being stirred at room temperature for 2 h, the mixture was concentrated and added to a TFA/H
<sub>2</sub>
O solution (2:1, v/v, total 15 mL) without purification. After being heated to 50 °C with stirring for 15 h, the reaction mixture was evaporated. The residue was purified by column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 9/1) to give
<bold>2d</bold>
and
<bold>2e</bold>
.</p>
<sec id="sec4.1.19.1">
<title>(1S,2
<italic>R</italic>
,3
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
)-4-Fluoro-3-(hydroxymethyl)-5-(6-(methylamino)-9
<italic>H</italic>
-purin-9-yl)cyclopentane-1,2-diol (
<bold>2d</bold>
)</title>
<p>It was obtained in 67% yield as a white solid; mp 197–201 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −61.46 (
<italic>c</italic>
0.40, MeOH);
<sup>1</sup>
H NMR (800 MHz, CD
<sub>3</sub>
OD): δ 8.27 (s, 1H), 8.20 (d,
<italic>J</italic>
= 18.4 Hz, 1H), 5.21 (dt,
<italic>J</italic>
= 4.0, 54.6 Hz, 1H), 4.98 (ddd,
<italic>J</italic>
= 3.4, 10.0, 29.6 Hz, 1H), 4.74 (dd,
<italic>J</italic>
= 6.7, 9.4 Hz, 1H), 4.01 (dd,
<italic>J</italic>
= 4.9, 6.4 Hz, 1H), 3.79–3.85 (m, 2H), 3.11 (br s, 3H), 2.42–2.51 (m, 1H);
<sup>13</sup>
C NMR (200 MHz, CD
<sub>3</sub>
OD): δ 157.5, 154.6, 151.1, 141.8 (d,
<italic>J</italic>
= 3.7 Hz), 121.1, 92.9 (d,
<italic>J</italic>
= 180.8 Hz), 74.3, 71.8, 64.0 (d,
<italic>J</italic>
= 17.0 Hz), 60.6 (d,
<italic>J</italic>
= 10.5 Hz), 54.3 (d,
<italic>J</italic>
= 18.0 Hz), 28.5;
<sup>19</sup>
F NMR (376 MHz, CD
<sub>3</sub>
OD): δ −206.3 (dt,
<italic>J</italic>
= 29.7, 53.4 Hz); UV (MeOH): λ
<sub>max</sub>
266.89 nm; HRMS (ESI
<sup>+</sup>
): found, 298.1317 [calcd for C
<sub>12</sub>
H
<sub>17</sub>
FN
<sub>5</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 298.1315]; Anal. Calcd for C
<sub>12</sub>
H
<sub>16</sub>
FN
<sub>5</sub>
O
<sub>3</sub>
: C, 48.48; H, 5.42; N, 23.56. Found: C, 48.50; H, 5.22; N, 23.93.</p>
</sec>
<sec id="sec4.1.19.2">
<title>(1S,2
<italic>R</italic>
,3
<italic>R</italic>
,5
<italic>S</italic>
)-4,4-Difluoro-3-(hydroxymethyl)-5-(6-(methylamino)-9
<italic>H</italic>
-purin-9-yl)cyclopentane-1,2-diol (
<bold>2e</bold>
)</title>
<p>It was obtained in 76% yield as a white solid; mp 125–129 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −48.62 (
<italic>c</italic>
0.25, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.24 (s, 1H), 8.20 (s, 1H), 5.33 (dt,
<italic>J</italic>
= 9.9, 18.4 Hz, 1H), 4.79 (dd,
<italic>J</italic>
= 10.3, 10.2 Hz, 1H), 4.17 (s, 1H), 3.81–3.90 (m, 2H), 3.10 (br s, 3H), 2.67 (m, 1H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 157.5, 154.7, 151.5, 142.1, 125.9 (dd,
<italic>J</italic>
= 252.4, 258.1 Hz), 121.1, 73.7 (d,
<italic>J</italic>
= 7.25 Hz), 71.9 (d,
<italic>J</italic>
= 3.1 Hz), 64.7 (dd,
<italic>J</italic>
= 20.0, 24.3 Hz), 59.6 (d,
<italic>J</italic>
= 10.8 Hz), 56.4 (t,
<italic>J</italic>
= 19.9 Hz), 28.6;
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −97.4 (d,
<italic>J</italic>
= 238.5 Hz), −115.3 (d,
<italic>J</italic>
= 238.9 Hz); UV (MeOH): λ
<sub>max</sub>
263.72 nm; HRMS (ESI
<sup>+</sup>
): found, 316.1227 [calcd for C
<sub>12</sub>
H
<sub>16</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 316.1221]; Anal. Calcd for C
<sub>12</sub>
H
<sub>15</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>3</sub>
: C, 45.71; H, 4.80; N, 22.21. Found: C, 45.99; H, 4.47; N, 22.02.</p>
</sec>
</sec>
<sec id="sec4.1.20">
<title>General Procedure for the Synthesis of
<bold>22a–c</bold>
</title>
<p>To a cooled (−20 °C) solution of
<bold>19a–c</bold>
(1 equiv) in DMF (0.2 M), 3-methoxyacryloyl isocyanate (2 equiv) in benzene was added dropwise in a N
<sub>2</sub>
atmosphere. After the reaction mixture was slowly warmed to room temperature for 15 h with stirring, the reaction mixture was filtered with CH
<sub>2</sub>
Cl
<sub>2</sub>
and co-evaporated with toluene and ethanol. The residue was purified by column chromatography (silica gel, hexane/EtOAc, 1.5/1) to give
<bold>22a–c</bold>
.</p>
<sec id="sec4.1.20.1">
<title>(
<italic>E</italic>
)-
<italic>N</italic>
-(((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)carbamoyl)-3-methoxyacrylamide (
<bold>22a</bold>
)</title>
<p>It was obtained in 76% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −19.41 (
<italic>c</italic>
0.37, MeOH);
<sup>1</sup>
H NMR (600 MHz, CDCl
<sub>3</sub>
): δ 10.24 (s, 1H), 9.16 (d,
<italic>J</italic>
= 8.2 Hz, 1H), 7.61 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 5.35 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 5.06 (dt,
<italic>J</italic>
= 3.2, 52.7 Hz, 1H), 4.51 (t,
<italic>J</italic>
= 6.6 Hz, 1H), 4.29–4.38 (m, 2H), 3.64 (s, 3H), 3.45–3.52 (m, 2H), 2.21–2.31 (m, 1H), 1.41 (s, 3H), 1.21 (s, 3H), 1.10 (s, 9H);
<sup>13</sup>
C NMR (150 MHz, CDCl
<sub>3</sub>
): δ 168.0, 163.3, 155.4, 113.7, 97.5, 96.7 (d,
<italic>J</italic>
= 178.8 Hz), 84.4, 80.1, 72.9, 58.6 (d,
<italic>J</italic>
= 15.8 Hz), 57.8 (d,
<italic>J</italic>
= 6.5 Hz), 57.4, 49.8 (d,
<italic>J</italic>
= 17.2 Hz), 27.2 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.1, 24.6; UV (MeOH): λ
<sub>max</sub>
243.14 nm; HRMS (ESI
<sup>+</sup>
): found, 389.2088 [calcd for C
<sub>18</sub>
H
<sub>30</sub>
FN
<sub>2</sub>
O
<sub>6</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 389.2088].</p>
</sec>
<sec id="sec4.1.20.2">
<title>(E)-
<italic>N</italic>
-(((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5-fluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)carbamoyl)-3-methoxyacrylamide (
<bold>22b</bold>
)</title>
<p>It was obtained in 88% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −20.47 (
<italic>c</italic>
0.34, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 10.33 (s, 1H), 8.96 (d,
<italic>J</italic>
= 7.4 Hz, 1H), 7.63 (d,
<italic>J</italic>
= 12.3 Hz, 1H), 5.39 (d,
<italic>J</italic>
= 12.3 Hz, 1H), 4.80 (dt,
<italic>J</italic>
= 6.4, 52.5 Hz, 1H), 4.44 (t,
<italic>J</italic>
= 5.5 Hz, 1H), 4.33–4.41 (m, 2H), 3.67 (s, 3H), 3.46 (d,
<italic>J</italic>
= 32.5 Hz, 2H), 2.33–2.42 (m, 1H), 1.46 (s, 3H), 1.24 (s, 3H), 1.13 (s, 9H);
<sup>13</sup>
C NMR (150 MHz, CDCl
<sub>3</sub>
): δ 168.1, 163.2, 155.5, 111.9, 97.9 (d,
<italic>J</italic>
= 187.4 Hz), 97.5, 83.3 (d,
<italic>J</italic>
= 7.2 Hz), 79.0 (d,
<italic>J</italic>
= 6.5 Hz), 73.1, 61.9 (d,
<italic>J</italic>
= 23.7 Hz), 58.6 (d,
<italic>J</italic>
= 2.1 Hz), 57.4, 49.9 (d,
<italic>J</italic>
= 19.4 Hz), 27.3 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.2, 25.0; UV (MeOH): λ
<sub>max</sub>
242.93 nm; HRMS (ESI
<sup>+</sup>
): found, 389.2098 [calcd for C
<sub>18</sub>
H
<sub>30</sub>
FN
<sub>2</sub>
O
<sub>6</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 389.2088].</p>
</sec>
<sec id="sec4.1.20.3">
<title>(
<italic>E</italic>
)-
<italic>N</italic>
-(((3a
<italic>S</italic>
,4
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-6-(
<italic>tert</italic>
-Butoxymethyl)-5,5-difluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)carbamoyl)-3-methoxyacrylamide (
<bold>22c</bold>
)</title>
<p>It was obtained in 90% yield as a colorless syrup; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −40.41 (
<italic>c</italic>
0.52, MeOH);
<sup>1</sup>
H NMR (500 MHz, CDCl
<sub>3</sub>
): δ 10.26 (s, 1 Η), 9.11 (d,
<italic>J</italic>
= 8.7 Hz, 1H), 7.65 (d,
<italic>J</italic>
= 12.3 Hz, 1H), 5.37 (d,
<italic>J</italic>
= 12.4 Hz, 1H), 4.52–4.62 (m, 1H), 4.39 (s, 2H), 3.67 (s, 3H), 3.53–3.60 (m, 2H), 2.57–2.68 (m, 1H), 1.47 (s, 3H), 1.27 (s, 3H), 1.16 (s, 9H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 167.9, 163.4, 155.7, 126.9 (dd,
<italic>J</italic>
= 252.9, 261.3 Hz), 112.4, 97.4, 82.5 (d,
<italic>J</italic>
= 6.9 Hz), 78.6 (d,
<italic>J</italic>
= 4.9 Hz), 73.5, 60.6 (dd,
<italic>J</italic>
= 19.4, 29.2 Hz), 57.4 (d,
<italic>J</italic>
= 6.1 Hz), 57.3, 50.8 (t,
<italic>J</italic>
= 20.8 Hz), 27.1 (3 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 27.0, 24.9; UV (MeOH): λ
<sub>max</sub>
242.22 nm; HRMS (ESI
<sup>+</sup>
): found, 407.1991 [calcd for C
<sub>18</sub>
H
<sub>29</sub>
F
<sub>2</sub>
N
<sub>2</sub>
O
<sub>6</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 407.1994].</p>
</sec>
</sec>
<sec id="sec4.1.21">
<title>General Procedure for the Synthesis of
<bold>2f–h</bold>
</title>
<p>To a stirred solution of
<bold>22a–c</bold>
in 1,4-dioxane (3 mL, 2.5 M), 2 M sulfuric acid (0.3 mL) was dropwise added. After refluxing with stirring for 1 h, the reaction mixture was cooled to room temperature and neutralized with DOWEX 66 ion-exchange resin. The mixture was filtered and evaporated. The residue was purified by column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 9/1) to give
<bold>2f–h</bold>
.</p>
<sec id="sec4.1.21.1">
<title>1-((1
<italic>S</italic>
,2
<italic>R</italic>
,3
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
)-2-Fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidine-2,4(1
<italic>H</italic>
,3
<italic>H</italic>
)-dione (
<bold>2f</bold>
)</title>
<p>It was obtained in 56% yield as a white solid; mp 112–118 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −77.11 (
<italic>c</italic>
0.20, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.70 (dd,
<italic>J</italic>
= 1.1, 8.1 Hz, 1H), 5.69 (d,
<italic>J</italic>
= 8.0 Hz, 1H), 5.10 (dt,
<italic>J</italic>
= 4.1, 55.3 Hz, 1H), 4.91 (dd,
<italic>J</italic>
= 3.4, 10.2 Hz, 1H, merged with solvent peak), 4.46 (dd,
<italic>J</italic>
= 6.6, 10.1 Hz, 1H), 3.93 (t,
<italic>J</italic>
= 4.8 Hz, 1H), 3.70–3.80 (m, 2H), 3.69 (s, 1H), 2.29–2.41 (m, 1H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 166.9, 154.2, 145.5 (d,
<italic>J</italic>
= 3.8 Hz), 102.7, 93.0 (d,
<italic>J</italic>
= 180.1 Hz), 72.4, 71.7, 64.4 (d,
<italic>J</italic>
= 16.6 Hz), 60.6 (d,
<italic>J</italic>
= 11.4 Hz), 53.8 (d,
<italic>J</italic>
= 17.9 Hz);
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −208.9 (dt,
<italic>J</italic>
= 29.9, 59.7 Hz); UV (MeOH): λ
<sub>max</sub>
264.11 nm; HRMS (ESI
<sup>+</sup>
): found, 261.0886 [calcd for C
<sub>10</sub>
H
<sub>14</sub>
FN
<sub>2</sub>
O
<sub>5</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 261.0887]; Anal. Calcd for C
<sub>10</sub>
H
<sub>13</sub>
FN
<sub>2</sub>
O
<sub>5</sub>
: C, 46.16; H, 5.04; N, 10.77. Found: C, 45.98; H, 5.44; N, 10.98.</p>
</sec>
<sec id="sec4.1.21.2">
<title>1-((1
<italic>S</italic>
,2
<italic>S</italic>
,3
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
)-2-Fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidine-2,4(1
<italic>H</italic>
,3
<italic>H</italic>
)-dione (
<bold>2g</bold>
)</title>
<p>It was obtained in 53% yield as a white solid; mp 195–200 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −16.89 (
<italic>c</italic>
0.35, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.60 (d,
<italic>J</italic>
= 7.9 Hz, 1H), 5.69 (d,
<italic>J</italic>
= 7.9 Hz, 1H), 5.07–5.21 (ddd,
<italic>J</italic>
= 5.10, 6.8, 55.2 Hz, 1H), 4.61–4.69 (ddd,
<italic>J</italic>
= 7.3, 8.7, 22.6 Hz, 1H), 4.32 (dd,
<italic>J</italic>
= 5.25, 9.0 Hz, 1H), 3.98 (t,
<italic>J</italic>
= 3.7 Hz, 1H), 3.70 (m, 2H), 2.24 (m, 1H);
<sup>13</sup>
C NMR (125 MHz, CDCl
<sub>3</sub>
): δ 167.1, 153.6, 147.4, 103.5, 94.8 (d,
<italic>J</italic>
= 183.9 Hz), 73.4 (d,
<italic>J</italic>
= 7.3 Hz), 73.1 (d,
<italic>J</italic>
= 22.0 Hz), 72.7 (d,
<italic>J</italic>
= 3.5 Hz), 62.3 (d,
<italic>J</italic>
= 1.8 Hz), 54.1 (d,
<italic>J</italic>
= 18.9 Hz);
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −184.3 (dt,
<italic>J</italic>
= 23.8, 53.7 Hz); UV (MeOH): λ
<sub>max</sub>
265.33 nm; HRMS (ESI
<sup>+</sup>
): found, 261.0894 [calcd for C
<sub>10</sub>
H
<sub>14</sub>
FN
<sub>2</sub>
O
<sub>5</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 261.0887]; Anal. Calcd for C
<sub>10</sub>
H
<sub>13</sub>
FN
<sub>2</sub>
O
<sub>5</sub>
: C, 46.16; H, 5.04; N, 10.77. Found: C, 46.24; H, 5.23; N, 10.78.</p>
</sec>
<sec id="sec4.1.21.3">
<title>1-((1
<italic>S</italic>
,3
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
)-2,2-Difluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidine-2,4(1
<italic>H</italic>
,3
<italic>H</italic>
)-dione (
<bold>2h</bold>
)</title>
<p>It was obtained in 52% yield as a white solid; mp 164–169 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −31.06 (
<italic>c</italic>
0.30, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.67 (dd,
<italic>J</italic>
= 2.3, 8.1 Hz, 1H) 5.71 (d,
<italic>J</italic>
= 8.0 Hz, 1H), 5.36 (dt,
<italic>J</italic>
= 10.3, 17.7 Hz, 1H), 4.41 (dd,
<italic>J</italic>
= 5.15, 10.7 Hz, 1H), 4.07 (m, 1H), 3.73–3.82 (m, 2H), 2.53 (m, 1H);
<sup>13</sup>
C NMR (150 MHz, CD
<sub>3</sub>
OD): δ 166.6, 154.1, 145.3 (d,
<italic>J</italic>
= 4.3 Hz), 126.8 (dd,
<italic>J</italic>
= 252.8, 258.5 Hz), 103.4, 72.5 (d,
<italic>J</italic>
= 7.9 Hz), 71.8 (d,
<italic>J</italic>
= 2.9 Hz), 64.4 (dd,
<italic>J</italic>
= 18.7, 25.1 Hz), 59.5 (d,
<italic>J</italic>
= 11.5 Hz), 56.3 (t,
<italic>J</italic>
= 20.1 Hz);
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −96.6 (d,
<italic>J</italic>
= 238.9 Hz), −116.9 (dt,
<italic>J</italic>
= 15.1, 238.5 Hz); UV (MeOH): λ
<sub>max</sub>
262.41 nm; HRMS (ESI
<sup>+</sup>
): found, 279.0801 [calcd for C
<sub>10</sub>
H
<sub>13</sub>
F
<sub>2</sub>
N
<sub>2</sub>
O
<sub>5</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 279.0793]; Anal. Calcd for C
<sub>10</sub>
H
<sub>12</sub>
F
<sub>2</sub>
N
<sub>2</sub>
O
<sub>5</sub>
: C, 43.17; H, 4.35; N, 10.07. Found: C, 43.34; H, 4.67; N, 9.94.</p>
</sec>
</sec>
<sec id="sec4.1.22">
<title>General Procedure for the Synthesis of
<bold>2i</bold>
and
<bold>2j</bold>
</title>
<sec id="sec4.1.22.1">
<title>Benzoylation</title>
<p>To a cooled (0 °C) solution of
<bold>2f</bold>
or
<bold>2h</bold>
(1 equiv) in CH
<sub>2</sub>
Cl
<sub>2</sub>
(0.07 M), benzoyl chloride (6 equiv) and pyridine (6.7 equiv) were added in a N
<sub>2</sub>
atmosphere. After being stirred for 15 h at room temperature, the reaction mixture was quenched with H
<sub>2</sub>
O and extracted with CH
<sub>2</sub>
Cl
<sub>2</sub>
. The organic layers were combined and washed with H
<sub>2</sub>
O followed by brine, dried over MgSO
<sub>4</sub>
, filtered, and evaporated. The residue was purified with column chromatography (silica gel, hexane/EtOAc, 1/1) to give the benzoylated intermediate.</p>
</sec>
<sec id="sec4.1.22.2">
<title>Introduction of Triazole</title>
<p>To a cooled (0 °C) suspension of 1,2,4-triazole (10 equiv) in anhydrous MeCN (0.6 M), phosphoryl chloride (10 equiv) was added dropwise in a N
<sub>2</sub>
atmosphere. After stirring, the benzoylated intermediate (1 equiv) in MeCN (0.14 M) followed by trimethylamine (10 equiv) were added to the reaction mixture. After additional stirring at room temperature for 15 h, the reaction mixture was evaporated. The reaction mixture was diluted with CH
<sub>2</sub>
Cl
<sub>2</sub>
and H
<sub>2</sub>
O. The layers were separated, and the organic layers were washed with H
<sub>2</sub>
O, dried over MgSO
<sub>4</sub>
, filtered, and evaporated.</p>
</sec>
<sec id="sec4.1.22.3">
<title>Amination</title>
<p>In the sealed glass tube, the above-generated intermediate in 1,4-dioxane (0.06 M) was added to excess saturated aqueous ammonia at room temperature. After being stirred at the same temperature for 2 h, the reaction mixture was evaporated and purified with flash chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 7/1) to give the benzoyl protected cytosine intermediate.</p>
</sec>
<sec id="sec4.1.22.4">
<title>Benzoyl Deprotection</title>
<p>In a sealed glass tube, the above-generated benzoyl-protected cytosine intermediate in MeOH (0.2 M) was added to saturated ammonia in MeOH (0.2 M). After being stirred at the same temperature for 2 d, the reaction mixture was evaporated and diluted with H
<sub>2</sub>
O and CH
<sub>2</sub>
Cl
<sub>2</sub>
. The layers were separated, and the H
<sub>2</sub>
O layers were washed with CH
<sub>2</sub>
Cl
<sub>2</sub>
10 times and evaporated to give
<bold>2i</bold>
and
<bold>2j</bold>
, respectively.</p>
</sec>
<sec id="sec4.1.22.5">
<title>4-Amino-1-((1
<italic>S</italic>
,2
<italic>R</italic>
,3
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
)-2-fluoro-4,5-dihydroxy-3-(hydroxymethyl)cyclopentyl)pyrimidin-2(1
<italic>H</italic>
)-one (
<bold>2i</bold>
)</title>
<p>It was obtained in 17% yield as a white solid; mp 230–233 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −84.26 (
<italic>c</italic>
0.20, MeOH);
<sup>1</sup>
H NMR (800 MHz, CD
<sub>3</sub>
OD): δ 7.67 (dd,
<italic>J</italic>
= 1.3, 7.5 Hz, 1H), 5.88 (d,
<italic>J</italic>
= 7.4 Hz, 1H), 5.23 (dt,
<italic>J</italic>
= 3.7, 55.4 Hz, 1H), 4.93 (ddd,
<italic>J</italic>
= 3.4, 10.3, 30.4 Hz, 1H), 4.44 (dd,
<italic>J</italic>
= 6.6, 10.3 Hz, 1H), 3.92 (dd,
<italic>J</italic>
= 4.5, 6.3 Hz, 1H), 3.71–3.78 (m, 2H), 2.31–2.40 (m, 1H);
<sup>13</sup>
C NMR (200 MHz, CDCl
<sub>3</sub>
): δ 168.3, 160.3, 145.7 (d,
<italic>J</italic>
= 3.1 Hz), 96.2, 93.0 (d,
<italic>J</italic>
= 179.9 Hz), 72.5, 71.8, 65.3 (d,
<italic>J</italic>
= 16.6 Hz), 60.7 (d,
<italic>J</italic>
= 11.3 Hz), 53.9 (d,
<italic>J</italic>
= 17.9 Hz);
<sup>19</sup>
F NMR (376 MHz, CD
<sub>3</sub>
OD): δ −209.4 (dt,
<italic>J</italic>
= 29.3, 53.4 Hz); UV (MeOH): λ
<sub>max</sub>
274.67 nm; HRMS (ESI
<sup>+</sup>
): found, 260.1041 [calcd for C
<sub>10</sub>
H
<sub>15</sub>
FN
<sub>3</sub>
O
<sub>4</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 260.1047]; Anal. Calcd for C
<sub>10</sub>
H
<sub>14</sub>
FN
<sub>3</sub>
O
<sub>4</sub>
: C, 46.33; H, 5.44; N, 16.21. Found: C, 46.71; H, 5.12; N, 15.99.</p>
</sec>
<sec id="sec4.1.22.6">
<title>4-Amino-1-((1
<italic>S</italic>
,3
<italic>R</italic>
,4
<italic>R</italic>
,5
<italic>S</italic>
)-2,2-difluoro-4,5-dihydroxy-3 (hydroxymethyl)cyclopentyl)pyrimidin-2(1
<italic>H</italic>
)-one (
<bold>2j</bold>
)</title>
<p>It was obtained in 20% yield as a white solid; mp 242–245 °C; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −39.85 (
<italic>c</italic>
0.30, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.62 (dd,
<italic>J</italic>
= 7.45, 2.35 Hz, 1H), 5.90 (d,
<italic>J</italic>
= 7.40 Hz, 1H), 5.51 (dt,
<italic>J</italic>
= 18.2, 10.0 Hz, 1H), 4.37 (dd,
<italic>J</italic>
= 10.6, 5.25 Hz, 1H), 4.06 (m, 1H), 3.73–3.83 (m, 2H), 2.54 (m, 1H);
<sup>13</sup>
C NMR (150 MHz, CD
<sub>3</sub>
OD): δ 168.2, 160.1, 145.7 (d,
<italic>J</italic>
= 3.6 Hz), 126.9 (dd,
<italic>J</italic>
= 252.1, 259.2 Hz), 96.8, 72.9 (d,
<italic>J</italic>
= 8.6 Hz), 71.7 (d,
<italic>J</italic>
= 3.6 Hz), 65.1 (dd,
<italic>J</italic>
= 18.7, 23.0 Hz), 59.6 (d,
<italic>J</italic>
= 10.8 Hz), 56.3 (t,
<italic>J</italic>
= 20.1 Hz);
<sup>19</sup>
F NMR (378 MHz, CD
<sub>3</sub>
OD): δ −97.4 (d,
<italic>J</italic>
= 235.9 Hz), −117.4 (dt,
<italic>J</italic>
= 14.7, 238.9 Hz); UV (MeOH): λ
<sub>max</sub>
272.27, 237.93 nm; HRMS (ESI
<sup>+</sup>
): found, 278.0954 [calcd for C
<sub>10</sub>
H
<sub>14</sub>
F
<sub>2</sub>
N
<sub>3</sub>
O
<sub>4</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 278.0952]; Anal. Calcd for C
<sub>10</sub>
H
<sub>13</sub>
F
<sub>2</sub>
N
<sub>3</sub>
O
<sub>4</sub>
: C, 43.32; H, 4.73; N, 15.16. Found: C, 43.56; H, 4.56; N, 15.44.</p>
</sec>
</sec>
<sec id="sec4.1.23">
<title>General Procedure for the Synthesis of
<bold>24</bold>
,
<bold>27a</bold>
and
<bold>27b</bold>
</title>
<p>To a cooled (0 °C) suspension of
<bold>2c</bold>
,
<bold>2f</bold>
, and
<bold>2h</bold>
(1 equiv) in acetone (0.005 M) were added 1–2 drops of cH
<sub>2</sub>
SO
<sub>4</sub>
in N
<sub>2</sub>
(g). After being stirred at room temperature for 4 h, the reaction mixture was neutralized with solid NaHCO
<sub>3</sub>
, filtered, and evaporated under reduced pressure. The residue was further purified by silica gel column chromatography to give
<bold>24</bold>
,
<bold>27a</bold>
, and
<bold>27b</bold>
, respectively.</p>
<sec id="sec4.1.23.1">
<title>((3a
<italic>R</italic>
,4
<italic>R</italic>
,6
<italic>S</italic>
,6a
<italic>S</italic>
)-6-(6-Amino-9
<italic>H</italic>
-purin-9-yl)-5,5-difluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)methanol (
<bold>24</bold>
)</title>
<p>It was obtained in 96% yield as a colorless syrup;
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.31 (s, 1H), 8.21 (s, 1H), 5.30–5.40 (m, 2H), 4.70 (br s, 1H), 3.94 (dd,
<italic>J</italic>
= 6.8, 11.4 Hz, 1H), 3.86 (dd,
<italic>J</italic>
= 6.8, 11.4 Hz, 1H), 2.81–2.90 (m, 1H), 1.58 (s, 3H), 1.35 (s, 3H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 163.5 (dd,
<italic>J</italic>
= 33.1, 69.2 Hz), 156.5, 152.2, 152.0, 143.4, 128.0 (dd,
<italic>J</italic>
= 251.7, 263.6 Hz), 116.0, 80.7 (d,
<italic>J</italic>
= 7.3 Hz), 79.6 (d,
<italic>J</italic>
= 8.3 Hz), 66.1 (dd,
<italic>J</italic>
= 19.2, 22.8 Hz), 59.2 (d,
<italic>J</italic>
= 8.0 Hz), 53.8 (t,
<italic>J</italic>
= 19.4 Hz), 28.2, 25.9; HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 342.1370 [calcd for C
<sub>14</sub>
H
<sub>18</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>3</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 342.1372]; Anal. Calcd for C
<sub>14</sub>
H
<sub>17</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>3</sub>
: C, 49.27; H, 5.02; N, 20.52. Found: C, 49.28; H, 4.98; N, 20.91.</p>
</sec>
<sec id="sec4.1.23.2">
<title>1-((3a
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-5-Fluoro-6-(hydroxymethyl)-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)pyrimidine-2,4(1
<italic>H</italic>
,3
<italic>H</italic>
)-dione (
<bold>27a</bold>
)</title>
<p>It was obtained in 98% yield as a colorless syrup;
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.75 (dd,
<italic>J</italic>
= 1.4, 8.1 Hz, 1H), 5.70 (d,
<italic>J</italic>
= 8.1 Hz, 1H), 5.20 (dt,
<italic>J</italic>
= 3.1, 54.1 Hz, 1H), 5.01–5.13 (m, 2H), 4.58 (d,
<italic>J</italic>
= 6.3 Hz, 1H), 3.73–3.83 (m, 2H), 2.42–2.56 (m, 1H), 1.50 (s, 3H), 1.32 (s, 3H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 166.7, 153.7, 145.3 (d,
<italic>J</italic>
= 5.9 Hz), 116.5, 103.2, 99.2 (d,
<italic>J</italic>
= 180.2 Hz), 82.2, 82.0, 65.0 (d,
<italic>J</italic>
= 15.7 Hz), 60.3 (d,
<italic>J</italic>
= 8.7 Hz), 53.2 (d,
<italic>J</italic>
= 17.7 Hz), 28.4, 25.9; HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 301.1185 [calcd for C
<sub>13</sub>
H
<sub>18</sub>
FN
<sub>2</sub>
O
<sub>5</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 301.1194]; Anal. Calcd for C
<sub>13</sub>
H
<sub>17</sub>
FN
<sub>2</sub>
O
<sub>5</sub>
: C, 52.00; H, 5.71; N, 9.33. Found: C, 52.15; H, 5.47; N, 9.15.</p>
</sec>
<sec id="sec4.1.23.3">
<title>1-((3a
<italic>S</italic>
,4
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-5,5-Difluoro-6-(hydroxymethyl)-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)pyrimidine-2,4(1
<italic>H</italic>
,3
<italic>H</italic>
)-dione (
<bold>27b</bold>
)</title>
<p>It was obtained in 97% yield;
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.71 (dd,
<italic>J</italic>
= 2.0, 8.1 Hz, 1H), 5.73 (d,
<italic>J</italic>
= 8.1 Hz, 1H), 5.33 (dt,
<italic>J</italic>
= 6.8, 21.3 Hz, 1H), 4.94 (d,
<italic>J</italic>
= 6.8 Hz, 1H), 4.57–4.63 (m, 1H), 3.88 (dd,
<italic>J</italic>
= 6.7, 11.4 Hz, 1H), 3.81 (dd,
<italic>J</italic>
= 6.7, 11.4 Hz, 1H), 2.68–2.79 (m, 1H), 1.54 (s, 3H), 1.34 (s, 3H); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 319.1104 [calcd for C
<sub>13</sub>
H
<sub>17</sub>
F
<sub>2</sub>
N
<sub>2</sub>
O
<sub>5</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 319.1100]; Anal. Calcd for C
<sub>13</sub>
H
<sub>16</sub>
F
<sub>2</sub>
N
<sub>2</sub>
O
<sub>5</sub>
: C, 49.06; H, 5.07; N, 8.80. Found: C, 49.43; H, 5.47; N, 8.43.</p>
</sec>
</sec>
<sec id="sec4.1.24">
<title>Synthesis of
<italic>tert</italic>
-Butyl-(9-((3a
<italic>S</italic>
,4
<italic>S</italic>
,6
<italic>R</italic>
,6a
<italic>R</italic>
)-5,5-difluoro-6-(hydroxymethyl)-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)-9
<italic>H</italic>
-purin-6-yl)carbamate (
<bold>25a</bold>
) and Its
<italic>N</italic>
<sup>6</sup>
-Di-Boc derivative (
<bold>25b</bold>
)</title>
<p>To a suspension of
<bold>24</bold>
(20 mg, 0.058 mmol) and 4-dimethylaminopyridine (1 mg, 0.0058 mmol) in hexamethyldisilazane (3 mL), trimethylsilyl trifluoromethanesulfonate (TMSOTf; 5 μL) was added dropwise at room temperature in a N
<sub>2</sub>
atmosphere (g). After being heated to 75 °C with stirring for 2 h, the reaction mixture was evaporated, and anhydrous THF (7 mL) was added. To a cooled (0 °C) reaction mixture, di-
<italic>t</italic>
-butyl dicarbonate (63 mg, 0.29 mmol) was added. After stirring for 4 h at room temperature, the reaction mixture was evaporated, and the residue was added to MeOH/trimethylamine (6 mL, 5:1 (v/v)). After heating to 55 °C with stirring for 16 h, the reaction mixture was evaporated, and the residue was purified with column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 50/1) to give
<bold>25a</bold>
(13 mg, 52%) and
<bold>25b</bold>
(8 mg, 25%) as a colorless syrup.</p>
<sec id="sec4.1.24.1">
<title>Compound
<bold>25a</bold>
</title>
<p>
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.59 (s, 1H), 8.49 (s, 1H), 5.36–5.50 (m, 2H), 4.72 (d,
<italic>J</italic>
= 5.6 Hz, 1H), 3.95 (dd,
<italic>J</italic>
= 6.8, 11.4 Hz, 1H), 3.87 (dd,
<italic>J</italic>
= 6.8, 11.4 Hz, 1H), 2.83–2.95 (m, 1H), 1.57 (s, 12H), 1.34 (s, 3H); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 442.1899 [calcd for C
<sub>19</sub>
H
<sub>26</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>5</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 442.1897].</p>
</sec>
<sec id="sec4.1.24.2">
<title>Compound
<bold>25b</bold>
</title>
<p>
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.87 (s, 1H), 8.73 (d,
<italic>J</italic>
= 1.8 Hz, 1H), 5.46–5.57 (m, 2H), 4.75 (d,
<italic>J</italic>
= 5.4 Hz, 1H), 3.95 (dd,
<italic>J</italic>
= 6.8, 11.4 Hz, 1H), 3.88 (dd,
<italic>J</italic>
= 6.8, 11.4 Hz, 1H), 2.84–2.95 (m, 1H), 1.59 (s, 3H), 1.37 (s, 21H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 156.2, 154.2, 152.2, 152.1 (2 × C(O)-Boc protection group), 147.8 (d,
<italic>J</italic>
= 2.4 Hz), 130.6, 128.1 (dd,
<italic>J</italic>
= 251.8, 263.3 Hz), 116.0, 86.1, 80.4 (d,
<italic>J</italic>
= 7.4 Hz), 79.7 (d,
<italic>J</italic>
= 8.2 Hz), 72.7, 66.5 (dd,
<italic>J</italic>
= 19.1, 23.1 Hz), 59.2 (d,
<italic>J</italic>
= 8.0 Hz), 53.8 (t,
<italic>J</italic>
= 19.2 Hz), 28.7 (6 × CH
<sub>3</sub>
-
<italic>tert</italic>
-butyl), 28.3, 25.9; HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 542.2411 [calcd for C
<sub>24</sub>
H
<sub>34</sub>
F
<sub>2</sub>
N
<sub>5</sub>
O
<sub>7</sub>
<sup>+</sup>
(M + H)
<sup>+</sup>
, 542.2421].</p>
</sec>
</sec>
<sec id="sec4.1.25">
<title>Iso-propyl ((
<italic>S</italic>
)-(((3a
<italic>R</italic>
,4
<italic>R</italic>
,6
<italic>S</italic>
,6a
<italic>S</italic>
)-6-(6-((
<italic>tert</italic>
-Butoxycarbonyl)amino)-9
<italic>H</italic>
-purin-9-yl)-5,5-difluoro-2,2-dimethyltetrahydro-4
<italic>H</italic>
-cyclopenta[
<italic>d</italic>
][1,3]dioxol-4-yl)methoxy)(phenoxy)phosphoryl)-
<sc>l</sc>
-alaninate (
<bold>26</bold>
)</title>
<p>To a stirred suspension of
<bold>25a</bold>
(16 mg, 0.036 mmol),
<bold>25b</bold>
(7 mg, 0.012 mmol), and powdered molecular sieves (4 Å, 62 mg) in anhydrous THF (20 mL),
<italic>tert</italic>
-butylmagnesium chloride solution (0.26 mL, 1.0 M in THF, 0.26 mmol) was added at 0 °C in a nitrogen atmosphere. After 10 min, a solution of pentafluorophosphoramidate reagent
<bold>A</bold>
(47 mg, 0.10 mmol) in THF (12 mL) was slowly added, and the reaction mixture was stirred at room temperature for 36 h. Then, it was quenched by the dropwise addition of methanol (10 mL), filtered, and evaporated. The residue was purified by column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 9/1) to give the phosphoramidate
<bold>26</bold>
as a colorless liquid (12 mg, 33%):
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 8.59 (s, 1H), 8.45 (s, 1H), 7.37 (d,
<italic>J</italic>
= 7.8 Hz, 2H), 7.25 (d,
<italic>J</italic>
= 8.1 Hz, 2H), 7.19 (d,
<italic>J</italic>
= 7.5 Hz, 1H), 5.50 (dt,
<italic>J</italic>
= 5.9, 22.3 Hz, 1H), 5.40–5.45 (m, 1H), 4.92–4.99 (m, 1H), 4.73–4.80 (m, 1H), 4.36–4.50 (m, 2H), 3.86–3.98 (m, 1H), 3.07–3.19 (m, 1H), 1.58 (s, 12H), 1.34 (s, 6H), 1.21 (d,
<italic>J</italic>
= 6.2 Hz, 3H), 1.17 (d,
<italic>J</italic>
= 6.2 Hz, 3H); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 711.2716 [calcd for C
<sub>31</sub>
H
<sub>42</sub>
F
<sub>2</sub>
N
<sub>6</sub>
O
<sub>9</sub>
P
<sup>+</sup>
(M + H)
<sup>+</sup>
, 711.2713].</p>
</sec>
<sec id="sec4.1.26">
<title>Iso-propyl ((
<italic>S</italic>
)-(((1
<italic>R</italic>
,3
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
)-3-(6-Amino-9
<italic>H</italic>
-purin-9-yl)-2,2-difluoro-4,5-dihydroxycyclopentyl)methoxy)(phenoxy)phosphoryl)-
<sc>l</sc>
-alaninate (
<bold>3a</bold>
)</title>
<p>A solution of
<bold>26</bold>
(15 mg, 0.021 mmol) in 10 mL of formic acid/H
<sub>2</sub>
O (1:1, v/v) was stirred at room temperature for 8 h. After evaporation, the crude product was purified by column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 6/1) to give
<bold>3a</bold>
(9.9 mg, 82%) as a colorless solid: mp 95–100 °C; UV (MeOH): λ
<sub>max</sub>
259.6 nm; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −38.06 (
<italic>c</italic>
0.1, MeOH);
<sup>1</sup>
H NMR (400 MHz, CD
<sub>3</sub>
OD): δ 8.18 (s, 1H), 8.17 (d,
<italic>J</italic>
= 1.6 Hz, 1H), 7.35 (d,
<italic>J</italic>
= 8.4 Hz, 2H), 7.23 (d,
<italic>J</italic>
= 8.6 Hz, 2H), 7.18 (d,
<italic>J</italic>
= 8.0 Hz, 1H), 5.26–5.38 (m, 1H), 4.81–4.98 (m, merged with H
<sub>2</sub>
O peak, 1H), 4.74 (dd,
<italic>J</italic>
= 4.8, 10.0 Hz, 1H), 4.29–4.43 (m, 2H), 7.17 (br s, 1H), 3.82–3.93 (m, 1H), 2.79–2.94 (m, 1H), 1.32 (d,
<italic>J</italic>
= 6.8 Hz, 3H), 1.19 (d,
<italic>J</italic>
= 6.2 Hz, 3H), 1.14 (d,
<italic>J</italic>
= 6.2 Hz, 3H);
<sup>13</sup>
C NMR (150 MHz, CD
<sub>3</sub>
OD): δ 175.2 (d,
<italic>J</italic>
= 5.7 Hz), 158.1, 154.7, 153.0, 152.9, 152.6, 142.6, 131.6 (2 × CH-phenyl), 127.0, 124.4 (dd,
<italic>J</italic>
= 253.5, 260.6 Hz), 122.2 (d,
<italic>J</italic>
= 4.3 Hz), 120.6 (2 × CH-phenyl), 73.3 (d,
<italic>J</italic>
= 7.1 Hz), 71.2 (d,
<italic>J</italic>
= 5.0 Hz), 70.9, 64.6, 64.1 (dd,
<italic>J</italic>
= 5.0, 10.7 Hz), 52.4, 22.6 (d,
<italic>J</italic>
= 2.9 Hz, 2 × CH
<sub>3</sub>
), 21.2 (d,
<italic>J</italic>
= 6.5 Hz);
<sup>19</sup>
F NMR (376 MHz, CD
<sub>3</sub>
OD): δ −98.71 (d,
<italic>J</italic>
= 238.4 Hz), −115.13 (dt,
<italic>J</italic>
= 14.9, 236.4 Hz); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 571.1889 [calcd for C
<sub>23</sub>
H
<sub>30</sub>
F
<sub>2</sub>
N
<sub>6</sub>
O
<sub>7</sub>
P
<sup>+</sup>
(M + H)
<sup>+</sup>
, 571.1876]; Anal. Calcd for C
<sub>23</sub>
H
<sub>29</sub>
F
<sub>2</sub>
N
<sub>6</sub>
O
<sub>7</sub>
P: C, 48.42; H, 5.12; N, 14.73. Found: C, 48.74; H, 4.98; N, 14.54.</p>
</sec>
<sec id="sec4.1.27">
<title>Iso-propyl ((
<italic>S</italic>
)-(((1
<italic>R</italic>
,2
<italic>R</italic>
,3
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
)-3-(2,4-Dioxo-3,4-dihydropyrimidin-1(2
<italic>H</italic>
)-yl)-2-fluoro-4,5-dihydroxycyclopentyl)methoxy)(phenoxy)phosphoryl)-
<sc>l</sc>
-alaninate (
<bold>3b</bold>
)</title>
<sec id="sec4.1.27.1">
<title>Introduction of Phosphoramidate</title>
<p>To a cooled (0 °C) suspension of
<bold>27a</bold>
(21 mg, 0.069 mmol) and molecular sieves (4 Å, 35 mg) in anhydrous THF (15 mL, 0.005 M),
<italic>tert</italic>
-butylmagnesium chloride solution (0.34 mL, 1.0 M in THF, 0.34 mmol) was added dropwise in a N
<sub>2</sub>
atmosphere (g). After being stirred for 5 min, a solution of the phosphoramidate reagent
<bold>A</bold>
(31 mg, 0.069 mmol) in anhydrous THF (7 mL) was added dropwise, and the reaction mixture was stirred at room temperature for 36 h, quenched with MeOH (5 mL), filtered, and evaporated, and the residue was purified by column chromatograph (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 24/1) to give phosphoramidate as a colorless liquid (13 mg, 33%):
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.73 (dd,
<italic>J</italic>
= 1.3, 8.1 Hz, 1H), 7.36 (d,
<italic>J</italic>
= 7.8 Hz, 2H), 7.24 (d,
<italic>J</italic>
= 7.8 Hz, 2H), 7.19 (d,
<italic>J</italic>
= 7.4 Hz, 1H), 5.70 (d,
<italic>J</italic>
= 8.1 Hz, 1H), 5.02–5.22 (m, 3H), 4.93–5.01 (m, 1H), 4.66 (d,
<italic>J</italic>
= 6.3 Hz, 1H), 4.29 (d,
<italic>J</italic>
= 7.6 Hz, 2H), 3.87–3.95 (m, 1H), 2.62–2.73 (m, 1H), 1.51 (s, 3H), 1.34 (d,
<italic>J</italic>
= 7.7 Hz, 3H), 1.32 (s, 3H), 1.22 (d,
<italic>J</italic>
= 6.2 Hz, 6H); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 570.2003 [calcd for C
<sub>25</sub>
H
<sub>34</sub>
FN
<sub>3</sub>
O
<sub>9</sub>
P
<sup>+</sup>
(M + H)
<sup>+</sup>
, 570.2011].</p>
</sec>
<sec id="sec4.1.27.2">
<title>Hydrolysis</title>
<p>A solution of phosphoramidate (13 mg, 0.022 mmol) in a formic acid/H
<sub>2</sub>
O solution (1:1, v/v, 7 mL total) was stirred at room temperature for 8 h. The reaction mixture was evaporated and the residue was purified by column chromatography (silica gel, CH
<sub>2</sub>
Cl
<sub>2</sub>
/MeOH, 7/1) to give the phosphoramidate prodrug
<bold>3b</bold>
(10.8 mg, 90%) as a white solid: mp 107–110 °C; UV (MeOH): λ
<sub>max</sub>
262.8 nm; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −59.40 (
<italic>c</italic>
0.1, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.64 (d,
<italic>J</italic>
= 8.1 Hz, 1H), 7.36 (d,
<italic>J</italic>
= 7.9 Hz, 2H), 7.23 (d,
<italic>J</italic>
= 7.9 Hz, 2H), 7.19 (d,
<italic>J</italic>
= 7.4 Hz, 1H), 5.68 (d,
<italic>J</italic>
= 8.1 Hz, 1H), 5.04 (dt,
<italic>J</italic>
= 4.1, 55.4 Hz, 1H), 4.87–4.98 (m, merged with H
<sub>2</sub>
O peak, 2H), 4.45 (dd,
<italic>J</italic>
= 6.6, 9.7 Hz, 1H), 4.26 (d,
<italic>J</italic>
= 7.1 Hz, 2H), 3.99 (d,
<italic>J</italic>
= 5.4 Hz, 1H), 3.85–3.93 (m, 1H), 2.49–2.60 (m, 1H), 1.33 (d,
<italic>J</italic>
= 7.0 Hz, 3H), 1.21 (d,
<italic>J</italic>
= 6.1 Hz, 6H);
<sup>13</sup>
C NMR (125 MHz, CD
<sub>3</sub>
OD): δ 175.2, 166.9, 154.0, 151.1, 145.4, 131.5 (2 × CH-phenyl), 126.9 (2 × CH-phenyl), 122.2 (d,
<italic>J</italic>
= 4.6 Hz), 102.8, 93.3 (d,
<italic>J</italic>
= 184.5 Hz), 80.3, 79.9 (d,
<italic>J</italic>
= 32.5 Hz), 72.3, 71.2, 70.9, 64.2 (d,
<italic>J</italic>
= 16.0 Hz), 52.4, 22.7 (d,
<italic>J</italic>
= 9.2 Hz, 2 × CH
<sub>3</sub>
), 21.2 (d,
<italic>J</italic>
= 6.8 Hz);
<sup>19</sup>
F NMR (376 MHz, CD
<sub>3</sub>
OD): δ −208.27 (dt,
<italic>J</italic>
= 29.7, 59.4 Hz); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 530.1685 [calcd for C
<sub>22</sub>
H
<sub>30</sub>
FN
<sub>3</sub>
O
<sub>9</sub>
P
<sup>+</sup>
(M + H)
<sup>+</sup>
, 530.1698]; Anal. Calcd for C
<sub>22</sub>
H
<sub>29</sub>
FN
<sub>3</sub>
O
<sub>9</sub>
P: C, 49.91; H, 5.52; N, 7.94. Found: C, 50.03; H, 5.32; N, 7.54.</p>
</sec>
</sec>
<sec id="sec4.1.28">
<title>Iso-propyl ((
<italic>S</italic>
)-(((1
<italic>R</italic>
,3
<italic>S</italic>
,4
<italic>S</italic>
,5
<italic>R</italic>
)-3-(2,4-Dioxo-3,4-dihydropyrimidin-1(2
<italic>H</italic>
)-yl)-2,2-difluoro-4,5-dihydroxycyclopentyl)methoxy)(phenoxy)phosphoryl)-
<sc>l</sc>
-alaninate (
<bold>3c</bold>
)</title>
<p>Compound
<bold>3c</bold>
was synthesized according the same procedure used in the preparation of
<bold>3b</bold>
: yield = 30%; white solid; mp 174 °C (decomp); UV (MeOH): λ
<sub>max</sub>
262.8 nm; [α]
<sub>D</sub>
<sup arrange="stack">25</sup>
= −19.40 (
<italic>c</italic>
0.1, MeOH);
<sup>1</sup>
H NMR (500 MHz, CD
<sub>3</sub>
OD): δ 7.53 (dd,
<italic>J</italic>
= 2.1, 8.1 Hz, 1H), 7.36 (d,
<italic>J</italic>
= 7.8 Hz, 2H), 7.25 (d,
<italic>J</italic>
= 7.8 Hz, 2H), 7.20 (d,
<italic>J</italic>
= 7.6 Hz, 1H), 5.70 (d,
<italic>J</italic>
= 8.1 Hz, 1H), 5.29–5.39 (m, 1H), 4.93–5.02 (m, 1H), 4.30–4.39 (m, 2H), 4.23–4.29 (m, 1H), 4.08 (br s, 1H), 3.84–3.92 (m, 1H), 2.69–2.80 (m, 1H), 1.33 (d,
<italic>J</italic>
= 7.1 Hz, 3H), 1.22 (d,
<italic>J</italic>
= 6.2 Hz, 6H);
<sup>19</sup>
F NMR (376 MHz, CD
<sub>3</sub>
OD): δ −98.47 (d,
<italic>J</italic>
= 237.2 Hz), −116.91 (dt,
<italic>J</italic>
= 17.6, 237.2 Hz); HRMS (ESI
<sup>+</sup>
) (
<italic>m</italic>
/
<italic>z</italic>
): found, 548.1619 [calcd for C
<sub>22</sub>
H
<sub>29</sub>
F
<sub>2</sub>
N
<sub>3</sub>
O
<sub>9</sub>
P
<sup>+</sup>
(M + H)
<sup>+</sup>
, 548.1604]; Anal. Calcd for C
<sub>22</sub>
H
<sub>28</sub>
F
<sub>2</sub>
N
<sub>3</sub>
O
<sub>9</sub>
P: C, 48.27; H, 5.16; N, 7.68. Found: C, 48.12; H, 4.98; 8.01.</p>
</sec>
</sec>
<sec id="sec4.2">
<title>SAH Hydrolase Assay
<sup>
<xref ref-type="bibr" rid="cit18e">18e</xref>
<xref ref-type="bibr" rid="cit18g">18g</xref>
,
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
</title>
<p>The gene encoding human placental SAH hydrolase was cloned into expression plasmid pPROKcd20. Recombinant SAH hydrolase protein was produced in
<italic>E. coli</italic>
JM109 in 50 mM Tris-HCl (pH 7.5) containing 2 mM ethylenediaminetetraacetic acid and was purified by DEAE-cellulose column (2.8 cm × 6 cm), ammonium sulfate fractionation (35–60%), Sephacryl S-300HR (1.0 cm × 105 cm), and DEAE cellulose (2.8 cm × 24 cm). The protein homogeneity was confirmed by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis. The protein concentration was determined by using the Bradford method. Bovine serum albumin was a standard material for protein assay. Enzyme activity was determined in reaction mixtures (250 μL) that contain 50 mM sodium phosphate (pH 8.0), 2 μM SAH hydrolase (0.5 μM tetrameric form), and varying concentrations of compounds. The reaction mixtures were first preincubated with the compounds for 10 min at 37 °C, after which the reaction was initiated by adding 100 μM SAH. The reaction was allowed to proceed for 20 min, followed by the addition of 5,5′-dithiobis-2-nitrobenzoate (DNTB) to a final concentration of 200 μM. The absorbance of the product 5-thio-2-nitrobenzoic acid (TNB) was measured at 412 nm using a spectrophotometer (Varian, Cary 100). The molar extinction coefficient for TNB (ε
<sub>412</sub>
= 13 700 M
<sup>–1</sup>
cm
<sup>–1</sup>
) was used in calculations to quantify TNB formation.</p>
</sec>
<sec id="sec4.3">
<title>Cells, Viruses, and Compounds</title>
<p>Vero E6 and Vero CCL81 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Lonza), supplemented with 8% fetal calf serum (FCS; PAA), 2 mM
<sc>l</sc>
-glutamine, 100 IU/mL of penicillin and 100 μg/mL of streptomycin, and were grown at 37 °C in a humidified incubator with 5% CO
<sub>2</sub>
. Vero cells were maintained in Eagle’s minimum essential medium (EMEM; Lonza), supplemented with 8% FCS (FCS; PAA), 100 IU/mL of penicillin and 100 μg/mL of streptomycin, and were grown at 37 °C in a humidified incubator with 5% CO
<sub>2</sub>
. Infections were performed in EMEM with 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Lonza) supplemented with 2% FCS,
<sc>l</sc>
-glutamine, and antibiotics. Infectious clone-derived CHIKV(CHIKV-LS3) was generated as described by Scholte et al.
<sup>
<xref ref-type="bibr" rid="ref31">31</xref>
</sup>
The ZIKV strain SL0612 was isolated from an infected traveler returning from Suriname as described by van Boheemen et al.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
</sup>
The Sindbis virus (SINV) strain HR and Semliki forest virus (SFV) strain SFV4 are part of the LUMC virus collection. The MERS-CoV strain EMC/2012 was isolated from patient material in the Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia, and was obtained from Erasmus Medical Center, Rotterdam.
<sup>
<xref ref-type="bibr" rid="ref33">33</xref>
</sup>
The SARS-CoV strain Frankfurt 1 was provided by H. F. Rabenau and H. W. Doerr (Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany).
<sup>
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
The compounds were dissolved in dimethylsulfoxide to obtain 20 mM stock solutions. All work with infectious CHIKV, MERS-CoV, SARS-CoV, and ZIKV was performed inside biosafety cabinets in the BSL-3 facilities of the Leiden University Medical Center.</p>
</sec>
<sec id="sec4.4">
<title>Antiviral CPE-Reduction Assays</title>
<p>VeroE6 cells were seeded at a density of 5000 cells/well (CHIKV) and 10 000 cells/well (SARS-CoV, SFV and SINV) in a total volume of 100 μL per well in 96-well plates. Vero cells were seeded at a density of 20 000 cells/well when used for MERS-CoV infections, and Vero CCL81 cells were seeded at a density of 5000 cells/well for ZIKA infections under the same conditions as described for Vero E6. The following day, compound dilutions with concentrations of 150, 50, 16.7, and 5.6 μM were prepared in the infection medium by 3-fold serial dilution of the 150 μM solution. After replacing the culture medium with the respective dilutions of the compound, the cells were infected with CHIKV (MOI 0.005), SFV (MOI 0.025), SINV (MOI 0.025), ZIKV (MOI 0.05), MERS-CoV (MOI 0.005), or SARS-CoV (MOI 0.01). Viability assays were conducted in parallel. Each compound was tested at each concentration in quadruplicate (4 biological replicates per concentration). An MTS colorimetric assay was conducted 40 hpi for SFV, 76 hpi for SINV, 72 h hpi for MERS- and SARS-CoV, and 96 hpi for CHIKV and ZIKV by adding 20 μL/well of the CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS) reagent (Promega). The assay was stopped after 2–2.5 h by fixing the cells with 37% formaldehyde. The absorbance was measured at 495 nm in a Berthold Mithras LB 940 plate reader, and the values were expressed relative to uninfected (infection) or untreated (viability) samples. The results represent the average of quadruplicate samples expressed as the mean ± SD. Compounds that were found to be protective were further evaluated in CPE reduction assays by testing 8 different concentrations to determine the EC
<sub>50</sub>
as previously described.
<sup>
<xref ref-type="bibr" rid="ref31">31</xref>
,
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
The cytotoxicity (CC
<sub>50</sub>
) of the compounds was determined in parallel, and all experiments were performed in quadruplicate. Graph-Pad Prism 8.0.1 was used for EC
<sub>50</sub>
and CC
<sub>50</sub>
determination by nonlinear regression.</p>
</sec>
<sec id="sec4.5">
<title>Viral Load Reduction Assays</title>
<p>VeroE6 (CHIKV, ZIKV) cells were seeded at a density of 7.5 × 10
<sup>4</sup>
cells/well in 0.5 mL DMEM/8%FCS in 24-well cell culture plates and allowed to adhere overnight. For MERS-CoV and SARS-CoV, a cell density of or 6.0 × 10
<sup>4</sup>
cells/well of Vero E6 and Vero cells was used, respectively, under the same conditions as described above. The next day, compound dilutions (0–1.5 μM) were prepared in EMEM/2%FCS to which virus was added to yield inocula for infecting the cells with an MOI of 0.1 for CHIKV, MOI of 1 for ZIKV, and MOI of 0.01 for SARS- and MERS-CoV. Cells were incubated at 37 °C with 250 μL/well of the inoculum for 1 h (CHIKV and SARS- and MERS-CoV) or 2 h (ZIKV). After the infection, the cells were washed twice with 1 mL/well warm phosphate-buffered saline and 0.5 mL/well fresh EMEM/2%FCS with different concentrations of compound
<bold>2c</bold>
(0–1.5 μM) was added. The cells were incubated for 30 h (CHIKV) or 48 h (ZIKV, SARS- and MERS-CoV) at 37 °C, after which supernatants were harvested and stored at −80 °C for determination of the infectious virus titer by plaque assay. Viability assays were conducted in parallel as described in the previous paragraph. Plaque assays with CHIKV and SARS-CoV on VeroE6 cells, MERS-CoV on Vero cells, and ZIKV on Vero CCL81 cells were performed as described previously.
<sup>
<xref ref-type="bibr" rid="ref31">31</xref>
,
<xref ref-type="bibr" rid="cit34a">34a</xref>
,
<xref ref-type="bibr" rid="ref35">35</xref>
</sup>
Compound
<bold>2c</bold>
was tested at each concentration in duplicate in two independent experiments (
<italic>n</italic>
= 4). Graph-Pad Prism 8.0.1 was used for statistical analysis with a one-way ANOVA multiple comparison test.</p>
</sec>
</sec>
</body>
<back>
<notes id="notes1" notes-type="si">
<title>Supporting Information Available</title>
<p>The Supporting Information is available free of charge on the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org">ACS Publications website</ext-link>
at DOI:
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00781">10.1021/acs.jmedchem.9b00781</ext-link>
.
<list id="silist" list-type="simple">
<list-item>
<p>
<sup>1</sup>
H and
<sup>13</sup>
C NMR copies of all final compounds
<bold>2a–j</bold>
and
<bold>3a–c</bold>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00781/suppl_file/jm9b00781_si_001.pdf">PDF</ext-link>
)</p>
</list-item>
<list-item>
<p>Crystallographic data for
<bold>2c</bold>
,
<bold>2g</bold>
, and
<bold>2h</bold>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00781/suppl_file/jm9b00781_si_002.zip">ZIP</ext-link>
)</p>
</list-item>
<list-item>
<p>Molecular formula strings (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.jmedchem.9b00781/suppl_file/jm9b00781_si_003.csv">CSV</ext-link>
)</p>
</list-item>
</list>
</p>
</notes>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="sifile1">
<media xlink:href="jm9b00781_si_001.pdf">
<caption>
<p>jm9b00781_si_001.pdf</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="sifile2">
<media xlink:href="jm9b00781_si_002.zip">
<caption>
<p>jm9b00781_si_002.zip</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="sifile3">
<media xlink:href="jm9b00781_si_003.csv">
<caption>
<p>jm9b00781_si_003.csv</p>
</caption>
</media>
</supplementary-material>
</sec>
<notes notes-type="" id="notes2">
<title>Author Contributions</title>
<p>J.-s.Y. and G.K. contributed equally to this work. All authors have contributed to the manuscript and given approval to the final version of the manuscript.</p>
</notes>
<notes notes-type="COI-statement" id="NOTES-d7e9107-autogenerated">
<p>The authors declare no competing financial interest.</p>
</notes>
<ack>
<title>Acknowledgments</title>
<p>This research was supported by grants from Mid-career Research Program (2016R1A2B3010164) and the Ministry of Science, ICT & Future Planning (2017M3A9A8032086) of the National Research Foundation (NRF), Korea. The work in Leiden (N.S.O. and K.K.) was supported by the EU Marie Skłodowska-Curie ETN “ANTIVIRALS” (grant agreement no. 642434).</p>
</ack>
<glossary id="dl1">
<def-list>
<title>Abbreviations</title>
<def-item>
<term>RdRp</term>
<def>
<p>RNA-dependent RNA polymerase</p>
</def>
</def-item>
<def-item>
<term>SAH</term>
<def>
<p>
<italic>S</italic>
-adenosyl-
<sc>l</sc>
-homocysteine</p>
</def>
</def-item>
<def-item>
<term>SARS-CoV</term>
<def>
<p>severe acute respiratory syndrome coronavirus</p>
</def>
</def-item>
<def-item>
<term>CHIKV</term>
<def>
<p>chikungunya virus</p>
</def>
</def-item>
<def-item>
<term>ZIKV</term>
<def>
<p>Zika virus</p>
</def>
</def-item>
<def-item>
<term>nsps</term>
<def>
<p>nonstructural proteins</p>
</def>
</def-item>
<def-item>
<term>MTase</term>
<def>
<p>methyltransferase</p>
</def>
</def-item>
<def-item>
<term>NTP</term>
<def>
<p>nucleoside triphosphate</p>
</def>
</def-item>
<def-item>
<term>SAM</term>
<def>
<p>
<italic>S</italic>
-adenosyl-
<sc>l</sc>
-methionine</p>
</def>
</def-item>
<def-item>
<term>AK</term>
<def>
<p>adenosine kinase</p>
</def>
</def-item>
<def-item>
<term>LiHMDS</term>
<def>
<p>lithium hexamethyldisilazide</p>
</def>
</def-item>
<def-item>
<term>TESCl</term>
<def>
<p>triethylsilyl chloride</p>
</def>
</def-item>
<def-item>
<term>NFSI</term>
<def>
<p>
<italic>N</italic>
-fluorobenzenesulfonimide</p>
</def>
</def-item>
<def-item>
<term>NFOBS</term>
<def>
<p>
<italic>N</italic>
-fluoro-
<italic>O</italic>
-benzenedisulfonimide</p>
</def>
</def-item>
<def-item>
<term>NaBH
<sub>4</sub>
</term>
<def>
<p>sodium borohydride</p>
</def>
</def-item>
<def-item>
<term>LiBH
<sub>4</sub>
</term>
<def>
<p>lithium borohydride</p>
</def>
</def-item>
<def-item>
<term>NMO</term>
<def>
<p>
<italic>N</italic>
-methylmorpholine-
<italic>N</italic>
-oxide</p>
</def>
</def-item>
<def-item>
<term>TBS</term>
<def>
<p>
<italic>t</italic>
-butyldimethylsilyl</p>
</def>
</def-item>
<def-item>
<term>TBAF</term>
<def>
<p>tetra-
<italic>n</italic>
-butylammonium fluoride</p>
</def>
</def-item>
<def-item>
<term>DAST</term>
<def>
<p>
<italic>N</italic>
,
<italic>N</italic>
-diethylaminosulfur trifluoride</p>
</def>
</def-item>
<def-item>
<term>AlMe
<sub>3</sub>
</term>
<def>
<p>trimethylaluminum</p>
</def>
</def-item>
<def-item>
<term>SOCl
<sub>2</sub>
</term>
<def>
<p>thionyl chloride</p>
</def>
</def-item>
<def-item>
<term>DIPEA</term>
<def>
<p>
<italic>N</italic>
,
<italic>N</italic>
-diisopropylethylamine</p>
</def>
</def-item>
<def-item>
<term>TFA</term>
<def>
<p>trifluoroacetic acid</p>
</def>
</def-item>
<def-item>
<term>Boc
<sub>2</sub>
O</term>
<def>
<p>di-
<italic>tert</italic>
-butyl dicarbonate</p>
</def>
</def-item>
<def-item>
<term>DNTB</term>
<def>
<p>5,5′-dithiobis-2-nitrobenzoate</p>
</def>
</def-item>
<def-item>
<term>CPE</term>
<def>
<p>cytopathic effect</p>
</def>
</def-item>
<def-item>
<term>TMSOTf</term>
<def>
<p>trimethylsilyl trifluoromethanesulfonate</p>
</def>
</def-item>
<def-item>
<term>DMEM</term>
<def>
<p>Dulbecco’s modified Eagle’s medium</p>
</def>
</def-item>
<def-item>
<term>FCS</term>
<def>
<p>fetal calf serum</p>
</def>
</def-item>
<def-item>
<term>NEAA</term>
<def>
<p>non-essential amino acid</p>
</def>
</def-item>
<def-item>
<term>EMEM</term>
<def>
<p>Eagle’s minimum essential medium</p>
</def>
</def-item>
<def-item>
<term>SINV</term>
<def>
<p>Sindbis virus</p>
</def>
</def-item>
<def-item>
<term>SFV</term>
<def>
<p>Semliki forest virus</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list>
<title>References</title>
<ref id="ref1">
<mixed-citation publication-type="journal" id="cit1a">
<label>a</label>
<name>
<surname>Baltimore</surname>
<given-names>D.</given-names>
</name>
<article-title>Expression of animal virus genomes</article-title>
.
<source>Bacteriol. Rev.</source>
<year>1971</year>
,
<volume>35</volume>
,
<fpage>235</fpage>
<lpage>241</lpage>
.
<pub-id pub-id-type="pmid">4329869</pub-id>
</mixed-citation>
<mixed-citation publication-type="book" id="cit1b">
<label>b</label>
<person-group person-group-type="allauthors">
<name>
<surname>Modrow</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Falke</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Truyen</surname>
<given-names>U.</given-names>
</name>
;
<name>
<surname>Schätzl</surname>
<given-names>H.</given-names>
</name>
</person-group>
<source>Viruses with Single-Stranded, Positive-Sense RNA Genomes. Molecular Virology</source>
;
<publisher-name>Springer Berlin Heidelberg</publisher-name>
:
<publisher-loc>Berlin, Heidelberg</publisher-loc>
,
<year>2013</year>
; pp
<fpage>185</fpage>
<lpage>349</lpage>
.</mixed-citation>
</ref>
<ref id="ref2">
<mixed-citation publication-type="book" id="cit2">
<person-group person-group-type="allauthors">
<name>
<surname>Thiel</surname>
<given-names>V.</given-names>
</name>
</person-group>
<source>Coronaviruses: Molecular and Cellular Biology</source>
,
<edition>1</edition>
st ed.;
<publisher-name>Caister Academic Press</publisher-name>
:
<publisher-loc>Poole, UK</publisher-loc>
,
<year>2007</year>
.</mixed-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="journal" id="cit3">
<name>
<surname>Zumla</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Hui</surname>
<given-names>D. S.</given-names>
</name>
;
<name>
<surname>Perlman</surname>
<given-names>S.</given-names>
</name>
<article-title>Middle East Respiratory Syndrome</article-title>
.
<source>Lancet</source>
<year>2015</year>
,
<volume>386</volume>
,
<fpage>995</fpage>
<lpage>1007</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0140-6736(15)60454-8</pub-id>
.
<pub-id pub-id-type="pmid">26049252</pub-id>
</mixed-citation>
</ref>
<ref id="ref4">
<mixed-citation publication-type="journal" id="cit4">
<name>
<surname>Caglioti</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Lalle</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Castilletti</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Carletti</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Capobianchi</surname>
<given-names>M. R.</given-names>
</name>
;
<name>
<surname>Bordi</surname>
<given-names>L.</given-names>
</name>
<article-title>Chikungunya virus infection: an overview</article-title>
.
<source>New Microbiol.</source>
<year>2013</year>
,
<volume>36</volume>
,
<fpage>211</fpage>
<lpage>227</lpage>
.
<pub-id pub-id-type="pmid">23912863</pub-id>
</mixed-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="journal" id="cit5a">
<label>a</label>
<name>
<surname>Musso</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Gubler</surname>
<given-names>D. J.</given-names>
</name>
<article-title>Zika Virus</article-title>
.
<source>Clin. Microbiol. Rev.</source>
<year>2016</year>
,
<volume>29</volume>
,
<fpage>487</fpage>
<lpage>524</lpage>
.
<pub-id pub-id-type="doi">10.1128/cmr.00072-15</pub-id>
.
<pub-id pub-id-type="pmid">27029595</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit5b">
<label> b</label>
<name>
<surname>Agumadu</surname>
<given-names>V. C.</given-names>
</name>
;
<name>
<surname>Ramphul</surname>
<given-names>K.</given-names>
</name>
<article-title>Zika Virus: A Review of Literature</article-title>
.
<source>Cureus</source>
<year>2018</year>
,
<volume>10</volume>
,
<fpage>e3025</fpage>
<pub-id pub-id-type="doi">10.7759/cureus.3025</pub-id>
.
<pub-id pub-id-type="pmid">30254814</pub-id>
</mixed-citation>
</ref>
<ref id="ref6">
<mixed-citation publication-type="journal" id="cit6a">
<label>a</label>
<name>
<surname>Forgie</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Marrie</surname>
<given-names>T.</given-names>
</name>
<article-title>Healthcare-Associated Atypical Pneumonia</article-title>
.
<source>Semin. Respir. Crit. Care Med.</source>
<year>2009</year>
,
<volume>30</volume>
,
<fpage>067</fpage>
<lpage>085</lpage>
.
<pub-id pub-id-type="doi">10.1055/s-0028-1119811</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit6b">
<label> b</label>
<name>
<surname>Chan-Yeung</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Xu</surname>
<given-names>R.-H.</given-names>
</name>
<article-title>SARS: epidemiology</article-title>
.
<source>Respirology</source>
<year>2003</year>
,
<volume>8</volume>
,
<fpage>S9</fpage>
<lpage>S14</lpage>
.
<pub-id pub-id-type="doi">10.1046/j.1440-1843.2003.00518.x</pub-id>
.
<pub-id pub-id-type="pmid">15018127</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit6c">
<label> c</label>
<name>
<surname>Hui</surname>
<given-names>D. S.</given-names>
</name>
;
<name>
<surname>Azhar</surname>
<given-names>E. I.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>Y.-J.</given-names>
</name>
;
<name>
<surname>Memish</surname>
<given-names>Z. A.</given-names>
</name>
;
<name>
<surname>Oh</surname>
<given-names>M.-d.</given-names>
</name>
;
<name>
<surname>Zumla</surname>
<given-names>A.</given-names>
</name>
<article-title>Middle East Respiratory Syndrome Coronavirus: Risk Factors and Determinants of Primary, Household, and Nosocomial Transmission</article-title>
.
<source>Lancet Infect. Dis.</source>
<year>2018</year>
,
<volume>18</volume>
,
<fpage>e217</fpage>
<lpage>e227</lpage>
.
<pub-id pub-id-type="doi">10.1016/s1473-3099(18)30127-0</pub-id>
.
<pub-id pub-id-type="pmid">29680581</pub-id>
</mixed-citation>
</ref>
<ref id="ref7">
<mixed-citation publication-type="journal" id="cit7a">
<label>a</label>
<name>
<surname>Schwartz</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Albert</surname>
<given-names>M. L.</given-names>
</name>
<article-title>Biology and Pathogenesis of Chikungunya Virus</article-title>
.
<source>Nat. Rev. Microbiol.</source>
<year>2010</year>
,
<volume>8</volume>
,
<fpage>491</fpage>
<lpage>500</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrmicro2368</pub-id>
.
<pub-id pub-id-type="pmid">20551973</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit7b">
<label> b</label>
<name>
<surname>Presti</surname>
<given-names>A. L.</given-names>
</name>
;
<name>
<surname>Lai</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Cella</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Zehender</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Ciccozzi</surname>
<given-names>M.</given-names>
</name>
<article-title>Chikungunya Virus, Epidermiology, Clinics, and Pathogenesis: A Review</article-title>
.
<source>Asian Pac. J. Trop. Med.</source>
<year>2014</year>
,
<volume>7</volume>
,
<fpage>925</fpage>
<lpage>932</lpage>
.
<pub-id pub-id-type="doi">10.1016/s1995-7645(14)60164-4</pub-id>
.
<pub-id pub-id-type="pmid">25479619</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit7c">
<label> c</label>
<name>
<surname>Ng</surname>
<given-names>L. F. P.</given-names>
</name>
<article-title>Immunopathology of Chikungunya Virus Infection: Lessons Learned from Patients and Animal Models</article-title>
.
<source>Ann. Rev. Virol.</source>
<year>2017</year>
,
<volume>4</volume>
,
<fpage>413</fpage>
<lpage>427</lpage>
.
<pub-id pub-id-type="doi">10.1146/annurev-virology-101416-041808</pub-id>
.
<pub-id pub-id-type="pmid">28637387</pub-id>
</mixed-citation>
</ref>
<ref id="ref8">
<mixed-citation publication-type="journal" id="cit8">
<name>
<surname>Abushouk</surname>
<given-names>A. I.</given-names>
</name>
;
<name>
<surname>Negida</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Ahmed</surname>
<given-names>H.</given-names>
</name>
<article-title>An Updated Review of Zika Virus</article-title>
.
<source>J. Clin. Virol.</source>
<year>2016</year>
,
<volume>84</volume>
,
<fpage>53</fpage>
<lpage>58</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jcv.2016.09.012</pub-id>
.
<pub-id pub-id-type="pmid">27721110</pub-id>
</mixed-citation>
</ref>
<ref id="ref9">
<mixed-citation publication-type="journal" id="cit9a">
<label>a</label>
<name>
<surname>Musso</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Roche</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Robin</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Nhan</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Teissier</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Cao-Lormeau</surname>
<given-names>V.-M.</given-names>
</name>
<article-title>Potential Sexual Transmission of Zika Virus</article-title>
.
<source>Emerg. Infect. Dis.</source>
<year>2015</year>
,
<volume>21</volume>
,
<fpage>359</fpage>
<lpage>361</lpage>
.
<pub-id pub-id-type="doi">10.3201/eid2102.141363</pub-id>
.
<pub-id pub-id-type="pmid">25625872</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit9b">
<label> b</label>
<name>
<surname>Oster</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>Russell</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Stryker</surname>
<given-names>J. E.</given-names>
</name>
;
<name>
<surname>Friedman</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Kachur</surname>
<given-names>R. E.</given-names>
</name>
;
<name>
<surname>Petersen</surname>
<given-names>E. E.</given-names>
</name>
;
<name>
<surname>Jamieson</surname>
<given-names>D. J.</given-names>
</name>
;
<name>
<surname>Cohn</surname>
<given-names>A. C.</given-names>
</name>
;
<name>
<surname>Brooks</surname>
<given-names>J. T.</given-names>
</name>
<article-title>Update: Interim Guidance for Prevention of Sexual Transmission of Zika Virus</article-title>
.
<source>Morb. Mortal.Wkly Rep.</source>
<year>2016</year>
,
<volume>65</volume>
,
<fpage>323</fpage>
<lpage>325</lpage>
.
<pub-id pub-id-type="doi">10.15585/mmwr.mm6512e3</pub-id>
.</mixed-citation>
</ref>
<ref id="ref10">
<mixed-citation publication-type="journal" id="cit10">
<name>
<surname>Ahlquist</surname>
<given-names>P.</given-names>
</name>
<article-title>RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing</article-title>
.
<source>Science</source>
<year>2002</year>
,
<volume>296</volume>
,
<fpage>1270</fpage>
<lpage>1273</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1069132</pub-id>
.
<pub-id pub-id-type="pmid">12016304</pub-id>
</mixed-citation>
</ref>
<ref id="ref11">
<mixed-citation publication-type="journal" id="cit11a">
<label>a</label>
<name>
<surname>Coutard</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Barral</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Lichière</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Selisko</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Martin</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Aouadi</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Lombardia</surname>
<given-names>M. O.</given-names>
</name>
;
<name>
<surname>Debart</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Vasseur</surname>
<given-names>J.-J.</given-names>
</name>
;
<name>
<surname>Guillemot</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>Canard</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Decroly</surname>
<given-names>E.</given-names>
</name>
<article-title>Zika Virus Methyltransferase: Structure and Functions for Drug Design Perspectives</article-title>
.
<source>J. Virol.</source>
<year>2017</year>
,
<volume>91</volume>
,
<fpage>e02202</fpage>
<lpage>e02216</lpage>
.
<pub-id pub-id-type="doi">10.1128/jvi.02202-16</pub-id>
.
<pub-id pub-id-type="pmid">28031359</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit11b">
<label> b</label>
<name>
<surname>Case</surname>
<given-names>J. B.</given-names>
</name>
;
<name>
<surname>Ashbrook</surname>
<given-names>A. W.</given-names>
</name>
;
<name>
<surname>Dermody</surname>
<given-names>T. S.</given-names>
</name>
;
<name>
<surname>Denison</surname>
<given-names>M. R.</given-names>
</name>
<article-title>Mutagenesis ofS-Adenosyl-l-Methionine-Binding Residues in Coronavirus nsp14 N7-Methyltransferase Demonstrates Differing Requirements for Genome Translation and Resistance to Innate Immunity</article-title>
.
<source>J. Virol.</source>
<year>2016</year>
,
<volume>90</volume>
,
<fpage>7248</fpage>
<lpage>7256</lpage>
.
<pub-id pub-id-type="doi">10.1128/jvi.00542-16</pub-id>
.
<pub-id pub-id-type="pmid">27252528</pub-id>
</mixed-citation>
</ref>
<ref id="ref12">
<mixed-citation publication-type="journal" id="cit12a">
<label>a</label>
<name>
<surname>Decroly</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Ferron</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Lescar</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Canard</surname>
<given-names>B.</given-names>
</name>
<article-title>Conventional and Unconventional Mechanisms for Capping Viral mRNA</article-title>
.
<source>Nat. Rev. Microbiol.</source>
<year>2011</year>
,
<volume>10</volume>
,
<fpage>51</fpage>
<lpage>65</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrmicro2675</pub-id>
.
<pub-id pub-id-type="pmid">22138959</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit12b">
<label> b</label>
<name>
<surname>Cougot</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Van Dijk</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Babajko</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Séraphin</surname>
<given-names>B.</given-names>
</name>
<article-title>Cap-tabolism</article-title>
.
<source>Trends Biochem. Sci.</source>
<year>2004</year>
,
<volume>29</volume>
,
<fpage>436</fpage>
<lpage>444</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tibs.2004.06.008</pub-id>
.
<pub-id pub-id-type="pmid">15362228</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit12c">
<label> c</label>
<name>
<surname>Ferron</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Decroly</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Selisko</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Canard</surname>
<given-names>B.</given-names>
</name>
<article-title>The Viral RNA Capping Machinery as a Target for Antiviral Drugs</article-title>
.
<source>Antiviral Res.</source>
<year>2012</year>
,
<volume>96</volume>
,
<fpage>21</fpage>
<lpage>31</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.antiviral.2012.07.007</pub-id>
.
<pub-id pub-id-type="pmid">22841701</pub-id>
</mixed-citation>
</ref>
<ref id="ref13">
<mixed-citation publication-type="journal" id="cit13a">
<label>a</label>
<name>
<surname>Turner</surname>
<given-names>M. A.</given-names>
</name>
;
<name>
<surname>Yang</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Yin</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Kuczera</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Borchardt</surname>
<given-names>R. T.</given-names>
</name>
;
<name>
<surname>Howell</surname>
<given-names>P. L.</given-names>
</name>
<article-title>Structure and Function of
<italic>S</italic>
-Adenosylhomocysteine Hydrolase</article-title>
.
<source>Cell Biochem. Biophys.</source>
<year>2000</year>
,
<volume>33</volume>
,
<fpage>101</fpage>
<lpage>125</lpage>
.
<pub-id pub-id-type="doi">10.1385/cbb:33:2:101</pub-id>
.
<pub-id pub-id-type="pmid">11325033</pub-id>
</mixed-citation>
<mixed-citation publication-type="book" id="cit13b">
<label>b</label>
<person-group person-group-type="allauthors">
<name>
<surname>Cantoni</surname>
<given-names>G. L.</given-names>
</name>
</person-group>
<article-title>The Centrality of
<italic>S</italic>
-Adenosylhomocysteinase in the Regulation of the Biological Utilization of
<italic>S</italic>
-Adenosylmethionine</article-title>
. In
<source>Biological Methylation and Drug Design</source>
;
<person-group person-group-type="editor">
<name>
<surname>Borchardt</surname>
<given-names>R. T.</given-names>
</name>
,
<name>
<surname>Creveling</surname>
<given-names>C. R.</given-names>
</name>
,
<name>
<surname>Ueland</surname>
<given-names>P. M.</given-names>
</name>
</person-group>
, Eds.;
<publisher-name>Humana Press</publisher-name>
:
<publisher-loc>Clifton, NJ</publisher-loc>
,
<year>1986</year>
; pp
<fpage>227</fpage>
<lpage>238</lpage>
.</mixed-citation>
</ref>
<ref id="ref14">
<mixed-citation publication-type="journal" id="cit14a">
<label>a</label>
<name>
<surname>Wolfe</surname>
<given-names>M. S.</given-names>
</name>
;
<name>
<surname>Borchardt</surname>
<given-names>R. T.</given-names>
</name>
<article-title>S-Adenosyl-L-Homocysteine Hydrolase as a Target for Antiviral Chemotherapy</article-title>
.
<source>J. Med. Chem.</source>
<year>1991</year>
,
<volume>34</volume>
,
<fpage>1521</fpage>
<lpage>1530</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm00109a001</pub-id>
.
<pub-id pub-id-type="pmid">2033576</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit14b">
<label> b</label>
<name>
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
<article-title>Strategies in the Design of Antiviral Drugs</article-title>
.
<source>Nat. Rev. Drug Discovery</source>
<year>2002</year>
,
<volume>1</volume>
,
<fpage>13</fpage>
<lpage>25</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrd703</pub-id>
.
<pub-id pub-id-type="pmid">12119605</pub-id>
</mixed-citation>
</ref>
<ref id="ref15">
<mixed-citation publication-type="journal" id="cit15">
<name>
<surname>Jordheim</surname>
<given-names>L. P.</given-names>
</name>
;
<name>
<surname>Durantel</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Zoulim</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Dumontet</surname>
<given-names>C.</given-names>
</name>
<article-title>Advances in the Development of Nucleoside and Nucleotide Analogues for Cancer and Viral Diseases</article-title>
.
<source>Nat. Rev. Drug Discovery</source>
<year>2013</year>
,
<volume>12</volume>
,
<fpage>447</fpage>
<lpage>464</lpage>
.
<pub-id pub-id-type="doi">10.1038/nrd4010</pub-id>
.
<pub-id pub-id-type="pmid">23722347</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<mixed-citation publication-type="journal" id="cit16a">
<label>a</label>
<name>
<surname>Kusaka</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Yamamoto</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Shibata</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Muroi</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Kishi</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Mizuno</surname>
<given-names>K.</given-names>
</name>
<article-title>Streptomyces Citricolor Nov. Sp. and a New Antibiotic, Aristeromycin</article-title>
.
<source>J. Antibiot.</source>
<year>1968</year>
,
<volume>21</volume>
,
<fpage>255</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.7164/antibiotics.21.255</pub-id>
.
<pub-id pub-id-type="pmid">5671989</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit16b">
<label> b</label>
<name>
<surname>Shealy</surname>
<given-names>Y. F.</given-names>
</name>
;
<name>
<surname>Clayton</surname>
<given-names>J. D.</given-names>
</name>
<article-title>9-[β-DL-2α,3α-Dihydroxy-4β-(hydroxymethyl)- cyclopentyl]adenine, the Carbocyclic Analog of Adenosine1,2</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>1966</year>
,
<volume>88</volume>
,
<fpage>3885</fpage>
<lpage>3887</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja00968a055</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit16c">
<label> c</label>
<name>
<surname>Shealy</surname>
<given-names>Y. F.</given-names>
</name>
;
<name>
<surname>Clayton</surname>
<given-names>J. D.</given-names>
</name>
<article-title>Synthesis of Carbocyclic Analogs of Purine Ribonucleosides</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>1969</year>
,
<volume>91</volume>
,
<fpage>3075</fpage>
<lpage>3083</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja01039a042</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit16d">
<label> d</label>
<name>
<surname>Shealy</surname>
<given-names>F. Y.</given-names>
</name>
;
<name>
<surname>Thorpe</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Coburn</surname>
<given-names>W. C. J.</given-names>
<suffix>Jr.</suffix>
</name>
;
<name>
<surname>Clayton</surname>
<given-names>J. D.</given-names>
</name>
<article-title>Identity of the Synthetic Carbocylic Analog of Adenosine and Aristeromycin</article-title>
.
<source>Chem. Pharm. Bull.</source>
<year>1980</year>
,
<volume>28</volume>
,
<fpage>3114</fpage>
<lpage>3117</lpage>
.
<pub-id pub-id-type="doi">10.1248/cpb.28.3114</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit16e">
<label> e</label>
<name>
<surname>Arita</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Adachi</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Ito</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Sawai</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Ohno</surname>
<given-names>M.</given-names>
</name>
<article-title>Enantioselective synthesis of the carbocyclic nucleosides (-)-aristeromycin and (-)-neplanocin A by a chemicoenzymatic approach</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>1983</year>
,
<volume>105</volume>
,
<fpage>4049</fpage>
<lpage>4055</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja00350a050</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit16f">
<label> f</label>
<name>
<surname>Yoshikawa</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Okaichi</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Cheon Cha</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Kitagawa</surname>
<given-names>I.</given-names>
</name>
<article-title>Synthesis of (-)-Aristeromycin from D-glucose</article-title>
.
<source>Tetrahedron</source>
<year>1990</year>
,
<volume>46</volume>
,
<fpage>7459</fpage>
<lpage>7470</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0040-4020(01)89060-8</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit16g">
<label> g</label>
<name>
<surname>Wolfe</surname>
<given-names>M. S.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Bartlett</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Borcherding</surname>
<given-names>D. R.</given-names>
</name>
;
<name>
<surname>Borchardt</surname>
<given-names>R. T.</given-names>
</name>
<article-title>4
<italic></italic>
-Modified Analogs of Aristeromycin and Neplanocin A: Synthesis and Inhibitory Activity Toward
<italic>S</italic>
-Adenosyl-L-Homocysteine Hydrolase</article-title>
.
<source>J. Med. Chem.</source>
<year>1992</year>
,
<volume>35</volume>
,
<fpage>1782</fpage>
<lpage>1791</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm00088a013</pub-id>
.
<pub-id pub-id-type="pmid">1588558</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit16h">
<label> h</label>
<name>
<surname>Madhavan</surname>
<given-names>G. V. B.</given-names>
</name>
;
<name>
<surname>Martin</surname>
<given-names>J. C.</given-names>
</name>
<article-title>A Novel and Stereospecific Synthesis of (±)- and (−)-Aristeromycin</article-title>
.
<source>J. Org. Chem.</source>
<year>1986</year>
,
<volume>51</volume>
,
<fpage>1287</fpage>
<lpage>1293</lpage>
.
<pub-id pub-id-type="doi">10.1021/jo00358a023</pub-id>
.</mixed-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="journal" id="cit17a">
<label>a</label>
<name>
<surname>Bennett</surname>
<given-names>L. L.</given-names>
<suffix>Jr.</suffix>
</name>
;
<name>
<surname>Allan</surname>
<given-names>P. W.</given-names>
</name>
;
<name>
<surname>Rose</surname>
<given-names>L. M.</given-names>
</name>
;
<name>
<surname>Comber</surname>
<given-names>R. N.</given-names>
</name>
;
<name>
<surname>Secrist</surname>
<given-names>J. A.</given-names>
<suffix>III</suffix>
</name>
<article-title>Differences in the Metabolism and Metabolic Effects of the Carbocyclic Adenosine Analogs, Neplanocin A and Aristeromycin</article-title>
.
<source>Mol. Pharmacol.</source>
<year>1986</year>
,
<volume>29</volume>
,
<fpage>383</fpage>
<lpage>390</lpage>
.
<pub-id pub-id-type="pmid">3702857</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit17b">
<label> b</label>
<name>
<surname>Bennett</surname>
<given-names>L. L.</given-names>
</name>
;
<name>
<surname>Bowdon</surname>
<given-names>B. J.</given-names>
</name>
;
<name>
<surname>Allan</surname>
<given-names>P. W.</given-names>
</name>
;
<name>
<surname>Rose</surname>
<given-names>L. M.</given-names>
</name>
<article-title>Evidence that the Carbocyclic Analog of Adenosine Has Different Mechanisms of Cytotoxicity to Cells with Adenosine Kinase Activity and to Cells Lacking this Enzyme</article-title>
.
<source>Biochem. Pharmacol.</source>
<year>1986</year>
,
<volume>35</volume>
,
<fpage>4106</fpage>
<lpage>4109</lpage>
.
<pub-id pub-id-type="doi">10.1016/0006-2952(86)90036-5</pub-id>
.
<pub-id pub-id-type="pmid">3022752</pub-id>
</mixed-citation>
</ref>
<ref id="ref18">
<mixed-citation publication-type="journal" id="cit18a">
<label>a</label>
<name>
<surname>Madhavan</surname>
<given-names>G. V. B.</given-names>
</name>
;
<name>
<surname>McGee</surname>
<given-names>D. P. C.</given-names>
</name>
;
<name>
<surname>Rydzewski</surname>
<given-names>R. M.</given-names>
</name>
;
<name>
<surname>Boehme</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Martin</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>Prisbe</surname>
<given-names>E. J.</given-names>
</name>
<article-title>Synthesis and Antiviral Evaluation of 6′-Substituted Aristeromycins: Potential Mechanism-Based Inhibitors of
<italic>S</italic>
-Adenosylhomocysteine Hydrolase</article-title>
.
<source>J. Med. Chem.</source>
<year>1988</year>
,
<volume>31</volume>
,
<fpage>1798</fpage>
<lpage>1804</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm00117a021</pub-id>
.
<pub-id pub-id-type="pmid">2842505</pub-id>
</mixed-citation>
<mixed-citation publication-type="patent" id="cit18b">
<label>b</label>
<person-group person-group-type="allauthors">
<name>
<surname>Verheyden</surname>
<given-names>J. P.</given-names>
</name>
;
<name>
<surname>Martin</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>Madhaven</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>McGee</surname>
<given-names>D. P. C.</given-names>
</name>
;
<name>
<surname>Prisbe</surname>
<given-names>E. J.</given-names>
</name>
</person-group>
<article-title>Purinyl or Pyrimidinyl Substituted Hydroxycyclopentane Compounds Useful as Antivirals</article-title>
. U.S. Patent
<patent>4,605,659</patent>
, Aug 12,
<year>1986</year>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit18c">
<label> c</label>
<name>
<surname>Yin</surname>
<given-names>X.-q.</given-names>
</name>
;
<name>
<surname>Schneller</surname>
<given-names>S. W.</given-names>
</name>
<article-title>Chiral syntheses of 6′-β-fluoroaristeromycin, 6′-β-fluoro-5′-noraristeromycin and aristeromycin</article-title>
.
<source>Tetrahedron Lett.</source>
<year>2005</year>
,
<volume>46</volume>
,
<fpage>7535</fpage>
<lpage>7538</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tetlet.2005.08.163</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit18d">
<label> d</label>
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
;
<name>
<surname>Moon</surname>
<given-names>H. R.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>J. G.</given-names>
</name>
;
<name>
<surname>Shin</surname>
<given-names>D. H.</given-names>
</name>
;
<name>
<surname>Choi</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>K. M.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>H. O.</given-names>
</name>
;
<name>
<surname>Chun</surname>
<given-names>M. W.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>H.-D.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>J. H.</given-names>
</name>
<article-title>Synthesis and Biological Evaluation of Halo-neplanocin A as Novel Mechanism-Based Inhibitors ofS-Adenosylhomocysteine Hydrolase</article-title>
.
<source>Nucleotides Nucleic Acids</source>
<year>2003</year>
,
<volume>22</volume>
,
<fpage>589</fpage>
<lpage>592</lpage>
.
<pub-id pub-id-type="doi">10.1081/ncn-120021961</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit18e">
<label> e</label>
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
;
<name>
<surname>Yoo</surname>
<given-names>S. J.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>K. M.</given-names>
</name>
;
<name>
<surname>Koo</surname>
<given-names>M. J.</given-names>
</name>
;
<name>
<surname>Choi</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>H. O.</given-names>
</name>
;
<name>
<surname>Moon</surname>
<given-names>H. R.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>M. Y.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>J. G.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>S. K.</given-names>
</name>
;
<name>
<surname>Chun</surname>
<given-names>M. W.</given-names>
</name>
<article-title>Design, Synthesis, and Biological Evaluation of Fluoroneplanocin A as the Novel Mechanism-Based Inhibitor ofS-Adenosylhomocysteine Hydrolase</article-title>
.
<source>J. Med. Chem.</source>
<year>2003</year>
,
<volume>46</volume>
,
<fpage>201</fpage>
<lpage>203</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm025557z</pub-id>
.
<pub-id pub-id-type="pmid">12519056</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit18f">
<label> f</label>
<name>
<surname>Lee</surname>
<given-names>K. M.</given-names>
</name>
;
<name>
<surname>Choi</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>H. J.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>L. X.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>H. W.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>J. G.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>H. O.</given-names>
</name>
;
<name>
<surname>Hwang</surname>
<given-names>K. Y.</given-names>
</name>
;
<name>
<surname>Heo</surname>
<given-names>Y.-S.</given-names>
</name>
;
<name>
<surname>Choi</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
<article-title>X-ray Crystal Structure and Binding Mode Analysis of HumanS-Adenosylhomocysteine Hydrolase Complexed with Novel Mechanism-Based Inhibitors, Haloneplanocin A Analogues</article-title>
.
<source>J. Med. Chem.</source>
<year>2011</year>
,
<volume>54</volume>
,
<fpage>930</fpage>
<lpage>938</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm1010836</pub-id>
.
<pub-id pub-id-type="pmid">21226494</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit18g">
<label> g</label>
<name>
<surname>Chandra</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Moon</surname>
<given-names>Y. W.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Jang</surname>
<given-names>J. Y.</given-names>
</name>
;
<name>
<surname>Song</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Nayak</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Oh</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Mulamoottil</surname>
<given-names>V. A.</given-names>
</name>
;
<name>
<surname>Sahu</surname>
<given-names>P. K.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>T.-S.</given-names>
</name>
;
<name>
<surname>Noh</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>S. K.</given-names>
</name>
;
<name>
<surname>Choi</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
<article-title>Structure-Activity Relationships of Neplanocin A Analogues as S-Adenosylhomocysteine Hydrolase Inhibitors and Their Antiviral and Antitumor Activities</article-title>
.
<source>J. Med. Chem.</source>
<year>2015</year>
,
<volume>58</volume>
,
<fpage>5108</fpage>
<lpage>5120</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.jmedchem.5b00553</pub-id>
.
<pub-id pub-id-type="pmid">26010585</pub-id>
</mixed-citation>
</ref>
<ref id="ref19">
<mixed-citation publication-type="journal" id="cit19">
<name>
<surname>Kim</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Yoon</surname>
<given-names>J.-S.</given-names>
</name>
;
<name>
<surname>Jarhad</surname>
<given-names>D. B.</given-names>
</name>
;
<name>
<surname>Shin</surname>
<given-names>Y. S.</given-names>
</name>
;
<name>
<surname>Majik</surname>
<given-names>M. S.</given-names>
</name>
;
<name>
<surname>Mulamoottil</surname>
<given-names>V. A.</given-names>
</name>
;
<name>
<surname>Hou</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Qu</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Baik</surname>
<given-names>M.-H.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
<article-title>Asymmetric Synthesis of (−)-6′-β-Fluoro-aristeromycin via Stereoselective Electrophilic Fluorination</article-title>
.
<source>Org. Lett.</source>
<year>2017</year>
,
<volume>19</volume>
,
<fpage>5732</fpage>
<lpage>5735</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.orglett.7b02470</pub-id>
.
<pub-id pub-id-type="pmid">29028350</pub-id>
</mixed-citation>
</ref>
<ref id="ref20">
<mixed-citation publication-type="journal" id="cit20a">
<label>a</label>
<name>
<surname>Siddiqui</surname>
<given-names>A. Q.</given-names>
</name>
;
<name>
<surname>Ballatore</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>McGuigan</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
<article-title>The Presence of Substituents on the Aryl Moiety of the Aryl Phosphoramidate Derivative of d4T Enhances Anti-HIV Efficacy in Cell Culture: A Structure–Activity Relationship</article-title>
.
<source>J. Med. Chem.</source>
<year>1999</year>
,
<volume>42</volume>
,
<fpage>393</fpage>
<lpage>399</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm9803931</pub-id>
.
<pub-id pub-id-type="pmid">9986709</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20b">
<label> b</label>
<name>
<surname>Mehellou</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Rattan</surname>
<given-names>H. S.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
<article-title>The ProTide Prodrug Technology: From the Concept to the Clinic</article-title>
.
<source>J. Med. Chem.</source>
<year>2018</year>
,
<volume>61</volume>
,
<fpage>2211</fpage>
<lpage>2226</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.jmedchem.7b00734</pub-id>
.
<pub-id pub-id-type="pmid">28792763</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20c">
<label> c</label>
<name>
<surname>Mehellou</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>McGuigan</surname>
<given-names>C.</given-names>
</name>
<article-title>Aryloxy Phosphoramidate Triesters: A Technology for Delivering Monophosphorylated Nucleosides and Sugars into Cells</article-title>
.
<source>Chem. Med. Chem.</source>
<year>2009</year>
,
<volume>4</volume>
,
<fpage>1779</fpage>
<lpage>1791</lpage>
.
<pub-id pub-id-type="doi">10.1002/cmdc.200900289</pub-id>
.
<pub-id pub-id-type="pmid">19760699</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20d">
<label> d</label>
<name>
<surname>McGuigan</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Pathirana</surname>
<given-names>R. N.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
<article-title>Intracellular Delivery of Bioactive AZT Nucleotides by Aryl Phosphate Derivatives of AZT</article-title>
.
<source>J. Med. Chem.</source>
<year>1993</year>
,
<volume>36</volume>
,
<fpage>1048</fpage>
<lpage>1052</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm00060a013</pub-id>
.
<pub-id pub-id-type="pmid">8478904</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20e">
<label> e</label>
<name>
<surname>McGuigan</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Harris</surname>
<given-names>S. A.</given-names>
</name>
;
<name>
<surname>Daluge</surname>
<given-names>S. M.</given-names>
</name>
;
<name>
<surname>Gudmundsson</surname>
<given-names>K. S.</given-names>
</name>
;
<name>
<surname>McLean</surname>
<given-names>E. W.</given-names>
</name>
;
<name>
<surname>Burnette</surname>
<given-names>T. C.</given-names>
</name>
;
<name>
<surname>Marr</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Hazen</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Condreay</surname>
<given-names>L. D.</given-names>
</name>
;
<name>
<surname>Johnson</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>De Clercq</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
<article-title>Application of Phosphoramidate Pronucleotide Technology to Abacavir Leads to a Significant Enhancement of Antiviral Potency</article-title>
.
<source>J. Med. Chem.</source>
<year>2005</year>
,
<volume>48</volume>
,
<fpage>3504</fpage>
<lpage>3515</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm0491400</pub-id>
.
<pub-id pub-id-type="pmid">15887959</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20f">
<label> f</label>
<name>
<surname>McGuigan</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Hassan-Abdallah</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Srinivasan</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Siddiqui</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Daluge</surname>
<given-names>S. M.</given-names>
</name>
;
<name>
<surname>Gudmundsson</surname>
<given-names>K. S.</given-names>
</name>
;
<name>
<surname>Zhou</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>McLean</surname>
<given-names>E. W.</given-names>
</name>
;
<name>
<surname>Peckham</surname>
<given-names>J. P.</given-names>
</name>
;
<name>
<surname>Burnette</surname>
<given-names>T. C.</given-names>
</name>
;
<name>
<surname>Marr</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Hazen</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Condreay</surname>
<given-names>L. D.</given-names>
</name>
;
<name>
<surname>Johnson</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
<article-title>Application of Phosphoramidate ProTide Technology Significantly Improves Antiviral Potency of Carbocyclic Adenosine Derivatives</article-title>
.
<source>J. Med. Chem.</source>
<year>2006</year>
,
<volume>49</volume>
,
<fpage>7215</fpage>
<lpage>7226</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm060776w</pub-id>
.
<pub-id pub-id-type="pmid">17125274</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20g">
<label> g</label>
<name>
<surname>Sofia</surname>
<given-names>M. J.</given-names>
</name>
;
<name>
<surname>Bao</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Du</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Nagarathnam</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Rachakonda</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Reddy</surname>
<given-names>P. G.</given-names>
</name>
;
<name>
<surname>Ross</surname>
<given-names>B. S.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>H.-R.</given-names>
</name>
;
<name>
<surname>Bansal</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Espiritu</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Keilman</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Lam</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>Steuer</surname>
<given-names>H. M. M.</given-names>
</name>
;
<name>
<surname>Niu</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Otto</surname>
<given-names>M. J.</given-names>
</name>
;
<name>
<surname>Furman</surname>
<given-names>P. A.</given-names>
</name>
<article-title>Discovery of a β-d-2′-Deoxy-2′-α-fluoro-2′-β-C-methyluridine Nucleotide Prodrug (PSI-7977) for the Treatment of Hepatitis C Virus</article-title>
.
<source>J. Med. Chem.</source>
<year>2010</year>
,
<volume>53</volume>
,
<fpage>7202</fpage>
<lpage>7218</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm100863x</pub-id>
.
<pub-id pub-id-type="pmid">20845908</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit20h">
<label> h</label>
<name>
<surname>Slusarczyk</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Lopez</surname>
<given-names>M. H.</given-names>
</name>
;
<name>
<surname>Balzarini</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Mason</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Jiang</surname>
<given-names>W. G.</given-names>
</name>
;
<name>
<surname>Blagden</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Thompson</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Ghazaly</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>McGuigan</surname>
<given-names>C.</given-names>
</name>
<article-title>Application of ProTide Technology to Gemcitabine: A Successful Approach to Overcome the Key Cancer Resistance Mechanisms Leads to a New Agent (NUC-1031) in Clinical Development</article-title>
.
<source>J. Med. Chem.</source>
<year>2014</year>
,
<volume>57</volume>
,
<fpage>1531</fpage>
<lpage>1542</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm401853a</pub-id>
.
<pub-id pub-id-type="pmid">24471998</pub-id>
</mixed-citation>
</ref>
<ref id="ref21">
<mixed-citation publication-type="journal" id="cit21a">
<label>a</label>
<name>
<surname>Choi</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Park</surname>
<given-names>J. G.</given-names>
</name>
;
<name>
<surname>Yoo</surname>
<given-names>S. J.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>H. O.</given-names>
</name>
;
<name>
<surname>Moon</surname>
<given-names>H. R.</given-names>
</name>
;
<name>
<surname>Chun</surname>
<given-names>M. W.</given-names>
</name>
;
<name>
<surname>Jung</surname>
<given-names>Y. H.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
<article-title>Syntheses ofd- andl-Cyclopentenone Derivatives Using Ring-Closing Metathesis: Versatile Intermediates for the Synthesis ofd- andl-Carbocyclic Nucleosides</article-title>
.
<source>J. Org. Chem.</source>
<year>2001</year>
,
<volume>66</volume>
,
<fpage>6490</fpage>
<lpage>6494</lpage>
.
<pub-id pub-id-type="doi">10.1021/jo015733w</pub-id>
.
<pub-id pub-id-type="pmid">11559205</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit21b">
<label> b</label>
<name>
<surname>Moon</surname>
<given-names>H. R.</given-names>
</name>
;
<name>
<surname>Choi</surname>
<given-names>W. J.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>H. O.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
<article-title>Improved and Alternative Synthesis of d- and l-Cyclopentenone Derivatives, the Versatile Intermediates for the Synthesis of Carbocyclic Nucleosides</article-title>
.
<source>Tetrahedron:Asymmetry</source>
<year>2002</year>
,
<volume>13</volume>
,
<fpage>1189</fpage>
<lpage>1193</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0957-4166(02)00316-6</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit21c">
<label> c</label>
<name>
<surname>Mulamoottil</surname>
<given-names>V. A.</given-names>
</name>
;
<name>
<surname>Nayak</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
<article-title>Recent Advances in the Synthesis of Carbocyclic Nucleosides via Ring-Closing Metathesis</article-title>
.
<source>Asian J. Org. Chem.</source>
<year>2014</year>
,
<volume>3</volume>
,
<fpage>748</fpage>
<lpage>761</lpage>
.
<pub-id pub-id-type="doi">10.1002/ajoc.201402032</pub-id>
.</mixed-citation>
</ref>
<ref id="ref22">
<mixed-citation publication-type="journal" id="cit22a">
<label>a</label>
<name>
<surname>Gilman</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Jones</surname>
<given-names>R. G.</given-names>
</name>
;
<name>
<surname>Woods</surname>
<given-names>L. A.</given-names>
</name>
<article-title>The Preparation of Methylcopper and Some Observations on the Decomposition of Organocopper Compounds</article-title>
.
<source>J. Org. Chem.</source>
<year>1952</year>
,
<volume>17</volume>
,
<fpage>1630</fpage>
<lpage>1634</lpage>
.
<pub-id pub-id-type="doi">10.1021/jo50012a009</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit22b">
<label> b</label>
<name>
<surname>Song</surname>
<given-names>G. Y.</given-names>
</name>
;
<name>
<surname>Paul</surname>
<given-names>V.</given-names>
</name>
;
<name>
<surname>Choo</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Morrey</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Sidwell</surname>
<given-names>R. W.</given-names>
</name>
;
<name>
<surname>Schinazi</surname>
<given-names>R. F.</given-names>
</name>
;
<name>
<surname>Chu</surname>
<given-names>C. K.</given-names>
</name>
<article-title>Enantiomeric Synthesis ofd- andl-Cyclopentenyl Nucleosides and Their Antiviral Activity Against HIV and West Nile Virus</article-title>
.
<source>J. Med. Chem.</source>
<year>2001</year>
,
<volume>44</volume>
,
<fpage>3985</fpage>
<lpage>3993</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm010256v</pub-id>
.
<pub-id pub-id-type="pmid">11689085</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<mixed-citation publication-type="journal" id="cit23">
<name>
<surname>Rubottom</surname>
<given-names>G. M.</given-names>
</name>
;
<name>
<surname>Gruber</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Boeckman</surname>
<given-names>R. K.</given-names>
<suffix>Jr</suffix>
</name>
;
<name>
<surname>Ramaiah</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Medwid</surname>
<given-names>J. B.</given-names>
</name>
<article-title>Clarification of the Mechanism of Rearrangement of Enol Silyl Ether Epoxides</article-title>
.
<source>Tetrahedron Lett.</source>
<year>1978</year>
,
<volume>19</volume>
,
<fpage>4603</fpage>
<lpage>4606</lpage>
.
<pub-id pub-id-type="doi">10.1016/s0040-4039(01)85682-3</pub-id>
.</mixed-citation>
</ref>
<ref id="ref24">
<mixed-citation publication-type="journal" id="cit24">
<name>
<surname>Montgomery</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Temple</surname>
<given-names>C.</given-names>
<suffix>Jr.</suffix>
</name>
<article-title>Synthesis of Potential Anticancer Agents. IX. 9-Ethyl-6-substituted-purines2</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>1957</year>
,
<volume>79</volume>
,
<fpage>5238</fpage>
<lpage>5242</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja01576a046</pub-id>
.</mixed-citation>
</ref>
<ref id="ref25">
<note>
<p>The X-ray CIF File for
<bold>2c</bold>
Has Been Deposited at the Cambridge Crystallographic Data Centre (Deposition Number: CCDC 1914672).</p>
</note>
</ref>
<ref id="ref26">
<mixed-citation publication-type="journal" id="cit26a">
<label>a</label>
<name>
<surname>Shaw</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Warrener</surname>
<given-names>R. N.</given-names>
</name>
<article-title>Purines, pyrimidines, and glyoxalines. Part VIII. New syntheses of uracils and thymines</article-title>
.
<source>J. Chem. Soc.</source>
<year>1958</year>
,
<fpage>157</fpage>
<lpage>159</lpage>
.
<pub-id pub-id-type="doi">10.1039/jr9580000157</pub-id>
.</mixed-citation>
<mixed-citation publication-type="journal" id="cit26b">
<label> b</label>
<name>
<surname>Jeong</surname>
<given-names>L. S.</given-names>
</name>
;
<name>
<surname>Buenger</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>McCormack</surname>
<given-names>J. J.</given-names>
</name>
;
<name>
<surname>Cooney</surname>
<given-names>D. A.</given-names>
</name>
;
<name>
<surname>Hao</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Marquez</surname>
<given-names>V. E.</given-names>
</name>
<article-title>Carbocyclic Analogues of the Potent Cytidine Deaminase Inhibitor 1-(β-d-Ribofuranosyl)-1,2-dihydropyrimidin-2-one (Zebularine)</article-title>
.
<source>J. Med. Chem.</source>
<year>1998</year>
,
<volume>41</volume>
,
<fpage>2572</fpage>
<lpage>2578</lpage>
.
<pub-id pub-id-type="doi">10.1021/jm980111x</pub-id>
.
<pub-id pub-id-type="pmid">9651161</pub-id>
</mixed-citation>
</ref>
<ref id="ref27">
<note>
<p>The X-ray CIF Files for
<bold>2g</bold>
and
<bold>2h</bold>
Have Been Deposited at the Cambridge Crystallographic Data Centre (Deposition Numbers: CCDC 1871331 for
<bold>2g</bold>
and CCDC 1871332 for
<bold>2h</bold>
).</p>
</note>
</ref>
<ref id="ref28">
<mixed-citation publication-type="journal" id="cit28">
<name>
<surname>Divakar</surname>
<given-names>K. J.</given-names>
</name>
;
<name>
<surname>Reese</surname>
<given-names>C. B.</given-names>
</name>
<article-title>4-(1,2,4-Triazol-1-yl)- and 4-(3-nitro-1,2,4-triazol-1-yl)-1-(β-D-2,3,5-tri-
<italic>O</italic>
-acetylarabinofuranosyl)pyrimidin-2(1
<italic>H</italic>
)-ones. Valuable Intermediates in the Synthesis of Derivatives of 1-β-D-Arabinofuranosyl)cytosine (Ara-C)</article-title>
.
<source>J. Chem. Soc., Perkin Trans. 1</source>
<year>1982</year>
,
<fpage>1171</fpage>
<lpage>1176</lpage>
.
<pub-id pub-id-type="doi">10.1039/p19820001171</pub-id>
.</mixed-citation>
</ref>
<ref id="ref29">
<mixed-citation publication-type="journal" id="cit29">
<name>
<surname>Ross</surname>
<given-names>B. S.</given-names>
</name>
;
<name>
<surname>Ganapati Reddy</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Zhang</surname>
<given-names>H.-R.</given-names>
</name>
;
<name>
<surname>Rachakonda</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Sofia</surname>
<given-names>M. J.</given-names>
</name>
<article-title>Synthesis of Diastereomerically Pure Nucleotide Phosphoramidates</article-title>
.
<source>J. Org. Chem.</source>
<year>2011</year>
,
<volume>76</volume>
,
<fpage>8311</fpage>
<lpage>8319</lpage>
.
<pub-id pub-id-type="doi">10.1021/jo201492m</pub-id>
.
<pub-id pub-id-type="pmid">21916475</pub-id>
</mixed-citation>
</ref>
<ref id="ref30">
<mixed-citation publication-type="journal" id="cit30">
<name>
<surname>Lozada-Ramírez</surname>
<given-names>J. D.</given-names>
</name>
;
<name>
<surname>Martínez-Martínez</surname>
<given-names>I.</given-names>
</name>
;
<name>
<surname>Sánchez-Ferrer</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>García-Carmona</surname>
<given-names>F.</given-names>
</name>
<article-title>A Colorimetric Assay for
<italic>S</italic>
-Adenosylhomocysteine Hydrolase</article-title>
.
<source>J. Biochem. Biophys. Methods</source>
<year>2006</year>
,
<volume>67</volume>
,
<fpage>131</fpage>
<lpage>140</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jbbm.2006.01.008</pub-id>
.
<pub-id pub-id-type="pmid">16516302</pub-id>
</mixed-citation>
</ref>
<ref id="ref31">
<mixed-citation publication-type="journal" id="cit31">
<name>
<surname>Scholte</surname>
<given-names>F. E. M.</given-names>
</name>
;
<name>
<surname>Tas</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Martina</surname>
<given-names>B. E. E.</given-names>
</name>
;
<name>
<surname>Cordioli</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Narayanan</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Makino</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Snijder</surname>
<given-names>E. J.</given-names>
</name>
;
<name>
<surname>van Hemert</surname>
<given-names>M. J.</given-names>
</name>
<article-title>Characterization of Synthetic Chikungunya Viruses Based on the Consensus Sequence of Recent E1-226V Isolates</article-title>
.
<source>PLoS One</source>
<year>2013</year>
,
<volume>8</volume>
,
<fpage>e71047</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0071047</pub-id>
.
<pub-id pub-id-type="pmid">23936484</pub-id>
</mixed-citation>
</ref>
<ref id="ref32">
<mixed-citation publication-type="journal" id="cit32">
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Tas</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Anvar</surname>
<given-names>S. Y.</given-names>
</name>
;
<name>
<surname>van Grootveld</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Albulescu</surname>
<given-names>I. C.</given-names>
</name>
;
<name>
<surname>Bauer</surname>
<given-names>M. P.</given-names>
</name>
;
<name>
<surname>Feltkamp</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Bredenbeek</surname>
<given-names>P. J.</given-names>
</name>
;
<name>
<surname>van Hemert</surname>
<given-names>M. J.</given-names>
</name>
<article-title>Quasispecies Composition and Evolution of a Typical Zika Virus Clinical Isolate from Suriname</article-title>
.
<source>Sci. Rep.</source>
<year>2017</year>
,
<volume>7</volume>
,
<fpage>2368</fpage>
<pub-id pub-id-type="doi">10.1038/s41598-017-02652-w</pub-id>
.
<pub-id pub-id-type="pmid">28539654</pub-id>
</mixed-citation>
</ref>
<ref id="ref33">
<mixed-citation publication-type="journal" id="cit33">
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>de Graaf</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Lauber</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Bestebroer</surname>
<given-names>T. M.</given-names>
</name>
;
<name>
<surname>Raj</surname>
<given-names>V. S.</given-names>
</name>
;
<name>
<surname>Zaki</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>Osterhaus</surname>
<given-names>A. D. M. E.</given-names>
</name>
;
<name>
<surname>Haagmans</surname>
<given-names>B. L.</given-names>
</name>
;
<name>
<surname>Gorbalenya</surname>
<given-names>A. E.</given-names>
</name>
;
<name>
<surname>Snijder</surname>
<given-names>E. J.</given-names>
</name>
;
<name>
<surname>Fouchier</surname>
<given-names>R. A. M.</given-names>
</name>
<article-title>Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans</article-title>
.
<source>mBio</source>
<year>2012</year>
,
<volume>3</volume>
,
<fpage>e00473-12</fpage>
<pub-id pub-id-type="doi">10.1128/mbio.00473-12</pub-id>
.
<pub-id pub-id-type="pmid">23170002</pub-id>
</mixed-citation>
</ref>
<ref id="ref34">
<mixed-citation publication-type="journal" id="cit34a">
<label>a</label>
<name>
<surname>Albulescu</surname>
<given-names>I. C.</given-names>
</name>
;
<name>
<surname>Kovacikova</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Tas</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Snijder</surname>
<given-names>E. J.</given-names>
</name>
;
<name>
<surname>van Hemert</surname>
<given-names>M. J.</given-names>
</name>
<article-title>Suramin Inhibits Zika Virus Replication by Interfering with Virus Attachment and Release of Infectious Particles</article-title>
.
<source>Antiviral Res.</source>
<year>2017</year>
,
<volume>143</volume>
,
<fpage>230</fpage>
<lpage>236</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.antiviral.2017.04.016</pub-id>
.
<pub-id pub-id-type="pmid">28461070</pub-id>
</mixed-citation>
<mixed-citation publication-type="journal" id="cit34b">
<label> b</label>
<name>
<surname>de Wilde</surname>
<given-names>A. H.</given-names>
</name>
;
<name>
<surname>Jochmans</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Posthuma</surname>
<given-names>C. C.</given-names>
</name>
;
<name>
<surname>Zevenhoven-Dobbe</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>van Nieuwkoop</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Bestebroer</surname>
<given-names>T. M.</given-names>
</name>
;
<name>
<surname>van den Hoogen</surname>
<given-names>B. G.</given-names>
</name>
;
<name>
<surname>Neyts</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Snijder</surname>
<given-names>E. J.</given-names>
</name>
<article-title>Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture</article-title>
.
<source>Antimicrob. Agents Chemother.</source>
<year>2014</year>
,
<volume>58</volume>
,
<fpage>4875</fpage>
<lpage>4884</lpage>
.
<pub-id pub-id-type="doi">10.1128/aac.03011-14</pub-id>
.
<pub-id pub-id-type="pmid">24841269</pub-id>
</mixed-citation>
</ref>
<ref id="ref35">
<mixed-citation publication-type="journal" id="cit35">
<name>
<surname>van den Worm</surname>
<given-names>S. H. E.</given-names>
</name>
;
<name>
<surname>Eriksson</surname>
<given-names>K. K.</given-names>
</name>
;
<name>
<surname>Zevenhoven</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>Weber</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Züst</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Kuri</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Dijkman</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Siddell</surname>
<given-names>S. G.</given-names>
</name>
;
<name>
<surname>Snijder</surname>
<given-names>E. J.</given-names>
</name>
;
<name>
<surname>Thiel</surname>
<given-names>V.</given-names>
</name>
;
<name>
<surname>Davidson</surname>
<given-names>A. D.</given-names>
</name>
<article-title>Reverse Genetics of SARS-Related Coronavirus Using Vaccinia Virus-Based Recombination</article-title>
.
<source>PLoS One</source>
<year>2012</year>
,
<volume>7</volume>
,
<fpage>e32857</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0032857</pub-id>
.
<pub-id pub-id-type="pmid">22412934</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7075649
   |texte=   Design, Synthesis,
and Anti-RNA Virus Activity of
6′-Fluorinated-Aristeromycin Analogues
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:31244113" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021