Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000126 ( Pmc/Corpus ); précédent : 0001259; suivant : 0001270 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides</title>
<author>
<name sortKey="Teengam, Prinjaporn" sort="Teengam, Prinjaporn" uniqKey="Teengam P" first="Prinjaporn" last="Teengam">Prinjaporn Teengam</name>
<affiliation>
<nlm:aff id="aff1a">Program in Petrochemistry, Faculty of Science,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Siangproh, Weena" sort="Siangproh, Weena" uniqKey="Siangproh W" first="Weena" last="Siangproh">Weena Siangproh</name>
<affiliation>
<nlm:aff id="aff2">Department of Chemistry, Faculty of Science,
<institution>Srinakharinwirot University</institution>
, Bangkok, 10110,
<country>Thailand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tuantranont, Adisorn" sort="Tuantranont, Adisorn" uniqKey="Tuantranont A" first="Adisorn" last="Tuantranont">Adisorn Tuantranont</name>
<affiliation>
<nlm:aff id="aff3">Nanoelectronics and MEMS Laboratory,
<institution>National Electronics and Computer Technology Center</institution>
, Pathumthani 12120,
<country>Thailand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vilaivan, Tirayut" sort="Vilaivan, Tirayut" uniqKey="Vilaivan T" first="Tirayut" last="Vilaivan">Tirayut Vilaivan</name>
<affiliation>
<nlm:aff id="aff1a">Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chailapakul, Orawon" sort="Chailapakul, Orawon" uniqKey="Chailapakul O" first="Orawon" last="Chailapakul">Orawon Chailapakul</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1a">Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1a">National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials,
<institution>Chulalongkorn University</institution>
, Pathumwan, Bangkok, 10330,
<country>Thailand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Henry, Charles S" sort="Henry, Charles S" uniqKey="Henry C" first="Charles S." last="Henry">Charles S. Henry</name>
<affiliation>
<nlm:aff id="aff7">Departments of Chemistry and Chemical and Biological Engineering,
<institution>Colorado State University</institution>
, Fort Collins, Colorado 80523,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">28394582</idno>
<idno type="pmc">7077925</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7077925</idno>
<idno type="RBID">PMC:7077925</idno>
<idno type="doi">10.1021/acs.analchem.7b00255</idno>
<date when="2017">2017</date>
<idno type="wicri:Area/Pmc/Corpus">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides</title>
<author>
<name sortKey="Teengam, Prinjaporn" sort="Teengam, Prinjaporn" uniqKey="Teengam P" first="Prinjaporn" last="Teengam">Prinjaporn Teengam</name>
<affiliation>
<nlm:aff id="aff1a">Program in Petrochemistry, Faculty of Science,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Siangproh, Weena" sort="Siangproh, Weena" uniqKey="Siangproh W" first="Weena" last="Siangproh">Weena Siangproh</name>
<affiliation>
<nlm:aff id="aff2">Department of Chemistry, Faculty of Science,
<institution>Srinakharinwirot University</institution>
, Bangkok, 10110,
<country>Thailand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Tuantranont, Adisorn" sort="Tuantranont, Adisorn" uniqKey="Tuantranont A" first="Adisorn" last="Tuantranont">Adisorn Tuantranont</name>
<affiliation>
<nlm:aff id="aff3">Nanoelectronics and MEMS Laboratory,
<institution>National Electronics and Computer Technology Center</institution>
, Pathumthani 12120,
<country>Thailand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vilaivan, Tirayut" sort="Vilaivan, Tirayut" uniqKey="Vilaivan T" first="Tirayut" last="Vilaivan">Tirayut Vilaivan</name>
<affiliation>
<nlm:aff id="aff1a">Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chailapakul, Orawon" sort="Chailapakul, Orawon" uniqKey="Chailapakul O" first="Orawon" last="Chailapakul">Orawon Chailapakul</name>
<affiliation>
<nlm:aff wicri:cut=", and" id="aff1a">Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff1a">National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials,
<institution>Chulalongkorn University</institution>
, Pathumwan, Bangkok, 10330,
<country>Thailand</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Henry, Charles S" sort="Henry, Charles S" uniqKey="Henry C" first="Charles S." last="Henry">Charles S. Henry</name>
<affiliation>
<nlm:aff id="aff7">Departments of Chemistry and Chemical and Biological Engineering,
<institution>Colorado State University</institution>
, Fort Collins, Colorado 80523,
<country>United States</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Analytical Chemistry</title>
<idno type="ISSN">0003-2700</idno>
<idno type="eISSN">1520-6882</idno>
<imprint>
<date when="2017">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p content-type="toc-graphic">
<graphic xlink:href="ac7b00255_0009" id="ab-d30e205"></graphic>
</p>
<p>The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV),
<italic>Mycobacterium tuberculosis</italic>
(MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, F" uniqKey="Wei F">F. Wei</name>
</author>
<author>
<name sortKey="Lillehoj, P B" uniqKey="Lillehoj P">P. B. Lillehoj</name>
</author>
<author>
<name sortKey="Ho, C M" uniqKey="Ho C">C.-M. Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, I" uniqKey="Smith I">I. Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Burd, E M" uniqKey="Burd E">E. M. Burd</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De X0a Wit, E" uniqKey="De X0a Wit E">E. de Wit</name>
</author>
<author>
<name sortKey="Rasmussen, A L" uniqKey="Rasmussen A">A. L. Rasmussen</name>
</author>
<author>
<name sortKey="Falzarano, D" uniqKey="Falzarano D">D. Falzarano</name>
</author>
<author>
<name sortKey="Bushmaker, T" uniqKey="Bushmaker T">T. Bushmaker</name>
</author>
<author>
<name sortKey="Feldmann, F" uniqKey="Feldmann F">F. Feldmann</name>
</author>
<author>
<name sortKey="Brining, D L" uniqKey="Brining D">D. L. Brining</name>
</author>
<author>
<name sortKey="Fischer, E R" uniqKey="Fischer E">E. R. Fischer</name>
</author>
<author>
<name sortKey="Martellaro, C" uniqKey="Martellaro C">C. Martellaro</name>
</author>
<author>
<name sortKey="Okumura, A" uniqKey="Okumura A">A. Okumura</name>
</author>
<author>
<name sortKey="Chang, J" uniqKey="Chang J">J. Chang</name>
</author>
<author>
<name sortKey="Scott, D" uniqKey="Scott D">D. Scott</name>
</author>
<author>
<name sortKey="Benecke, A G" uniqKey="Benecke A">A. G. Benecke</name>
</author>
<author>
<name sortKey="Katze, M G" uniqKey="Katze M">M. G. Katze</name>
</author>
<author>
<name sortKey="Feldmann, H" uniqKey="Feldmann H">H. Feldmann</name>
</author>
<author>
<name sortKey="Munster, V J" uniqKey="Munster V">V. J. Munster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bhadra, S" uniqKey="Bhadra S">S. Bhadra</name>
</author>
<author>
<name sortKey="Jiang, Y S" uniqKey="Jiang Y">Y. S. Jiang</name>
</author>
<author>
<name sortKey="Kumar, M R" uniqKey="Kumar M">M. R. Kumar</name>
</author>
<author>
<name sortKey="Johnson, R F" uniqKey="Johnson R">R. F. Johnson</name>
</author>
<author>
<name sortKey="Hensley, L E" uniqKey="Hensley L">L. E. Hensley</name>
</author>
<author>
<name sortKey="Ellington, A D" uniqKey="Ellington A">A. D. Ellington</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, P D O" uniqKey="Davies P">P. D. O. Davies</name>
</author>
<author>
<name sortKey="Pai, M" uniqKey="Pai M">M. Pai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Steingart, K R" uniqKey="Steingart K">K. R. Steingart</name>
</author>
<author>
<name sortKey="Ng, V" uniqKey="Ng V">V. Ng</name>
</author>
<author>
<name sortKey="Henry, M" uniqKey="Henry M">M. Henry</name>
</author>
<author>
<name sortKey="Hopewell, P C" uniqKey="Hopewell P">P. C. Hopewell</name>
</author>
<author>
<name sortKey="Ramsay, A" uniqKey="Ramsay A">A. Ramsay</name>
</author>
<author>
<name sortKey="Cunningham, J" uniqKey="Cunningham J">J. Cunningham</name>
</author>
<author>
<name sortKey="Urbanczik, R" uniqKey="Urbanczik R">R. Urbanczik</name>
</author>
<author>
<name sortKey="Perkins, M D" uniqKey="Perkins M">M. D. Perkins</name>
</author>
<author>
<name sortKey="Aziz, M A" uniqKey="Aziz M">M. A. Aziz</name>
</author>
<author>
<name sortKey="Pai, M" uniqKey="Pai M">M. Pai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J J" uniqKey="Lee J">J. J. Lee</name>
</author>
<author>
<name sortKey="Suo, J" uniqKey="Suo J">J. Suo</name>
</author>
<author>
<name sortKey="Lin, C B" uniqKey="Lin C">C. B. Lin</name>
</author>
<author>
<name sortKey="Wang, J D" uniqKey="Wang J">J. D. Wang</name>
</author>
<author>
<name sortKey="Lin, T Y" uniqKey="Lin T">T. Y. Lin</name>
</author>
<author>
<name sortKey="Tsai, Y C" uniqKey="Tsai Y">Y. C. Tsai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Al Zamel, F A" uniqKey="Al Zamel F">F. A. Al-Zamel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Noordhoek, G T" uniqKey="Noordhoek G">G. T. Noordhoek</name>
</author>
<author>
<name sortKey="Kolk, A H" uniqKey="Kolk A">A. H. Kolk</name>
</author>
<author>
<name sortKey="Bjune, G" uniqKey="Bjune G">G. Bjune</name>
</author>
<author>
<name sortKey="Catty, D" uniqKey="Catty D">D. Catty</name>
</author>
<author>
<name sortKey="Dale, J W" uniqKey="Dale J">J. W. Dale</name>
</author>
<author>
<name sortKey="Fine, P E" uniqKey="Fine P">P. E. Fine</name>
</author>
<author>
<name sortKey="Godfrey Faussett, P" uniqKey="Godfrey Faussett P">P. Godfrey-Faussett</name>
</author>
<author>
<name sortKey="Cho, S N" uniqKey="Cho S">S. N. Cho</name>
</author>
<author>
<name sortKey="Shinnick, T" uniqKey="Shinnick T">T. Shinnick</name>
</author>
<author>
<name sortKey="Svenson, S B" uniqKey="Svenson S">S. B. Svenson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, Y C" uniqKey="Yang Y">Y.-C. Yang</name>
</author>
<author>
<name sortKey="Lu, P L" uniqKey="Lu P">P.-L. Lu</name>
</author>
<author>
<name sortKey="Huang, S C" uniqKey="Huang S">S. C. Huang</name>
</author>
<author>
<name sortKey="Jenh, Y S" uniqKey="Jenh Y">Y.-S. Jenh</name>
</author>
<author>
<name sortKey="Jou, R" uniqKey="Jou R">R. Jou</name>
</author>
<author>
<name sortKey="Chang, T C" uniqKey="Chang T">T. C. Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lorincz, A" uniqKey="Lorincz A">A. Lörincz</name>
</author>
<author>
<name sortKey="Anthony, J" uniqKey="Anthony J">J. Anthony</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gravitt, P E" uniqKey="Gravitt P">P. E. Gravitt</name>
</author>
<author>
<name sortKey="Jamshidi, R" uniqKey="Jamshidi R">R. Jamshidi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, A W" uniqKey="Martinez A">A. W. Martinez</name>
</author>
<author>
<name sortKey="Phillips, S T" uniqKey="Phillips S">S. T. Phillips</name>
</author>
<author>
<name sortKey="Butte, M J" uniqKey="Butte M">M. J. Butte</name>
</author>
<author>
<name sortKey="Whitesides, G M" uniqKey="Whitesides G">G. M. Whitesides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cate, D M" uniqKey="Cate D">D. M. Cate</name>
</author>
<author>
<name sortKey="Adkins, J A" uniqKey="Adkins J">J. A. Adkins</name>
</author>
<author>
<name sortKey="Mettakoonpitak, J" uniqKey="Mettakoonpitak J">J. Mettakoonpitak</name>
</author>
<author>
<name sortKey="Henry, C S" uniqKey="Henry C">C. S. Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yetisen, A K" uniqKey="Yetisen A">A. K. Yetisen</name>
</author>
<author>
<name sortKey="Akram, M S" uniqKey="Akram M">M. S. Akram</name>
</author>
<author>
<name sortKey="Lowe, C R" uniqKey="Lowe C">C. R. Lowe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adkins, J" uniqKey="Adkins J">J. Adkins</name>
</author>
<author>
<name sortKey="Boehle, K" uniqKey="Boehle K">K. Boehle</name>
</author>
<author>
<name sortKey="Henry, C" uniqKey="Henry C">C. Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mettakoonpitak, J" uniqKey="Mettakoonpitak J">J. Mettakoonpitak</name>
</author>
<author>
<name sortKey="Boehle, K" uniqKey="Boehle K">K. Boehle</name>
</author>
<author>
<name sortKey="Nantaphol, S" uniqKey="Nantaphol S">S. Nantaphol</name>
</author>
<author>
<name sortKey="Teengam, P" uniqKey="Teengam P">P. Teengam</name>
</author>
<author>
<name sortKey="Adkins, J A" uniqKey="Adkins J">J. A. Adkins</name>
</author>
<author>
<name sortKey="Srisa Art, M" uniqKey="Srisa Art M">M. Srisa-Art</name>
</author>
<author>
<name sortKey="Henry, C S" uniqKey="Henry C">C. S. Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nery, E W" uniqKey="Nery E">E. W. Nery</name>
</author>
<author>
<name sortKey="Kubota, L T" uniqKey="Kubota L">L. T. Kubota</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rattanarat, P" uniqKey="Rattanarat P">P. Rattanarat</name>
</author>
<author>
<name sortKey="Dungchai, W" uniqKey="Dungchai W">W. Dungchai</name>
</author>
<author>
<name sortKey="Cate, D" uniqKey="Cate D">D. Cate</name>
</author>
<author>
<name sortKey="Volckens, J" uniqKey="Volckens J">J. Volckens</name>
</author>
<author>
<name sortKey="Chailapakul, O" uniqKey="Chailapakul O">O. Chailapakul</name>
</author>
<author>
<name sortKey="Henry, C S" uniqKey="Henry C">C. S. Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liana, D D" uniqKey="Liana D">D. D. Liana</name>
</author>
<author>
<name sortKey="Raguse, B" uniqKey="Raguse B">B. Raguse</name>
</author>
<author>
<name sortKey="Gooding, J J" uniqKey="Gooding J">J. J. Gooding</name>
</author>
<author>
<name sortKey="Chow, E" uniqKey="Chow E">E. Chow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apilux, A" uniqKey="Apilux A">A. Apilux</name>
</author>
<author>
<name sortKey="Siangproh, W" uniqKey="Siangproh W">W. Siangproh</name>
</author>
<author>
<name sortKey="Praphairaksit, N" uniqKey="Praphairaksit N">N. Praphairaksit</name>
</author>
<author>
<name sortKey="Chailapakul, O" uniqKey="Chailapakul O">O. Chailapakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apilux, A" uniqKey="Apilux A">A. Apilux</name>
</author>
<author>
<name sortKey="Dungchai, W" uniqKey="Dungchai W">W. Dungchai</name>
</author>
<author>
<name sortKey="Siangproh, W" uniqKey="Siangproh W">W. Siangproh</name>
</author>
<author>
<name sortKey="Praphairaksit, N" uniqKey="Praphairaksit N">N. Praphairaksit</name>
</author>
<author>
<name sortKey="Henry, C S" uniqKey="Henry C">C. S. Henry</name>
</author>
<author>
<name sortKey="Chailapakul, O" uniqKey="Chailapakul O">O. Chailapakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaiyo, S" uniqKey="Chaiyo S">S. Chaiyo</name>
</author>
<author>
<name sortKey="Siangproh, W" uniqKey="Siangproh W">W. Siangproh</name>
</author>
<author>
<name sortKey="Apilux, A" uniqKey="Apilux A">A. Apilux</name>
</author>
<author>
<name sortKey="Chailapakul, O" uniqKey="Chailapakul O">O. Chailapakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cate, D M" uniqKey="Cate D">D. M. Cate</name>
</author>
<author>
<name sortKey="Nanthasurasak, P" uniqKey="Nanthasurasak P">P. Nanthasurasak</name>
</author>
<author>
<name sortKey="Riwkulkajorn, P" uniqKey="Riwkulkajorn P">P. Riwkulkajorn</name>
</author>
<author>
<name sortKey="L Range, C" uniqKey="L Range C">C. L’Orange</name>
</author>
<author>
<name sortKey="Henry, C S" uniqKey="Henry C">C. S. Henry</name>
</author>
<author>
<name sortKey="Volckens, J" uniqKey="Volckens J">J. Volckens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shim, S Y" uniqKey="Shim S">S.-Y. Shim</name>
</author>
<author>
<name sortKey="Lim, D K" uniqKey="Lim D">D.-K. Lim</name>
</author>
<author>
<name sortKey="Nam, J M" uniqKey="Nam J">J.-M. Nam</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baptista, P" uniqKey="Baptista P">P. Baptista</name>
</author>
<author>
<name sortKey="Pereira, E" uniqKey="Pereira E">E. Pereira</name>
</author>
<author>
<name sortKey="Eaton, P" uniqKey="Eaton P">P. Eaton</name>
</author>
<author>
<name sortKey="Doria, G" uniqKey="Doria G">G. Doria</name>
</author>
<author>
<name sortKey="Miranda, A" uniqKey="Miranda A">A. Miranda</name>
</author>
<author>
<name sortKey="Gomes, I" uniqKey="Gomes I">I. Gomes</name>
</author>
<author>
<name sortKey="Quaresma, P" uniqKey="Quaresma P">P. Quaresma</name>
</author>
<author>
<name sortKey="Franco, R" uniqKey="Franco R">R. Franco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhao, W" uniqKey="Zhao W">W. Zhao</name>
</author>
<author>
<name sortKey="Brook, M A" uniqKey="Brook M">M. A. Brook</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thaxton, C S" uniqKey="Thaxton C">C. S. Thaxton</name>
</author>
<author>
<name sortKey="Georganopoulou, D G" uniqKey="Georganopoulou D">D. G. Georganopoulou</name>
</author>
<author>
<name sortKey="Mirkin, C A" uniqKey="Mirkin C">C. A. Mirkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H. Li</name>
</author>
<author>
<name sortKey="Cui, Z" uniqKey="Cui Z">Z. Cui</name>
</author>
<author>
<name sortKey="Han, C" uniqKey="Han C">C. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilela, D" uniqKey="Vilela D">D. Vilela</name>
</author>
<author>
<name sortKey="Gonzalez, M C" uniqKey="Gonzalez M">M. C. González</name>
</author>
<author>
<name sortKey="Escarpa, A" uniqKey="Escarpa A">A. Escarpa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wei, H" uniqKey="Wei H">H. Wei</name>
</author>
<author>
<name sortKey="Chen, C" uniqKey="Chen C">C. Chen</name>
</author>
<author>
<name sortKey="Han, B" uniqKey="Han B">B. Han</name>
</author>
<author>
<name sortKey="Wang, E" uniqKey="Wang E">E. Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, J S" uniqKey="Lee J">J.-S. Lee</name>
</author>
<author>
<name sortKey="Lytton Jean, A K R" uniqKey="Lytton Jean A">A. K. R. Lytton-Jean</name>
</author>
<author>
<name sortKey="Hurst, S J" uniqKey="Hurst S">S. J. Hurst</name>
</author>
<author>
<name sortKey="Mirkin, C A" uniqKey="Mirkin C">C. A. Mirkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thompson, D G" uniqKey="Thompson D">D. G. Thompson</name>
</author>
<author>
<name sortKey="Enright, A" uniqKey="Enright A">A. Enright</name>
</author>
<author>
<name sortKey="Faulds, K" uniqKey="Faulds K">K. Faulds</name>
</author>
<author>
<name sortKey="Smith, W E" uniqKey="Smith W">W. E. Smith</name>
</author>
<author>
<name sortKey="Graham, D" uniqKey="Graham D">D. Graham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yeo, S Y" uniqKey="Yeo S">S. Y. Yeo</name>
</author>
<author>
<name sortKey="Lee, H J" uniqKey="Lee H">H. J. Lee</name>
</author>
<author>
<name sortKey="Jeong, S H" uniqKey="Jeong S">S. H. Jeong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chimentao, R J" uniqKey="Chimentao R">R. J. Chimentao</name>
</author>
<author>
<name sortKey="Kirm, I" uniqKey="Kirm I">I. Kirm</name>
</author>
<author>
<name sortKey="Medina, F" uniqKey="Medina F">F. Medina</name>
</author>
<author>
<name sortKey="Rodriguez, X" uniqKey="Rodriguez X">X. Rodriguez</name>
</author>
<author>
<name sortKey="Cesteros, Y" uniqKey="Cesteros Y">Y. Cesteros</name>
</author>
<author>
<name sortKey="Salagre, P" uniqKey="Salagre P">P. Salagre</name>
</author>
<author>
<name sortKey="Sueiras, J E" uniqKey="Sueiras J">J. E. Sueiras</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, B" uniqKey="He B">B. He</name>
</author>
<author>
<name sortKey="Tan, J J" uniqKey="Tan J">J. J. Tan</name>
</author>
<author>
<name sortKey="Liew, K Y" uniqKey="Liew K">K. Y. Liew</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abou X0a El Nour, K M M" uniqKey="Abou X0a El Nour K">K. M. M. Abou El-Nour</name>
</author>
<author>
<name sortKey="Eftaiha, A A" uniqKey="Eftaiha A">A. a. Eftaiha</name>
</author>
<author>
<name sortKey="Al Warthan, A" uniqKey="Al Warthan A">A. Al-Warthan</name>
</author>
<author>
<name sortKey="Ammar, R A A" uniqKey="Ammar R">R. A. A. Ammar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iravani, S" uniqKey="Iravani S">S. Iravani</name>
</author>
<author>
<name sortKey="Korbekandi, H" uniqKey="Korbekandi H">H. Korbekandi</name>
</author>
<author>
<name sortKey="Mirmohammadi, S V" uniqKey="Mirmohammadi S">S. V. Mirmohammadi</name>
</author>
<author>
<name sortKey="Zolfaghari, B" uniqKey="Zolfaghari B">B. Zolfaghari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nielsen, P" uniqKey="Nielsen P">P. Nielsen</name>
</author>
<author>
<name sortKey="Egholm, M" uniqKey="Egholm M">M. Egholm</name>
</author>
<author>
<name sortKey="Berg, R" uniqKey="Berg R">R. Berg</name>
</author>
<author>
<name sortKey="Buchardt, O" uniqKey="Buchardt O">O. Buchardt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Egholm, M" uniqKey="Egholm M">M. Egholm</name>
</author>
<author>
<name sortKey="Buchardt, O" uniqKey="Buchardt O">O. Buchardt</name>
</author>
<author>
<name sortKey="Christensen, L" uniqKey="Christensen L">L. Christensen</name>
</author>
<author>
<name sortKey="Behrens, C" uniqKey="Behrens C">C. Behrens</name>
</author>
<author>
<name sortKey="Freier, S M" uniqKey="Freier S">S. M. Freier</name>
</author>
<author>
<name sortKey="Driver, D A" uniqKey="Driver D">D. A. Driver</name>
</author>
<author>
<name sortKey="Berg, R H" uniqKey="Berg R">R. H. Berg</name>
</author>
<author>
<name sortKey="Kim, S K" uniqKey="Kim S">S. K. Kim</name>
</author>
<author>
<name sortKey="Norden, B" uniqKey="Norden B">B. Norden</name>
</author>
<author>
<name sortKey="Nielsen, P E" uniqKey="Nielsen P">P. E. Nielsen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Su, X" uniqKey="Su X">X. Su</name>
</author>
<author>
<name sortKey="Kanjanawarut, R" uniqKey="Kanjanawarut R">R. Kanjanawarut</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kanjanawarut, R" uniqKey="Kanjanawarut R">R. Kanjanawarut</name>
</author>
<author>
<name sortKey="Su, X" uniqKey="Su X">X. Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilaivan, T" uniqKey="Vilaivan T">T. Vilaivan</name>
</author>
<author>
<name sortKey="Srisuwannaket, C" uniqKey="Srisuwannaket C">C. Srisuwannaket</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vilaivan, T" uniqKey="Vilaivan T">T. Vilaivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jampasa, S" uniqKey="Jampasa S">S. Jampasa</name>
</author>
<author>
<name sortKey="Wonsawat, W" uniqKey="Wonsawat W">W. Wonsawat</name>
</author>
<author>
<name sortKey="Rodthongkum, N" uniqKey="Rodthongkum N">N. Rodthongkum</name>
</author>
<author>
<name sortKey="Siangproh, W" uniqKey="Siangproh W">W. Siangproh</name>
</author>
<author>
<name sortKey="Yanatatsaneejit, P" uniqKey="Yanatatsaneejit P">P. Yanatatsaneejit</name>
</author>
<author>
<name sortKey="Vilaivan, T" uniqKey="Vilaivan T">T. Vilaivan</name>
</author>
<author>
<name sortKey="Chailapakul, O" uniqKey="Chailapakul O">O. Chailapakul</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kongpeth, J" uniqKey="Kongpeth J">J. Kongpeth</name>
</author>
<author>
<name sortKey="Jampasa, S" uniqKey="Jampasa S">S. Jampasa</name>
</author>
<author>
<name sortKey="Chaumpluk, P" uniqKey="Chaumpluk P">P. Chaumpluk</name>
</author>
<author>
<name sortKey="Chailapakul, O" uniqKey="Chailapakul O">O. Chailapakul</name>
</author>
<author>
<name sortKey="Vilaivan, T" uniqKey="Vilaivan T">T. Vilaivan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jirakittiwut, N" uniqKey="Jirakittiwut N">N. Jirakittiwut</name>
</author>
<author>
<name sortKey="Panyain, N" uniqKey="Panyain N">N. Panyain</name>
</author>
<author>
<name sortKey="Nuanyai, T" uniqKey="Nuanyai T">T. Nuanyai</name>
</author>
<author>
<name sortKey="Vilaivan, T" uniqKey="Vilaivan T">T. Vilaivan</name>
</author>
<author>
<name sortKey="Praneenararat, T" uniqKey="Praneenararat T">T. Praneenararat</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Laliwala, S K" uniqKey="Laliwala S">S. K. Laliwala</name>
</author>
<author>
<name sortKey="Mehta, V N" uniqKey="Mehta V">V. N. Mehta</name>
</author>
<author>
<name sortKey="Rohit, J V" uniqKey="Rohit J">J. V. Rohit</name>
</author>
<author>
<name sortKey="Kailasa, S K" uniqKey="Kailasa S">S. K. Kailasa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carrilho, E" uniqKey="Carrilho E">E. Carrilho</name>
</author>
<author>
<name sortKey="Martinez, A W" uniqKey="Martinez A">A. W. Martinez</name>
</author>
<author>
<name sortKey="Whitesides, G M" uniqKey="Whitesides G">G. M. Whitesides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Crooks, R M" uniqKey="Crooks R">R. M. Crooks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Xiang, Y" uniqKey="Xiang Y">Y. Xiang</name>
</author>
<author>
<name sortKey="Lu, Y" uniqKey="Lu Y">Y. Lu</name>
</author>
<author>
<name sortKey="Crooks, R M" uniqKey="Crooks R">R. M. Crooks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mentele, M M" uniqKey="Mentele M">M. M. Mentele</name>
</author>
<author>
<name sortKey="Cunningham, J" uniqKey="Cunningham J">J. Cunningham</name>
</author>
<author>
<name sortKey="Koehler, K" uniqKey="Koehler K">K. Koehler</name>
</author>
<author>
<name sortKey="Volckens, J" uniqKey="Volckens J">J. Volckens</name>
</author>
<author>
<name sortKey="Henry, C S" uniqKey="Henry C">C. S. Henry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huynh, K A" uniqKey="Huynh K">K. A. Huynh</name>
</author>
<author>
<name sortKey="Chen, K L" uniqKey="Chen K">K. L. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Lenhart, J J" uniqKey="Lenhart J">J. J. Lenhart</name>
</author>
<author>
<name sortKey="Walker, H W" uniqKey="Walker H">H. W. Walker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirato, K" uniqKey="Shirato K">K. Shirato</name>
</author>
<author>
<name sortKey="Yano, T" uniqKey="Yano T">T. Yano</name>
</author>
<author>
<name sortKey="Senba, S" uniqKey="Senba S">S. Senba</name>
</author>
<author>
<name sortKey="Akachi, S" uniqKey="Akachi S">S. Akachi</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Nishinaka, T" uniqKey="Nishinaka T">T. Nishinaka</name>
</author>
<author>
<name sortKey="Notomi, T" uniqKey="Notomi T">T. Notomi</name>
</author>
<author>
<name sortKey="Matsuyama, S" uniqKey="Matsuyama S">S. Matsuyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Azhar, E I" uniqKey="Azhar E">E. I. Azhar</name>
</author>
<author>
<name sortKey="Hashem, A M" uniqKey="Hashem A">A. M. Hashem</name>
</author>
<author>
<name sortKey="El Kafrawy, S A" uniqKey="El Kafrawy S">S. A. El-Kafrawy</name>
</author>
<author>
<name sortKey="Sohrab, S S" uniqKey="Sohrab S">S. S. Sohrab</name>
</author>
<author>
<name sortKey="Aburizaiza, A S" uniqKey="Aburizaiza A">A. S. Aburizaiza</name>
</author>
<author>
<name sortKey="Farraj, S A" uniqKey="Farraj S">S. A. Farraj</name>
</author>
<author>
<name sortKey="Hassan, A M" uniqKey="Hassan A">A. M. Hassan</name>
</author>
<author>
<name sortKey="Al Saeed, M S" uniqKey="Al Saeed M">M. S. Al-Saeed</name>
</author>
<author>
<name sortKey="Jamjoom, G A" uniqKey="Jamjoom G">G. A. Jamjoom</name>
</author>
<author>
<name sortKey="Madani, T A" uniqKey="Madani T">T. A. Madani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abreu, A L P" uniqKey="Abreu A">A. L. P. Abreu</name>
</author>
<author>
<name sortKey="Souza, R P" uniqKey="Souza R">R. P. Souza</name>
</author>
<author>
<name sortKey="Gimenes, F" uniqKey="Gimenes F">F. Gimenes</name>
</author>
<author>
<name sortKey="Consolaro, M E L" uniqKey="Consolaro M">M. E. L. Consolaro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Villa, L L" uniqKey="Villa L">L. L. Villa</name>
</author>
<author>
<name sortKey="Denny, L" uniqKey="Denny L">L. Denny</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Anal Chem</journal-id>
<journal-id journal-id-type="iso-abbrev">Anal. Chem</journal-id>
<journal-id journal-id-type="publisher-id">ac</journal-id>
<journal-id journal-id-type="coden">ancham</journal-id>
<journal-title-group>
<journal-title>Analytical Chemistry</journal-title>
</journal-title-group>
<issn pub-type="ppub">0003-2700</issn>
<issn pub-type="epub">1520-6882</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">28394582</article-id>
<article-id pub-id-type="pmc">7077925</article-id>
<article-id pub-id-type="doi">10.1021/acs.analchem.7b00255</article-id>
<article-categories>
<subj-group>
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Multiplex Paper-Based Colorimetric DNA Sensor Using Pyrrolidinyl Peptide Nucleic Acid-Induced AgNPs Aggregation for Detecting MERS-CoV, MTB, and HPV Oligonucleotides</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name>
<surname>Teengam</surname>
<given-names>Prinjaporn</given-names>
</name>
<xref rid="aff1a" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath2">
<name>
<surname>Siangproh</surname>
<given-names>Weena</given-names>
</name>
<xref rid="aff2" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" id="ath3">
<name>
<surname>Tuantranont</surname>
<given-names>Adisorn</given-names>
</name>
<xref rid="aff3" ref-type="aff">§</xref>
</contrib>
<contrib contrib-type="author" id="ath4">
<name>
<surname>Vilaivan</surname>
<given-names>Tirayut</given-names>
</name>
<xref rid="aff1a" ref-type="aff"></xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath5">
<name>
<surname>Chailapakul</surname>
<given-names>Orawon</given-names>
</name>
<xref rid="cor2" ref-type="other">*</xref>
<xref rid="aff1a" ref-type="aff"></xref>
<xref rid="aff1a" ref-type="aff">#</xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath6">
<name>
<surname>Henry</surname>
<given-names>Charles S.</given-names>
</name>
<xref rid="cor1" ref-type="other">*</xref>
<xref rid="aff7" ref-type="aff"></xref>
</contrib>
<aff id="aff1a">
<sup></sup>
Program in Petrochemistry, Faculty of Science,
<sup></sup>
Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science,
<sup></sup>
Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, and
<sup>#</sup>
National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials,
<institution>Chulalongkorn University</institution>
, Pathumwan, Bangkok, 10330,
<country>Thailand</country>
</aff>
<aff id="aff2">
<label></label>
Department of Chemistry, Faculty of Science,
<institution>Srinakharinwirot University</institution>
, Bangkok, 10110,
<country>Thailand</country>
</aff>
<aff id="aff3">
<label>§</label>
Nanoelectronics and MEMS Laboratory,
<institution>National Electronics and Computer Technology Center</institution>
, Pathumthani 12120,
<country>Thailand</country>
</aff>
<aff id="aff7">
<label></label>
Departments of Chemistry and Chemical and Biological Engineering,
<institution>Colorado State University</institution>
, Fort Collins, Colorado 80523,
<country>United States</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
E-mail:
<email>chuck.henry@colostate.edu</email>
.</corresp>
<corresp id="cor2">
<label>*</label>
E-mail:
<email>corawon@chula.ac.th</email>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>10</day>
<month>04</month>
<year>2017</year>
</pub-date>
<pub-date pub-type="ppub">
<day>16</day>
<month>05</month>
<year>2017</year>
</pub-date>
<volume>89</volume>
<issue>10</issue>
<fpage>5428</fpage>
<lpage>5435</lpage>
<history>
<date date-type="received">
<day>20</day>
<month>01</month>
<year>2017</year>
</date>
<date date-type="accepted">
<day>10</day>
<month>04</month>
<year>2017</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2017 American Chemical Society</copyright-statement>
<copyright-year>2017</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
<license license-type="open-access">
<license-p>This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract>
<p content-type="toc-graphic">
<graphic xlink:href="ac7b00255_0009" id="ab-d30e205"></graphic>
</p>
<p>The development of simple fluorescent and colorimetric assays that enable point-of-care DNA and RNA detection has been a topic of significant research because of the utility of such assays in resource limited settings. The most common motifs utilize hybridization to a complementary detection strand coupled with a sensitive reporter molecule. Here, a paper-based colorimetric assay for DNA detection based on pyrrolidinyl peptide nucleic acid (acpcPNA)-induced nanoparticle aggregation is reported as an alternative to traditional colorimetric approaches. PNA probes are an attractive alternative to DNA and RNA probes because they are chemically and biologically stable, easily synthesized, and hybridize efficiently with the complementary DNA strands. The acpcPNA probe contains a single positive charge from the lysine at C-terminus and causes aggregation of citrate anion-stabilized silver nanoparticles (AgNPs) in the absence of complementary DNA. In the presence of target DNA, formation of the anionic DNA-acpcPNA duplex results in dispersion of the AgNPs as a result of electrostatic repulsion, giving rise to a detectable color change. Factors affecting the sensitivity and selectivity of this assay were investigated, including ionic strength, AgNP concentration, PNA concentration, and DNA strand mismatches. The method was used for screening of synthetic Middle East respiratory syndrome coronavirus (MERS-CoV),
<italic>Mycobacterium tuberculosis</italic>
(MTB), and human papillomavirus (HPV) DNA based on a colorimetric paper-based analytical device developed using the aforementioned principle. The oligonucleotide targets were detected by measuring the color change of AgNPs, giving detection limits of 1.53 (MERS-CoV), 1.27 (MTB), and 1.03 nM (HPV). The acpcPNA probe exhibited high selectivity for the complementary oligonucleotides over single-base-mismatch, two-base-mismatch, and noncomplementary DNA targets. The proposed paper-based colorimetric DNA sensor has potential to be an alternative approach for simple, rapid, sensitive, and selective DNA detection.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>ac7b00255</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>ac7b00255</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value></meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="notes-d1e21-autogenerated">
<fn-group>
<fn fn-type="" id="d30e207">
<p>This article is made available for a limited time sponsored by ACS under the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/page/policy/freetoread/index.html">ACS Free to Read License</ext-link>
, which permits copying and redistribution of the article for non-commercial scholarly purposes.</p>
</fn>
</fn-group>
</notes>
</front>
<body>
<p id="sec1">Infectious diseases represent a major threat to human health in developed and developing countries alike. DNA alterations contribute to different types of diseases; therefore, the detection of specific DNA sequences plays a crucial role in the development method for early stage treatment and monitoring of genetic-related diseases. DNA diagnostics can provide sequence-specific detection, especially for single-nucleotide polymorphisms (SNPs),
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
</sup>
which critical for a range of applications including the diagnosis of human diseases and bacterial/viral infections.</p>
<p>Middle East respiratory syndrome (MERS), tuberculosis (TB), and cervical cancers related to human papilloma virus (HPV) are examples of infectious diseases caused by bacterial and viral infections that benefit greatly from DNA detection. TB is an infectious disease caused by mycobacteria, usually
<italic>M. tuberculosis</italic>
(MTB) in humans.
<sup>
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
HPV has been shown to be a major cause of cervical cancer.
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
</sup>
Middle East Respiratory Syndrome coronavirus (MERS-CoV) has recently emerged as an infectious disease with a high fatality rate in humans.
<sup>
<xref ref-type="bibr" rid="ref4">4</xref>
</sup>
Diagnostic methods developed for these infectious diseases include reverse transcription polymerase chain reaction (RT-PCR) for MERS-CoV,
<sup>
<xref ref-type="bibr" rid="ref5">5</xref>
</sup>
sputum smear microscopy, culture of bacilli, and molecular species diagnostics for MTB
<sup>
<xref ref-type="bibr" rid="ref6">6</xref>
<xref ref-type="bibr" rid="ref11">11</xref>
</sup>
and Digene Hybrid Capture assay (HC2) and Pap smear test for HPV.
<sup>
<xref ref-type="bibr" rid="ref12">12</xref>
,
<xref ref-type="bibr" rid="ref13">13</xref>
</sup>
While these techniques have been used for successful detection, they are difficult to implement in point-of-care clinical diagnostics particularly in developing countries lacking specialized medical facilities and skilled personnel. Therefore, simple, rapid, low-cost, and highly accurate on-site diagnostic platforms amenable to nucleic acid detection remain a challenge for early detection of infectious diseases for better patient management and infection control. Although DNA amplification is still needed with the current method to provide high sensitivity, we seek to further improve selectivity and assay simplicity to give immediate and quantitative responses in resource limited settings.</p>
<p>Paper-based analytical devices (PADs) are a point-of-use technology that recently received renewed interest because they are simple, inexpensive, portable, and disposable.
<sup>
<xref ref-type="bibr" rid="ref14">14</xref>
<xref ref-type="bibr" rid="ref16">16</xref>
</sup>
To date, PADs have been extensively used for applications ranging from environmental analysis to clinical diagnostic assays.
<sup>
<xref ref-type="bibr" rid="ref15">15</xref>
,
<xref ref-type="bibr" rid="ref17">17</xref>
,
<xref ref-type="bibr" rid="ref18">18</xref>
</sup>
Colorimetric assays are particularly attractive when coupled with PADs due to their ease-of-use, lack of complicated external equipment and ability to provide semiquantitative results.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
<xref ref-type="bibr" rid="ref21">21</xref>
</sup>
Moreover, quantitative analysis of colorimetric assays can be accomplished using simple optical technologies such as digital cameras
<sup>
<xref ref-type="bibr" rid="ref22">22</xref>
<xref ref-type="bibr" rid="ref24">24</xref>
</sup>
and office scanners
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
,
<xref ref-type="bibr" rid="ref25">25</xref>
</sup>
combined with image processing software to carry out color, hue, and intensity measurements. In the field of clinical diagnostics, the advantages of simplicity, sensitivity, and low-cost are key reasons that make PADs coupled with colorimetric detection an effective diagnostic tool relative to traditional methods.</p>
<p>Colorimetric assays based on the aggregation of silver (AgNPs) and gold nanoparticles (AuNPs) have attracted increasing attention in biomedical applications. The optical properties of these nanomaterials depend on their size and shape.
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
<xref ref-type="bibr" rid="ref31">31</xref>
</sup>
AgNPs are known to have a higher extinction coefficient compared to AuNPs,
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
leading to improved optical sensitivity. Chemical reduction of silver salts is frequently used to synthesize AgNPs; while specific control of shape and size distribution is achieved by varying the reducing agents and stabilizers.
<sup>
<xref ref-type="bibr" rid="ref35">35</xref>
<xref ref-type="bibr" rid="ref37">37</xref>
</sup>
Among stabilizing agents, negatively charged citrate has been widely used.
<sup>
<xref ref-type="bibr" rid="ref38">38</xref>
,
<xref ref-type="bibr" rid="ref39">39</xref>
</sup>
Recently, colorimetric assays based on AgNPs aggregation for DNA detection has been reported.
<sup>
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
Colorimetric DNA detection using AgNPs usually involves modifying the particles with a DNA probe and mixing them with the DNA target containing the complementary sequence. When the hybridization of probe and target DNA occurs, the AgNPs aggregate and change color.
<sup>
<xref ref-type="bibr" rid="ref33">33</xref>
,
<xref ref-type="bibr" rid="ref34">34</xref>
</sup>
The assay principal has been further adopted using charge-neutral peptide nucleic acids (PNA)
<sup>
<xref ref-type="bibr" rid="ref40">40</xref>
,
<xref ref-type="bibr" rid="ref41">41</xref>
</sup>
as the hybridization agent. PNA causes aggregation of metal nanoparticles in solution without immobilization, thus, simplifying the assay.
<sup>
<xref ref-type="bibr" rid="ref42">42</xref>
,
<xref ref-type="bibr" rid="ref43">43</xref>
</sup>
Finally, PNA-based nanoparticle aggregation assays also provide a high hybridization efficiency of PNA-DNA duplexes leading to a rapid color change.
<sup>
<xref ref-type="bibr" rid="ref43">43</xref>
</sup>
</p>
<p>Recently, Vilaivan’s group proposed a new conformationally constrained pyrrolidinyl PNA system which possesses an α,β-peptide backbone derived from
<sc>d</sc>
-proline/2-aminocyclopentanecarboxylic acid (known as acpcPNA).
<sup>
<xref ref-type="bibr" rid="ref44">44</xref>
,
<xref ref-type="bibr" rid="ref45">45</xref>
</sup>
Compared to Nielsen’s PNA,
<sup>
<xref ref-type="bibr" rid="ref40">40</xref>
</sup>
acpcPNA exhibits a stronger affinity and higher sequence specificity binding to DNA. acpcPNA exhibits the characteristic selectivity of antiparallel binding to the target DNA and low tendency to self-hybridize. Moreover, the nucleobases and backbone of acpcPNA can be modified to increase molecular functionality. These combined properties make acpcPNA an attractive candidate as a probe for biological applications.
<sup>
<xref ref-type="bibr" rid="ref46">46</xref>
<xref ref-type="bibr" rid="ref48">48</xref>
</sup>
</p>
<p>Here, the multiplex colorimetric PAD for DNA detection based on the aggregation of AgNPs induced by acpcPNA is reported. acpcPNA bearing a positively charged lysine modification at C-terminus was designed as the probe. The cationic PNA probe can interact with the negatively charged AgNPs leading to nanoparticle aggregation and a significant color change. This proposed sensor was used for simultaneous detection of MERS-CoV, MTB, and HPV. The developed paper-based DNA sensor has potential as an alternative diagnostic device for simple, rapid, sensitive, and selective DNA/RNA detection.</p>
<sec id="sec2">
<title>Experimental Section</title>
<sec id="sec2.1">
<title>Chemicals and Materials</title>
<p>Analytical grade reagents, including AgNO
<sub>3</sub>
, NaBH
<sub>4</sub>
, and sodium citrate from Sigma-Aldrich, KH
<sub>2</sub>
PO
<sub>4</sub>
and KCl from Fisher Scientific, Na
<sub>2</sub>
HPO
<sub>4</sub>
from Mallinckrodt, and NaCl from Macron, were used without further purification. A total of 18 M Ω·cm
<sup>–1</sup>
resistance water was obtained from a Millipore Milli-Q water system. Synthetic DNA oligonucleotides were obtained from Biosearch Technologies. The sequences of DNA oligonucleotides are shown in
<xref rid="tbl1" ref-type="other">Table
<xref rid="tbl1" ref-type="other">1</xref>
</xref>
.</p>
<table-wrap id="tbl1" position="float">
<label>Table 1</label>
<caption>
<title>List of Oligonucleotide Used in This Study</title>
</caption>
<table frame="hsides" rules="groups" border="0">
<colgroup>
<col align="left"></col>
<col align="left"></col>
</colgroup>
<thead>
<tr>
<th style="border:none;" align="center">oligonucleotide</th>
<th style="border:none;" align="center">sequence (5′-3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border:none;" align="left">MERS-CoV</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">complementary DNA</td>
<td style="border:none;" align="left">5′-CGATTATGTGAAGAG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">two-base-mismatch</td>
<td style="border:none;" align="left">5′-CGATTAT
<underline>C</underline>
TGA
<underline>G</underline>
GAG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">noncomplementary DNA</td>
<td style="border:none;" align="left">5′-TTCGCACAGTGGTCA-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">MTB</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">complementary DNA</td>
<td style="border:none;" align="left">5′-ATAACGTGTTTCTTG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">single-base-mismatch</td>
<td style="border:none;" align="left">5′-ATAACGT
<underline>C</underline>
TTTCTTG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">noncomplementary DNA 1</td>
<td style="border:none;" align="left">5′-TGGCTAGCCGCTCCT-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">noncomplementary DNA 2</td>
<td style="border:none;" align="left">5′-CACTTGCCTACACCA-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">HPV</td>
<td style="border:none;" align="left"> </td>
</tr>
<tr>
<td style="border:none;" align="left">complementary DNA (HPV type 16)</td>
<td style="border:none;" align="left">5′-GCTGGAGGTGTATG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">noncomplementary DNA 1 (HPV type 18)</td>
<td style="border:none;" align="left">5′-GGATGCTGCACCGG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">noncomplementary DNA 2 (HPV type 31)</td>
<td style="border:none;" align="left">5′-CCAAAAGCCCAAGG-3′</td>
</tr>
<tr>
<td style="border:none;" align="left">noncomplementary DNA 3 (HPV type 33)</td>
<td style="border:none;" align="left">5′-CACATCCACCCGCA-3′</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="sec2.2">
<title>Synthesis of AgNPs</title>
<p>The AgNPs were synthesized using the citrate-stabilization method.
<sup>
<xref ref-type="bibr" rid="ref49">49</xref>
</sup>
Briefly, 4 mL of 12.6 mM sodium citrate and 50 mL of 0.3 mM AgNO
<sub>3</sub>
were mixed together. Then, 1 mL of 37 mM NaBH
<sub>4</sub>
was added to the mixture under vigorous stirring and the solution turned yellow. The formation of AgNPs and their size distribution were verified by dynamic light scattering measurement, and the average size of AgNPs was found to be 19 nm (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00255/suppl_file/ac7b00255_si_001.pdf">Figure S1</ext-link>
).</p>
</sec>
<sec id="sec2.3">
<title>Synthesis of acpcPNA Probes</title>
<p>The acpcPNA probes were designed to detect the synthetic oligonucleotide targets with sequences corresponding to MERS-CoV, MTB, and HPV type 16. The sequences of acpcPNA probes are as follows:</p>
<p>MERS-CoV: CTCTTCACATAATCG-LysNH
<sub>2</sub>
</p>
<p>MTB: CAAGAAACACGTTAT-LysNH
<sub>2</sub>
</p>
<p>HPV type 16: CATACACCTCCAGC-LysNH
<sub>2</sub>
</p>
<p>*(written in the N → C direction)</p>
<p>The acpcPNA probe was synthesized by solid-phase peptide synthesis using Fmoc chemistry, as previously described.
<sup>
<xref ref-type="bibr" rid="ref44">44</xref>
</sup>
At the C-terminus, lysinamide was included as a positively charged group that could induce nanoparticle aggregation. All PNA were purified by reverse-phase HPLC (C18 column, 0.1% (v/v) trifluoroacetic acid (TFA) in H
<sub>2</sub>
O–MeOH gradient). The identity of the acpcPNA was verified by MALDI-TOF MS analysis (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00255/suppl_file/ac7b00255_si_001.pdf">Figure S2</ext-link>
), and the purity was confirmed to be >90% by reverse-phase HPLC.</p>
</sec>
<sec id="sec2.4">
<title>Design and Operation of Paper-Based Multiplex DNA Sensor</title>
<p>A wax-printing technique was used to create PADs.
<sup>
<xref ref-type="bibr" rid="ref50">50</xref>
</sup>
The sensor was designed using Adobe Illustrator. The wax colors were selected to be complementary to the colorimetric reactions to enhance visualization. For paper-based device fabrication, the wax design was printed onto Whatman grade 1 filter paper (VWR) using a wax printer (Xerox Phaser 8860). The wax pattern was subsequently melted at 175 °C for 50 s to generate the hydrophobic barriers and hydrophilic channels. The sensor was based on Origami concept consisting of two layers.
<sup>
<xref ref-type="bibr" rid="ref51">51</xref>
,
<xref ref-type="bibr" rid="ref52">52</xref>
</sup>
As shown in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
A, the base layer contains four wax-defined channels extending outward from the sample reservoir (6 mm i.d.) and the top layer contains four detection and control zones (4 mm i.d.).
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
B illustrates operation of the multiplex sensor. First, the sample reservoir of the top layer was punched to provide a solution connection directly from the top to the bottom layer, and then the device was assembled by folding the top layer over the base layer to create the three-dimension origami paper-based device. A polydimethylsiloxane (PDMS) lid was used for holding the two layers together. The lid consisting of one 6 mm diameter hole over the sample reservoir and eight 4 mm diameter holes over the colorimetric detection and control zones was aligned over the device to provide consistent pressure across the surface of the device. Next, the acpcPNA probe and AgNPs solution were added onto the detection and control zones. Finally, the sample solution was added onto the sample reservoir and flow through the channels to wet the colorimetric detection zones.</p>
<fig id="sch1" position="float">
<label>Scheme 1</label>
<caption>
<title>(A) Design and (B) Operation of Multiplex Paper-Based Colorimetric Device</title>
</caption>
<graphic xlink:href="ac7b00255_0006" id="gr1" position="float"></graphic>
</fig>
</sec>
<sec id="sec2.5">
<title>Colorimetric Detection of MERS-CoV, MTB, and HPV DNA Target</title>
<p>According to the concept of PNA-induced AgNPs aggregation,
<sup>
<xref ref-type="bibr" rid="ref42">42</xref>
,
<xref ref-type="bibr" rid="ref43">43</xref>
</sup>
acpcPNA was designed as a specific probe for quantitative detection of synthetic MERS-CoV, MTB, and HPV DNA targets. For colorimetric detection, the detection zone was prepared by adding 10 μL of AgNPs in 0.1 M phosphate buffer saline (PBS) pH 7.4 in a ratio of 5:1 (AgNPs: PBS), followed by 1 μL of specific acpcPNA probe. Control zones were prepared using the same conditions as the colorimetric detection zones. Next, 25 μL of DNA target was added to the open sample reservoir. Upon sample addition, solution moved outward through the channels to wet the colorimetric detection zone of the top layer. Finally, the AgNPs aggregation occurred and the color intensity was measured.</p>
</sec>
<sec id="sec2.6">
<title>Image Processing</title>
<p>The detection images were recorded using a scanner (XEROX DocuMate 3220) and saved in JPEG format at 600 dpi. ImageJ software (National Institutes of Health) was used to analyze the mean intensity of the color for each colorimetric reaction zone by applying a color threshold window for removing the blue background. Images were then inverted, and the mean intensity was measured.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
,
<xref ref-type="bibr" rid="ref53">53</xref>
</sup>
</p>
</sec>
</sec>
<sec id="sec3">
<title>Results and Discussion</title>
<sec id="sec3.1">
<title>acpcPNA-Induced AgNPs Aggregation</title>
<p>The process of acpcPNA-induced AgNPs aggregation is shown in
<xref rid="sch2" ref-type="scheme">Scheme
<xref rid="sch2" ref-type="scheme">2</xref>
</xref>
. The anionic AgNPs are initially well dispersed due to electrostatic repulsion. On addition of the cationic acpcPNA, the electrostatic repulsion is shielded, resulting in nanoparticle aggregation. When complementary DNA (DNA
<sub>com</sub>
) is present, the specific PNA–DNA interaction outcompetes the less specific PNA–AgNPs interaction, resulting in a negatively charged PNA–DNA
<sub>com</sub>
duplex and deaggregation of the anionic nanoparticles. Upon addition of noncomplementary DNA (DNA
<sub>nc</sub>
), the acpcPNA should remain bound to the AgNPs and no color change occurs. To prove the concept, we designed and synthesized acpcPNA probes to detect synthetic oligonucleotide targets with sequences corresponding to MERS-CoV, MTB, and HPV type 16. The photographs of the results are shown in
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
. The yellow AgNPs turned red when the acpcPNA was added. When the solution contained of the acpcPNA and DNA
<sub>nc</sub>
, the color also changed to red due to aggregation of the AgNPs. On the other hand, the color changed from red (aggregated) to yellow (nonaggregated) in the presence of DNA
<sub>com</sub>
, with the intensity dependent on the DNA concentration. Next, the sequence of adding the PNA probe and DNA target was investigated. As shown in
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00255/suppl_file/ac7b00255_si_001.pdf">Figure S3</ext-link>
, when equimolar DNA
<sub>com</sub>
was added either before or after the addition of acpcPNA probe into the AgNPs, the same color intensities were obtained indicating that the sequence of adding acpcPNA and DNA
<sub>com</sub>
did not impact the final signal.</p>
<fig id="sch2" position="float">
<label>Scheme 2</label>
<caption>
<title>Process of acpcPNA-Induced AgNP Aggregation in the Presence of DNA
<sub>com</sub>
and DNA
<sub>nc</sub>
</title>
</caption>
<graphic xlink:href="ac7b00255_0007" id="gr2" position="float"></graphic>
</fig>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>Photograph of visual color changes obtained from detection of MERS-CoV, MTB, and HPV in the presence of DNA
<sub>com</sub>
.</p>
</caption>
<graphic xlink:href="ac7b00255_0001" id="gr3" position="float"></graphic>
</fig>
</sec>
<sec id="sec3.2">
<title>Critical Coagulation Concentration (CCC)</title>
<p>The influence of electrolyte solution on the aggregation behavior of citrate-stabilized AgNPs was investigated based on the CCC.
<sup>
<xref ref-type="bibr" rid="ref54">54</xref>
</sup>
The CCC represents the electrolyte concentration required to cause aggregation of the nanoparticles in the absence of acpcPNA. In
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00255/suppl_file/ac7b00255_si_001.pdf">Figure S4</ext-link>
, the color intensity of citrate-stabilized AgNPs in the absence of acpcPNA probe is shown as a function of NaCl concentration. The intensity and, therefore, the degree of aggregation, increased with the concentration of NaCl, indicating that increasing ionic strength led to enhanced aggregation.
<sup>
<xref ref-type="bibr" rid="ref55">55</xref>
</sup>
We believe that the ionic strength can decrease the electrostatic repulsion of citrate-stabilized AgNPs as a result of shielding, accelerating the AgNPs aggregation. The CCC was obtained when the degree of aggregation reached a maximum and became independent of NaCl concentration. In this experiment, the CCC of citrate-stabilized AgNPs was found to be 30 mM. Above this concentration, PNA-induced aggregation was not observed.</p>
</sec>
<sec id="sec3.3">
<title>Optimization of Assay Parameters</title>
<p>For a colorimetric assay based on acpcPNA-induced AgNPs aggregation, assay parameters including 0.1 M PBS (pH 7.4) ratio and acpcPNA concentration were optimized using a simple paper-based design. The degree of AgNPs aggregation was determined by measuring the color intensity of the resulting solution in the presence of acpcPNA without target DNA. First, the impact of the PBS concentration on AgNPs aggregation was measured. The differential color intensity (Δ intensity, Δ
<italic>I</italic>
) obtained before and after addition of acpcPNA as a function of AgNPs to PBS ratio is shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
A. Δ
<italic>I</italic>
increased until the ratio of AgNPs/PBS reached 5:1 and then decreased until it plateaued at 5:2. Thus, the ratio of 5:1 AgNPs/PBS was selected as the optimal condition because it gave the largest Δ
<italic>I</italic>
. Another important aspect for the DNA assay is probe concentration. The influence of acpcPNA probe concentration on absolute intensity was studied. As shown in
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
B, the acpcPNA concentration was varied within a range of 0–2.5 μM, and the highest aggregation was obtained at the concentration of 1.0 μM. At this concentration, the aggregation became independent of acpcPNA concentration, which was desirable for simplifying the assay. Higher concentrations of AgNPs were not tested in order to minimize reagent consumption. As a result, the optimal conditions consisting of AgNPs/PBS ratio of 5:1 and acpcPNA concentration of 1.0 μM were selected for further experiments.</p>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Influence of (A) AgNPs/PBS ratio and (B) acpcPNA probe concentration on color intensity for MERS-CoV, MTB, and HPV detection. The error bars represent one standard deviation (SD) obtained from three independent measurements (
<italic>n</italic>
= 3).</p>
</caption>
<graphic xlink:href="ac7b00255_0002" id="gr4" position="float"></graphic>
</fig>
</sec>
<sec id="sec3.4">
<title>Selectivity of MERS-CoV, MTB, and HPV Detection</title>
<p>To investigate the selectivity of this system, the color intensity obtained from the DNA
<sub>com</sub>
of MERS-CoV, MTB, and HPV was compared to that of single-base mismatch (DNA
<sub>m1</sub>
), two-base mismatch (DNA
<sub>m2</sub>
), and DNA
<sub>nc</sub>
sequences. The color intensity decreased significantly in the presence of DNA
<sub>com</sub>
; whereas, the intensity did not change for the mismatched and noncomplementary targets (
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
). We believe the affinity of PNA–DNA hybridization was reduced due to the contribution of one- and two-base mismatches, leaving free PNA to aggregate the nanoparticles. PNA–DNA
<sub>com</sub>
complex can retard the ability of PNA to induce AgNPs aggregation as discussed above and result in different color intensities. These results suggest that the fully complementary DNA selectively hybridized the acpcPNA probe and yielded measurable signals. In addition, bovine serum albumin (BSA), which is commonly used in cell culture protocols, was used to investigate the protein interference of the proposed system. The DNA target was prepared in the presence of 3% BSA solution. It was observed that the color intensities of the DNA targets for MERS-CoV, MTB, and HPV in 3% BSA solution were statistically identical to the ones without BSA (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00255/suppl_file/ac7b00255_si_001.pdf">Figure S5</ext-link>
). Hence, common proteins should not negatively affect the analysis of this system.</p>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>Color intensity of (A) MERS-CoV, (B) MTB, and (C) HPV detection after hybridization of DNA
<sub>m1</sub>
, DNA
<sub>m2</sub>
, and DNA
<sub>nc</sub>
. The error bars represent one standard deviation (SD) obtained from three independent measurements (
<italic>n</italic>
= 3).</p>
</caption>
<graphic xlink:href="ac7b00255_0003" id="gr5" position="float"></graphic>
</fig>
</sec>
<sec id="sec3.5">
<title>Analytical Performance</title>
<p>To assess the sensitivity of the proposed method for DNA quantification, the intensity as a function of the target DNA concentration was determined. The color intensity decreases with the target DNA concentration. The calibration curves for each species are shown in
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
A, B, and C for MERS-CoV, MTB, and HPV, respectively. The linear range for each DNA target using a logarithmic DNA concentration and color intensity (
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
, inset) was also obtained. The analytical performances for all three DNA targets are summarized in
<xref rid="tbl2" ref-type="other">Table
<xref rid="tbl2" ref-type="other">2</xref>
</xref>
. It can be seen that a sufficiently low detection limit could be obtained for MERS-CoV, MTB, and HPV detection without the need for multiple PCR cycles. Moreover, this multiplex system can provide sensitive and selective detection for simultaneous analysis of multiple DNA targets in a single device, which simplifies the analysis compared to traditional diagnostics.
<sup>
<xref ref-type="bibr" rid="ref9">9</xref>
,
<xref ref-type="bibr" rid="ref56">56</xref>
<xref ref-type="bibr" rid="ref59">59</xref>
</sup>
</p>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Change of probe color intensity vs DNA target concentration (Δ
<italic>I</italic>
) and calibration graph between Δ
<italic>I</italic>
and log DNA target concentration (inset) for (A) MERS-CoV, (B) MTB, and (C) HPV detection. The error bars represent standard deviation (SD) obtained from three independent measurement (
<italic>n</italic>
= 3).</p>
</caption>
<graphic xlink:href="ac7b00255_0004" id="gr6" position="float"></graphic>
</fig>
<table-wrap id="tbl2" position="float">
<label>Table 2</label>
<caption>
<title>Summarized Analytical Performance of the Multiplexed 3DPAD for Colorimetric DNA Assay</title>
</caption>
<table frame="hsides" rules="groups" border="0">
<colgroup>
<col align="left"></col>
<col align="left"></col>
<col align="justify"></col>
<col align="left"></col>
</colgroup>
<thead>
<tr>
<th style="border:none;" align="center">DNA target</th>
<th style="border:none;" align="center">linearity (nM)</th>
<th style="border:none;" align="center">LOD (nM)</th>
<th style="border:none;" align="center">%RSD (
<italic>n</italic>
 = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td style="border:none;" align="left">MERS-CoV</td>
<td style="border:none;" align="left">20–1000</td>
<td style="border:none;" align="justify">1.53</td>
<td style="border:none;" align="left">0.17–0.50</td>
</tr>
<tr>
<td style="border:none;" align="left">MTB</td>
<td style="border:none;" align="left">50–2500</td>
<td style="border:none;" align="justify">1.27</td>
<td style="border:none;" align="left">0.12–0.67</td>
</tr>
<tr>
<td style="border:none;" align="left">HPV</td>
<td style="border:none;" align="left">20–2500</td>
<td style="border:none;" align="justify">1.03</td>
<td style="border:none;" align="left">0.43–0.93</td>
</tr>
</tbody>
</table>
</table-wrap>
</sec>
<sec id="sec3.6">
<title>Device Design</title>
<p>Next, a multiplex device (
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
) was designed for simultaneous detection of MERS-CoV, MTB, and HPV. The top layer contained four detection zones and four control zones. Each zone contained AgNPs with a single acpcPNA probe to provide selectivity for DNA. The base layer contained four wax-defined channels extending outward from a sample inlet. After the device was folded and stacked together, the channels of the base layer were connected to four detection zones of the top layer. Upon sample addition, the solution moved outward through the channels of the base layer to wet the colorimetric detection zones of the top layer and lead to color change.
<xref rid="fig5" ref-type="fig">Figure
<xref rid="fig5" ref-type="fig">5</xref>
</xref>
illustrates the ability of the proposed sensor for detection of 100 nM MERS-CoV, MTB, and HPV. Only the colorimetric detection zones that contained the selective probes changed color compared to their control zones. This result indicated that the multiplex paper-based colorimetric sensor is promising for simultaneous determination of MERS-CoV, MTB, and HPV.</p>
<fig id="fig5" position="float">
<label>Figure 5</label>
<caption>
<p>Selectivity of 100 nM MERS-CoV, MTB, and HPV detection using multiplex colorimetric PAD (1, C
<sub>1</sub>
= AgNPs + MERS-CoV acpcPNA probe; 2, C
<sub>2</sub>
= AgNPs + MTB acpcPNA probe; 3, C
<sub>3</sub>
= AgNPs + HPV acpcPNA probe).</p>
</caption>
<graphic xlink:href="ac7b00255_0005" id="gr7" position="float"></graphic>
</fig>
</sec>
</sec>
<sec id="sec4">
<title>Conclusions</title>
<p>A multiplex colorimetric PAD was developed for simultaneous detection of DNA associated with viral and bacterial infectious diseases, including Middle East respiratory syndrome coronavirus (MERS-CoV),
<italic>Mycobacterium tuberculosis</italic>
(MTB), and human papillomavirus (HPV). AgNPs were used as a colorimetric reagent for DNA detection based on acpcPNA-induced nanoparticle aggregation. This colorimetric DNA sensor exhibited high selectivity against single-base mismatch, two-base mismatch and noncomplementary target DNA. Under the optimized condition, the limit of detection for MERS-CoV, MTB, and HPV were found to be 1.53, 1.27, and 1.03 nM, respectively. As a result, this developed multiplex colorimetric PAD could be a low-cost and disposable alternative tool for rapid screening and detecting in infectious diagnostics.</p>
</sec>
</body>
<back>
<notes id="NOTES-d96e905-autogenerated" notes-type="si">
<title>Supporting Information Available</title>
<p>The Supporting Information is available free of charge on the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org">ACS Publications website</ext-link>
at DOI:
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/abs/10.1021/acs.analchem.7b00255">10.1021/acs.analchem.7b00255</ext-link>
.
<list id="silist" list-type="simple">
<list-item>
<p>Supporting Figures S1–S5 (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.7b00255/suppl_file/ac7b00255_si_001.pdf">PDF</ext-link>
).</p>
</list-item>
</list>
</p>
</notes>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="sifile1">
<media xlink:href="ac7b00255_si_001.pdf">
<caption>
<p>ac7b00255_si_001.pdf</p>
</caption>
</media>
</supplementary-material>
</sec>
<notes notes-type="COI-statement" id="NOTES-d96e921-autogenerated">
<p>The authors declare no competing financial interest.</p>
</notes>
<ack>
<title>Acknowledgments</title>
<p>P.T. gratefully appreciates the financial supports from Thailand Graduate Institute of Science and Technology (TGIST 01-55-014) and The Thailand Research Fund (RTA5780005). C.S.H. acknowledges financial support from Colorado State University and the United States Department of Agriculture through the National Wildlife Research Center (1574000859CA). T.V. acknowledges technical assistance of Ms. Chotima Vilaivan (Organic Synthesis Research Unit, Chulalongkorn University) and the financial support from Thailand Research Fund (DPG5780002, to T.V.) for the PNA synthesis. The authors thank Dr. Yuanyuan Yang for assistance with manuscript editing. The authors also acknowledge important discussions with Dr. Christopher Ackerson surrounding the critical coagulation concentration.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<mixed-citation publication-type="journal" id="cit1">
<name>
<surname>Wei</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Lillehoj</surname>
<given-names>P. B.</given-names>
</name>
;
<name>
<surname>Ho</surname>
<given-names>C.-M.</given-names>
</name>
<article-title>DNA Diagnostics: Nanotechnology-Enhanced Electrochemical Detection of Nucleic Acids</article-title>
.
<source>Pediatr. Res.</source>
<year>2010</year>
,
<volume>67</volume>
,
<fpage>458</fpage>
<lpage>468</lpage>
.
<pub-id pub-id-type="doi">10.1203/PDR.0b013e3181d361c3</pub-id>
.
<pub-id pub-id-type="pmid">20075759</pub-id>
</mixed-citation>
</ref>
<ref id="ref2">
<mixed-citation publication-type="journal" id="cit2">
<name>
<surname>Smith</surname>
<given-names>I.</given-names>
</name>
<article-title>Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence</article-title>
.
<source>Clin. Microbiol. Rev.</source>
<year>2003</year>
,
<volume>16</volume>
,
<fpage>463</fpage>
<lpage>496</lpage>
.
<pub-id pub-id-type="doi">10.1128/CMR.16.3.463-496.2003</pub-id>
.
<pub-id pub-id-type="pmid">12857778</pub-id>
</mixed-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="journal" id="cit3">
<name>
<surname>Burd</surname>
<given-names>E. M.</given-names>
</name>
<article-title>Human Papillomavirus and Cervical Cancer</article-title>
.
<source>Clin. Microbiol. Rev.</source>
<year>2003</year>
,
<volume>16</volume>
,
<fpage>1</fpage>
<lpage>17</lpage>
.
<pub-id pub-id-type="doi">10.1128/CMR.16.1.1-17.2003</pub-id>
.
<pub-id pub-id-type="pmid">12525422</pub-id>
</mixed-citation>
</ref>
<ref id="ref4">
<mixed-citation publication-type="journal" id="cit4">
<name>
<surname>de Wit</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Rasmussen</surname>
<given-names>A. L.</given-names>
</name>
;
<name>
<surname>Falzarano</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Bushmaker</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Feldmann</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Brining</surname>
<given-names>D. L.</given-names>
</name>
;
<name>
<surname>Fischer</surname>
<given-names>E. R.</given-names>
</name>
;
<name>
<surname>Martellaro</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Okumura</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Scott</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Benecke</surname>
<given-names>A. G.</given-names>
</name>
;
<name>
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
;
<name>
<surname>Feldmann</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Munster</surname>
<given-names>V. J.</given-names>
</name>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques</article-title>
.
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<year>2013</year>
,
<volume>110</volume>
,
<fpage>16598</fpage>
<lpage>16603</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1310744110</pub-id>
.
<pub-id pub-id-type="pmid">24062443</pub-id>
</mixed-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="journal" id="cit5">
<name>
<surname>Bhadra</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Jiang</surname>
<given-names>Y. S.</given-names>
</name>
;
<name>
<surname>Kumar</surname>
<given-names>M. R.</given-names>
</name>
;
<name>
<surname>Johnson</surname>
<given-names>R. F.</given-names>
</name>
;
<name>
<surname>Hensley</surname>
<given-names>L. E.</given-names>
</name>
;
<name>
<surname>Ellington</surname>
<given-names>A. D.</given-names>
</name>
<article-title>Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)</article-title>
.
<source>PLoS One</source>
<year>2015</year>
,
<volume>10</volume>
,
<fpage>e0123126</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pone.0123126</pub-id>
.
<pub-id pub-id-type="pmid">25856093</pub-id>
</mixed-citation>
</ref>
<ref id="ref6">
<mixed-citation publication-type="journal" id="cit6">
<name>
<surname>Davies</surname>
<given-names>P. D. O.</given-names>
</name>
;
<name>
<surname>Pai</surname>
<given-names>M.</given-names>
</name>
<article-title>The diagnosis and misdiagnosis of tuberculosis</article-title>
.
<source>International Journal of Tuberculosis and Lung Disease</source>
<year>2008</year>
,
<volume>12</volume>
,
<fpage>1226</fpage>
<lpage>1234</lpage>
.
<pub-id pub-id-type="pmid">18926032</pub-id>
</mixed-citation>
</ref>
<ref id="ref7">
<mixed-citation publication-type="journal" id="cit7">
<name>
<surname>Steingart</surname>
<given-names>K. R.</given-names>
</name>
;
<name>
<surname>Ng</surname>
<given-names>V.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Hopewell</surname>
<given-names>P. C.</given-names>
</name>
;
<name>
<surname>Ramsay</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Cunningham</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Urbanczik</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Perkins</surname>
<given-names>M. D.</given-names>
</name>
;
<name>
<surname>Aziz</surname>
<given-names>M. A.</given-names>
</name>
;
<name>
<surname>Pai</surname>
<given-names>M.</given-names>
</name>
<article-title>Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review</article-title>
.
<source>Lancet Infect. Dis.</source>
<year>2006</year>
,
<volume>6</volume>
,
<fpage>664</fpage>
<lpage>674</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1473-3099(06)70602-8</pub-id>
.
<pub-id pub-id-type="pmid">17008175</pub-id>
</mixed-citation>
</ref>
<ref id="ref8">
<mixed-citation publication-type="journal" id="cit8">
<name>
<surname>Lee</surname>
<given-names>J. J.</given-names>
</name>
;
<name>
<surname>Suo</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Lin</surname>
<given-names>C. B.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>J. D.</given-names>
</name>
;
<name>
<surname>Lin</surname>
<given-names>T. Y.</given-names>
</name>
;
<name>
<surname>Tsai</surname>
<given-names>Y. C.</given-names>
</name>
<article-title>Comparative evaluation of the BACTEC MGIT 960 system with solid medium for isolation of mycobacteria</article-title>
.
<source>International Journal of Tuberculosis and Lung Disease</source>
<year>2003</year>
,
<volume>7</volume>
,
<fpage>569</fpage>
<lpage>574</lpage>
.
<pub-id pub-id-type="pmid">12797700</pub-id>
</mixed-citation>
</ref>
<ref id="ref9">
<mixed-citation publication-type="journal" id="cit9">
<name>
<surname>Al-Zamel</surname>
<given-names>F. A.</given-names>
</name>
<article-title>Detection and diagnosis of Mycobacterium tuberculosis</article-title>
.
<source>Expert Rev. Anti-Infect. Ther.</source>
<year>2009</year>
,
<volume>7</volume>
,
<fpage>1099</fpage>
<lpage>1108</lpage>
.
<pub-id pub-id-type="doi">10.1586/eri.09.92</pub-id>
.
<pub-id pub-id-type="pmid">19883330</pub-id>
</mixed-citation>
</ref>
<ref id="ref10">
<mixed-citation publication-type="journal" id="cit10">
<name>
<surname>Noordhoek</surname>
<given-names>G. T.</given-names>
</name>
;
<name>
<surname>Kolk</surname>
<given-names>A. H.</given-names>
</name>
;
<name>
<surname>Bjune</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Catty</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Dale</surname>
<given-names>J. W.</given-names>
</name>
;
<name>
<surname>Fine</surname>
<given-names>P. E.</given-names>
</name>
;
<name>
<surname>Godfrey-Faussett</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Cho</surname>
<given-names>S. N.</given-names>
</name>
;
<name>
<surname>Shinnick</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Svenson</surname>
<given-names>S. B.</given-names>
</name>
<article-title>Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories</article-title>
.
<source>Journal of Clinical Microbiology</source>
<year>1994</year>
,
<volume>32</volume>
,
<fpage>277</fpage>
<lpage>284</lpage>
.
<pub-id pub-id-type="pmid">8150935</pub-id>
</mixed-citation>
</ref>
<ref id="ref11">
<mixed-citation publication-type="journal" id="cit11">
<name>
<surname>Yang</surname>
<given-names>Y.-C.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>P.-L.</given-names>
</name>
;
<name>
<surname>Huang</surname>
<given-names>S. C.</given-names>
</name>
;
<name>
<surname>Jenh</surname>
<given-names>Y.-S.</given-names>
</name>
;
<name>
<surname>Jou</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Chang</surname>
<given-names>T. C.</given-names>
</name>
<article-title>Evaluation of the Cobas TaqMan MTB Test for Direct Detection of Mycobacterium tuberculosis Complex in Respiratory Specimens</article-title>
.
<source>Journal of Clinical Microbiology</source>
<year>2011</year>
,
<volume>49</volume>
,
<fpage>797</fpage>
<lpage>801</lpage>
.
<pub-id pub-id-type="doi">10.1128/JCM.01839-10</pub-id>
.
<pub-id pub-id-type="pmid">21177901</pub-id>
</mixed-citation>
</ref>
<ref id="ref12">
<mixed-citation publication-type="journal" id="cit12">
<name>
<surname>Lörincz</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Anthony</surname>
<given-names>J.</given-names>
</name>
<article-title>Advances in HPV detection by Hybrid Capture</article-title>
.
<source>Papillomavirus Report</source>
<year>2001</year>
,
<volume>12</volume>
,
<fpage>145</fpage>
<lpage>154</lpage>
.</mixed-citation>
</ref>
<ref id="ref13">
<mixed-citation publication-type="journal" id="cit13">
<name>
<surname>Gravitt</surname>
<given-names>P. E.</given-names>
</name>
;
<name>
<surname>Jamshidi</surname>
<given-names>R.</given-names>
</name>
<article-title>Diagnosis and Management of Oncogenic Cervical Human Papillomavirus Infection</article-title>
.
<source>Infectious Disease Clinics of North America</source>
<year>2005</year>
,
<volume>19</volume>
,
<fpage>439</fpage>
<lpage>458</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.idc.2005.03.008</pub-id>
.
<pub-id pub-id-type="pmid">15963882</pub-id>
</mixed-citation>
</ref>
<ref id="ref14">
<mixed-citation publication-type="journal" id="cit14">
<name>
<surname>Martinez</surname>
<given-names>A. W.</given-names>
</name>
;
<name>
<surname>Phillips</surname>
<given-names>S. T.</given-names>
</name>
;
<name>
<surname>Butte</surname>
<given-names>M. J.</given-names>
</name>
;
<name>
<surname>Whitesides</surname>
<given-names>G. M.</given-names>
</name>
<article-title>Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays</article-title>
.
<source>Angew. Chem., Int. Ed.</source>
<year>2007</year>
,
<volume>46</volume>
,
<fpage>1318</fpage>
<lpage>1320</lpage>
.
<pub-id pub-id-type="doi">10.1002/anie.200603817</pub-id>
.</mixed-citation>
</ref>
<ref id="ref15">
<mixed-citation publication-type="journal" id="cit15">
<name>
<surname>Cate</surname>
<given-names>D. M.</given-names>
</name>
;
<name>
<surname>Adkins</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Mettakoonpitak</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C. S.</given-names>
</name>
<article-title>Recent Developments in Paper-Based Microfluidic Devices</article-title>
.
<source>Anal. Chem.</source>
<year>2015</year>
,
<volume>87</volume>
,
<fpage>19</fpage>
<lpage>41</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac503968p</pub-id>
.
<pub-id pub-id-type="pmid">25375292</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<mixed-citation publication-type="journal" id="cit16">
<name>
<surname>Yetisen</surname>
<given-names>A. K.</given-names>
</name>
;
<name>
<surname>Akram</surname>
<given-names>M. S.</given-names>
</name>
;
<name>
<surname>Lowe</surname>
<given-names>C. R.</given-names>
</name>
<article-title>Paper-based microfluidic point-of-care diagnostic devices</article-title>
.
<source>Lab Chip</source>
<year>2013</year>
,
<volume>13</volume>
,
<fpage>2210</fpage>
<lpage>2251</lpage>
.
<pub-id pub-id-type="doi">10.1039/c3lc50169h</pub-id>
.
<pub-id pub-id-type="pmid">23652632</pub-id>
</mixed-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="journal" id="cit17">
<name>
<surname>Adkins</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Boehle</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C.</given-names>
</name>
<article-title>Electrochemical paper-based microfluidic devices</article-title>
.
<source>Electrophoresis</source>
<year>2015</year>
,
<volume>36</volume>
,
<fpage>1811</fpage>
<lpage>1824</lpage>
.
<pub-id pub-id-type="doi">10.1002/elps.201500084</pub-id>
.
<pub-id pub-id-type="pmid">25820492</pub-id>
</mixed-citation>
</ref>
<ref id="ref18">
<mixed-citation publication-type="journal" id="cit18">
<name>
<surname>Mettakoonpitak</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Boehle</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Nantaphol</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Teengam</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Adkins</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Srisa-Art</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C. S.</given-names>
</name>
<article-title>Electrochemistry on Paper-based Analytical Devices: A Review</article-title>
.
<source>Electroanalysis</source>
<year>2016</year>
,
<volume>28</volume>
,
<fpage>1420</fpage>
<lpage>1436</lpage>
.
<pub-id pub-id-type="doi">10.1002/elan.201501143</pub-id>
.</mixed-citation>
</ref>
<ref id="ref19">
<mixed-citation publication-type="journal" id="cit19">
<name>
<surname>Nery</surname>
<given-names>E. W.</given-names>
</name>
;
<name>
<surname>Kubota</surname>
<given-names>L. T.</given-names>
</name>
<article-title>Sensing approaches on paper-based devices: a review</article-title>
.
<source>Anal. Bioanal. Chem.</source>
<year>2013</year>
,
<volume>405</volume>
,
<fpage>7573</fpage>
<lpage>7595</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00216-013-6911-4</pub-id>
.
<pub-id pub-id-type="pmid">23604524</pub-id>
</mixed-citation>
</ref>
<ref id="ref20">
<mixed-citation publication-type="journal" id="cit20">
<name>
<surname>Rattanarat</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Dungchai</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Cate</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Volckens</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Chailapakul</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C. S.</given-names>
</name>
<article-title>Multilayer Paper-Based Device for Colorimetric and Electrochemical Quantification of Metals</article-title>
.
<source>Anal. Chem.</source>
<year>2014</year>
,
<volume>86</volume>
,
<fpage>3555</fpage>
<lpage>3562</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac5000224</pub-id>
.
<pub-id pub-id-type="pmid">24576180</pub-id>
</mixed-citation>
</ref>
<ref id="ref21">
<mixed-citation publication-type="journal" id="cit21">
<name>
<surname>Liana</surname>
<given-names>D. D.</given-names>
</name>
;
<name>
<surname>Raguse</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Gooding</surname>
<given-names>J. J.</given-names>
</name>
;
<name>
<surname>Chow</surname>
<given-names>E.</given-names>
</name>
<article-title>Recent Advances in Paper-Based Sensors</article-title>
.
<source>Sensors</source>
<year>2012</year>
,
<volume>12</volume>
,
<fpage>11505</fpage>
<pub-id pub-id-type="doi">10.3390/s120911505</pub-id>
.
<pub-id pub-id-type="pmid">23112667</pub-id>
</mixed-citation>
</ref>
<ref id="ref22">
<mixed-citation publication-type="journal" id="cit22">
<name>
<surname>Apilux</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Siangproh</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Praphairaksit</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Chailapakul</surname>
<given-names>O.</given-names>
</name>
<article-title>Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates</article-title>
.
<source>Talanta</source>
<year>2012</year>
,
<volume>97</volume>
,
<fpage>388</fpage>
<lpage>394</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.talanta.2012.04.050</pub-id>
.
<pub-id pub-id-type="pmid">22841097</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<mixed-citation publication-type="journal" id="cit23">
<name>
<surname>Apilux</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Dungchai</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Siangproh</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Praphairaksit</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C. S.</given-names>
</name>
;
<name>
<surname>Chailapakul</surname>
<given-names>O.</given-names>
</name>
<article-title>Lab-on-Paper with Dual Electrochemical/Colorimetric Detection for Simultaneous Determination of Gold and Iron</article-title>
.
<source>Anal. Chem.</source>
<year>2010</year>
,
<volume>82</volume>
,
<fpage>1727</fpage>
<lpage>1732</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac9022555</pub-id>
.
<pub-id pub-id-type="pmid">20121066</pub-id>
</mixed-citation>
</ref>
<ref id="ref24">
<mixed-citation publication-type="journal" id="cit24">
<name>
<surname>Chaiyo</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Siangproh</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Apilux</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Chailapakul</surname>
<given-names>O.</given-names>
</name>
<article-title>Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions</article-title>
.
<source>Anal. Chim. Acta</source>
<year>2015</year>
,
<volume>866</volume>
,
<fpage>75</fpage>
<lpage>83</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.aca.2015.01.042</pub-id>
.
<pub-id pub-id-type="pmid">25732695</pub-id>
</mixed-citation>
</ref>
<ref id="ref25">
<mixed-citation publication-type="journal" id="cit25">
<name>
<surname>Cate</surname>
<given-names>D. M.</given-names>
</name>
;
<name>
<surname>Nanthasurasak</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Riwkulkajorn</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>L’Orange</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C. S.</given-names>
</name>
;
<name>
<surname>Volckens</surname>
<given-names>J.</given-names>
</name>
<article-title>Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices</article-title>
.
<source>Ann. Occup. Hyg.</source>
<year>2014</year>
,
<volume>58</volume>
,
<fpage>413</fpage>
<lpage>423</lpage>
.
<pub-id pub-id-type="pmid">24515892</pub-id>
</mixed-citation>
</ref>
<ref id="ref26">
<mixed-citation publication-type="journal" id="cit26">
<name>
<surname>Shim</surname>
<given-names>S.-Y.</given-names>
</name>
;
<name>
<surname>Lim</surname>
<given-names>D.-K.</given-names>
</name>
;
<name>
<surname>Nam</surname>
<given-names>J.-M.</given-names>
</name>
<article-title>Ultrasensitive optical biodiagnostic methods using metallic nanoparticles</article-title>
.
<source>Nanomedicine</source>
<year>2008</year>
,
<volume>3</volume>
,
<fpage>215</fpage>
<lpage>232</lpage>
.
<pub-id pub-id-type="doi">10.2217/17435889.3.2.215</pub-id>
.
<pub-id pub-id-type="pmid">18373427</pub-id>
</mixed-citation>
</ref>
<ref id="ref27">
<mixed-citation publication-type="journal" id="cit27">
<name>
<surname>Baptista</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Pereira</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Eaton</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Doria</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Miranda</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Gomes</surname>
<given-names>I.</given-names>
</name>
;
<name>
<surname>Quaresma</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Franco</surname>
<given-names>R.</given-names>
</name>
<article-title>Gold nanoparticles for the development of clinical diagnosis methods</article-title>
.
<source>Anal. Bioanal. Chem.</source>
<year>2008</year>
,
<volume>391</volume>
,
<fpage>943</fpage>
<lpage>950</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00216-007-1768-z</pub-id>
.
<pub-id pub-id-type="pmid">18157524</pub-id>
</mixed-citation>
</ref>
<ref id="ref28">
<mixed-citation publication-type="journal" id="cit28">
<name>
<surname>Zhao</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Brook</surname>
<given-names>M. A.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<article-title>Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays</article-title>
.
<source>ChemBioChem</source>
<year>2008</year>
,
<volume>9</volume>
,
<fpage>2363</fpage>
<lpage>2371</lpage>
.
<pub-id pub-id-type="doi">10.1002/cbic.200800282</pub-id>
.
<pub-id pub-id-type="pmid">18821551</pub-id>
</mixed-citation>
</ref>
<ref id="ref29">
<mixed-citation publication-type="journal" id="cit29">
<name>
<surname>Thaxton</surname>
<given-names>C. S.</given-names>
</name>
;
<name>
<surname>Georganopoulou</surname>
<given-names>D. G.</given-names>
</name>
;
<name>
<surname>Mirkin</surname>
<given-names>C. A.</given-names>
</name>
<article-title>Gold nanoparticle probes for the detection of nucleic acid targets</article-title>
.
<source>Clin. Chim. Acta</source>
<year>2006</year>
,
<volume>363</volume>
,
<fpage>120</fpage>
<lpage>126</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cccn.2005.05.042</pub-id>
.
<pub-id pub-id-type="pmid">16214124</pub-id>
</mixed-citation>
</ref>
<ref id="ref30">
<mixed-citation publication-type="journal" id="cit30">
<name>
<surname>Li</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Cui</surname>
<given-names>Z.</given-names>
</name>
;
<name>
<surname>Han</surname>
<given-names>C.</given-names>
</name>
<article-title>Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion</article-title>
.
<source>Sens. Actuators, B</source>
<year>2009</year>
,
<volume>143</volume>
,
<fpage>87</fpage>
<lpage>92</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.snb.2009.09.013</pub-id>
.</mixed-citation>
</ref>
<ref id="ref31">
<mixed-citation publication-type="journal" id="cit31">
<name>
<surname>Vilela</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>González</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Escarpa</surname>
<given-names>A.</given-names>
</name>
<article-title>Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review</article-title>
.
<source>Anal. Chim. Acta</source>
<year>2012</year>
,
<volume>751</volume>
,
<fpage>24</fpage>
<lpage>43</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.aca.2012.08.043</pub-id>
.
<pub-id pub-id-type="pmid">23084049</pub-id>
</mixed-citation>
</ref>
<ref id="ref32">
<mixed-citation publication-type="journal" id="cit32">
<name>
<surname>Wei</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Han</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>E.</given-names>
</name>
<article-title>Enzyme Colorimetric Assay Using Unmodified Silver Nanoparticles</article-title>
.
<source>Anal. Chem.</source>
<year>2008</year>
,
<volume>80</volume>
,
<fpage>7051</fpage>
<lpage>7055</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac801144t</pub-id>
.
<pub-id pub-id-type="pmid">18662017</pub-id>
</mixed-citation>
</ref>
<ref id="ref33">
<mixed-citation publication-type="journal" id="cit33">
<name>
<surname>Lee</surname>
<given-names>J.-S.</given-names>
</name>
;
<name>
<surname>Lytton-Jean</surname>
<given-names>A. K. R.</given-names>
</name>
;
<name>
<surname>Hurst</surname>
<given-names>S. J.</given-names>
</name>
;
<name>
<surname>Mirkin</surname>
<given-names>C. A.</given-names>
</name>
<article-title>Silver Nanoparticle–Oligonucleotide Conjugates Based on DNA with Triple Cyclic Disulfide Moieties</article-title>
.
<source>Nano Lett.</source>
<year>2007</year>
,
<volume>7</volume>
,
<fpage>2112</fpage>
<lpage>2115</lpage>
.
<pub-id pub-id-type="doi">10.1021/nl071108g</pub-id>
.
<pub-id pub-id-type="pmid">17571909</pub-id>
</mixed-citation>
</ref>
<ref id="ref34">
<mixed-citation publication-type="journal" id="cit34">
<name>
<surname>Thompson</surname>
<given-names>D. G.</given-names>
</name>
;
<name>
<surname>Enright</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Faulds</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Smith</surname>
<given-names>W. E.</given-names>
</name>
;
<name>
<surname>Graham</surname>
<given-names>D.</given-names>
</name>
<article-title>Ultrasensitive DNA Detection Using Oligonucleotide–Silver Nanoparticle Conjugates</article-title>
.
<source>Anal. Chem.</source>
<year>2008</year>
,
<volume>80</volume>
,
<fpage>2805</fpage>
<lpage>2810</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac702403w</pub-id>
.
<pub-id pub-id-type="pmid">18307361</pub-id>
</mixed-citation>
</ref>
<ref id="ref35">
<mixed-citation publication-type="journal" id="cit35">
<name>
<surname>Yeo</surname>
<given-names>S. Y.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>H. J.</given-names>
</name>
;
<name>
<surname>Jeong</surname>
<given-names>S. H.</given-names>
</name>
<article-title>Preparation of nanocomposite fibers for permanent antibacterial effect</article-title>
.
<source>J. Mater. Sci.</source>
<year>2003</year>
,
<volume>38</volume>
,
<fpage>2143</fpage>
<lpage>2147</lpage>
.
<pub-id pub-id-type="doi">10.1023/A:1023767828656</pub-id>
.</mixed-citation>
</ref>
<ref id="ref36">
<mixed-citation publication-type="journal" id="cit36">
<name>
<surname>Chimentao</surname>
<given-names>R. J.</given-names>
</name>
;
<name>
<surname>Kirm</surname>
<given-names>I.</given-names>
</name>
;
<name>
<surname>Medina</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Rodriguez</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Cesteros</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Salagre</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Sueiras</surname>
<given-names>J. E.</given-names>
</name>
<article-title>Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase</article-title>
.
<source>Chem. Commun.</source>
<year>2004</year>
,
<fpage>846</fpage>
<lpage>847</lpage>
.
<pub-id pub-id-type="doi">10.1039/B400762J</pub-id>
.</mixed-citation>
</ref>
<ref id="ref37">
<mixed-citation publication-type="journal" id="cit37">
<name>
<surname>He</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Tan</surname>
<given-names>J. J.</given-names>
</name>
;
<name>
<surname>Liew</surname>
<given-names>K. Y.</given-names>
</name>
;
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<article-title>Synthesis of size controlled Ag nanoparticles</article-title>
.
<source>J. Mol. Catal. A: Chem.</source>
<year>2004</year>
,
<volume>221</volume>
,
<fpage>121</fpage>
<lpage>126</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molcata.2004.06.025</pub-id>
.</mixed-citation>
</ref>
<ref id="ref38">
<mixed-citation publication-type="journal" id="cit38">
<name>
<surname>Abou El-Nour</surname>
<given-names>K. M. M.</given-names>
</name>
;
<name>
<surname>Eftaiha</surname>
<given-names>A. a.</given-names>
</name>
;
<name>
<surname>Al-Warthan</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Ammar</surname>
<given-names>R. A. A.</given-names>
</name>
<article-title>Synthesis and applications of silver nanoparticles</article-title>
.
<source>Arabian J. Chem.</source>
<year>2010</year>
,
<volume>3</volume>
,
<fpage>135</fpage>
<lpage>140</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.arabjc.2010.04.008</pub-id>
.</mixed-citation>
</ref>
<ref id="ref39">
<mixed-citation publication-type="journal" id="cit39">
<name>
<surname>Iravani</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Korbekandi</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Mirmohammadi</surname>
<given-names>S. V.</given-names>
</name>
;
<name>
<surname>Zolfaghari</surname>
<given-names>B.</given-names>
</name>
<article-title>Synthesis of silver nanoparticles: chemical, physical and biological methods</article-title>
.
<source>Research in Pharmaceutical Sciences</source>
<year>2014</year>
,
<volume>9</volume>
,
<fpage>385</fpage>
<lpage>406</lpage>
.
<pub-id pub-id-type="pmid">26339255</pub-id>
</mixed-citation>
</ref>
<ref id="ref40">
<mixed-citation publication-type="journal" id="cit40">
<name>
<surname>Nielsen</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Egholm</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Berg</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Buchardt</surname>
<given-names>O.</given-names>
</name>
<article-title>Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide</article-title>
.
<source>Science (Washington, DC, U. S.)</source>
<year>1991</year>
,
<volume>254</volume>
,
<fpage>1497</fpage>
<lpage>1500</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1962210</pub-id>
.</mixed-citation>
</ref>
<ref id="ref41">
<mixed-citation publication-type="journal" id="cit41">
<name>
<surname>Egholm</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Buchardt</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Christensen</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Behrens</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Freier</surname>
<given-names>S. M.</given-names>
</name>
;
<name>
<surname>Driver</surname>
<given-names>D. A.</given-names>
</name>
;
<name>
<surname>Berg</surname>
<given-names>R. H.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>S. K.</given-names>
</name>
;
<name>
<surname>Norden</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Nielsen</surname>
<given-names>P. E.</given-names>
</name>
<article-title>PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules</article-title>
.
<source>Nature</source>
<year>1993</year>
,
<volume>365</volume>
,
<fpage>566</fpage>
<lpage>568</lpage>
.
<pub-id pub-id-type="doi">10.1038/365566a0</pub-id>
.
<pub-id pub-id-type="pmid">7692304</pub-id>
</mixed-citation>
</ref>
<ref id="ref42">
<mixed-citation publication-type="journal" id="cit42">
<name>
<surname>Su</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Kanjanawarut</surname>
<given-names>R.</given-names>
</name>
<article-title>Control of Metal Nanoparticles Aggregation and Dispersion by PNA and PNA–DNA Complexes, and Its Application for Colorimetric DNA Detection</article-title>
.
<source>ACS Nano</source>
<year>2009</year>
,
<volume>3</volume>
,
<fpage>2751</fpage>
<lpage>2759</lpage>
.
<pub-id pub-id-type="doi">10.1021/nn9005768</pub-id>
.
<pub-id pub-id-type="pmid">19708641</pub-id>
</mixed-citation>
</ref>
<ref id="ref43">
<mixed-citation publication-type="journal" id="cit43">
<name>
<surname>Kanjanawarut</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Su</surname>
<given-names>X.</given-names>
</name>
<article-title>Colorimetric Detection of DNA Using Unmodified Metallic Nanoparticles and Peptide Nucleic Acid Probes</article-title>
.
<source>Anal. Chem.</source>
<year>2009</year>
,
<volume>81</volume>
,
<fpage>6122</fpage>
<lpage>6129</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac900525k</pub-id>
.
<pub-id pub-id-type="pmid">20337394</pub-id>
</mixed-citation>
</ref>
<ref id="ref44">
<mixed-citation publication-type="journal" id="cit44">
<name>
<surname>Vilaivan</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Srisuwannaket</surname>
<given-names>C.</given-names>
</name>
<article-title>Hybridization of Pyrrolidinyl Peptide Nucleic Acids and DNA: Selectivity, Base-Pairing Specificity, and Direction of Binding</article-title>
.
<source>Org. Lett.</source>
<year>2006</year>
,
<volume>8</volume>
,
<fpage>1897</fpage>
<lpage>1900</lpage>
.
<pub-id pub-id-type="doi">10.1021/ol060448q</pub-id>
.
<pub-id pub-id-type="pmid">16623579</pub-id>
</mixed-citation>
</ref>
<ref id="ref45">
<mixed-citation publication-type="journal" id="cit45">
<name>
<surname>Vilaivan</surname>
<given-names>T.</given-names>
</name>
<article-title>Pyrrolidinyl PNA with α/β-Dipeptide Backbone: From Development to Applications</article-title>
.
<source>Acc. Chem. Res.</source>
<year>2015</year>
,
<volume>48</volume>
,
<fpage>1645</fpage>
<lpage>1656</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.accounts.5b00080</pub-id>
.
<pub-id pub-id-type="pmid">26022340</pub-id>
</mixed-citation>
</ref>
<ref id="ref46">
<mixed-citation publication-type="journal" id="cit46">
<name>
<surname>Jampasa</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Wonsawat</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Rodthongkum</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Siangproh</surname>
<given-names>W.</given-names>
</name>
;
<name>
<surname>Yanatatsaneejit</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Vilaivan</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Chailapakul</surname>
<given-names>O.</given-names>
</name>
<article-title>Electrochemical detection of human papillomavirus DNA type 16 using a pyrrolidinyl peptide nucleic acid probe immobilized on screen-printed carbon electrodes</article-title>
.
<source>Biosens. Bioelectron.</source>
<year>2014</year>
,
<volume>54</volume>
,
<fpage>428</fpage>
<lpage>434</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.bios.2013.11.023</pub-id>
.
<pub-id pub-id-type="pmid">24300785</pub-id>
</mixed-citation>
</ref>
<ref id="ref47">
<mixed-citation publication-type="journal" id="cit47">
<name>
<surname>Kongpeth</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Jampasa</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Chaumpluk</surname>
<given-names>P.</given-names>
</name>
;
<name>
<surname>Chailapakul</surname>
<given-names>O.</given-names>
</name>
;
<name>
<surname>Vilaivan</surname>
<given-names>T.</given-names>
</name>
<article-title>Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe</article-title>
.
<source>Talanta</source>
<year>2016</year>
,
<volume>146</volume>
,
<fpage>318</fpage>
<lpage>325</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.talanta.2015.08.059</pub-id>
.
<pub-id pub-id-type="pmid">26695270</pub-id>
</mixed-citation>
</ref>
<ref id="ref48">
<mixed-citation publication-type="journal" id="cit48">
<name>
<surname>Jirakittiwut</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Panyain</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Nuanyai</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Vilaivan</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Praneenararat</surname>
<given-names>T.</given-names>
</name>
<article-title>Pyrrolidinyl peptide nucleic acids immobilised on cellulose paper as a DNA sensor</article-title>
.
<source>RSC Adv.</source>
<year>2015</year>
,
<volume>5</volume>
,
<fpage>24110</fpage>
<lpage>24114</lpage>
.
<pub-id pub-id-type="doi">10.1039/C4RA15287E</pub-id>
.</mixed-citation>
</ref>
<ref id="ref49">
<mixed-citation publication-type="journal" id="cit49">
<name>
<surname>Laliwala</surname>
<given-names>S. K.</given-names>
</name>
;
<name>
<surname>Mehta</surname>
<given-names>V. N.</given-names>
</name>
;
<name>
<surname>Rohit</surname>
<given-names>J. V.</given-names>
</name>
;
<name>
<surname>Kailasa</surname>
<given-names>S. K.</given-names>
</name>
<article-title>Citrate-modified silver nanoparticles as a colorimetric probe for simultaneous detection of four triptan-family drugs</article-title>
.
<source>Sens. Actuators, B</source>
<year>2014</year>
,
<volume>197</volume>
,
<fpage>254</fpage>
<lpage>263</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.snb.2014.02.087</pub-id>
.</mixed-citation>
</ref>
<ref id="ref50">
<mixed-citation publication-type="journal" id="cit50">
<name>
<surname>Carrilho</surname>
<given-names>E.</given-names>
</name>
;
<name>
<surname>Martinez</surname>
<given-names>A. W.</given-names>
</name>
;
<name>
<surname>Whitesides</surname>
<given-names>G. M.</given-names>
</name>
<article-title>Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics</article-title>
.
<source>Anal. Chem.</source>
<year>2009</year>
,
<volume>81</volume>
,
<fpage>7091</fpage>
<lpage>7095</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac901071p</pub-id>
.
<pub-id pub-id-type="pmid">20337388</pub-id>
</mixed-citation>
</ref>
<ref id="ref51">
<mixed-citation publication-type="journal" id="cit51">
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Crooks</surname>
<given-names>R. M.</given-names>
</name>
<article-title>Three-Dimensional Paper Microfluidic Devices Assembled Using the Principles of Origami</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2011</year>
,
<volume>133</volume>
,
<fpage>17564</fpage>
<lpage>17566</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja2071779</pub-id>
.
<pub-id pub-id-type="pmid">22004329</pub-id>
</mixed-citation>
</ref>
<ref id="ref52">
<mixed-citation publication-type="journal" id="cit52">
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Xiang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Lu</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Crooks</surname>
<given-names>R. M.</given-names>
</name>
<article-title>Aptamer-Based Origami Paper Analytical Device for Electrochemical Detection of Adenosine</article-title>
.
<source>Angew. Chem.</source>
<year>2012</year>
,
<volume>124</volume>
,
<fpage>7031</fpage>
<lpage>7034</lpage>
.
<pub-id pub-id-type="doi">10.1002/ange.201202929</pub-id>
.</mixed-citation>
</ref>
<ref id="ref53">
<mixed-citation publication-type="journal" id="cit53">
<name>
<surname>Mentele</surname>
<given-names>M. M.</given-names>
</name>
;
<name>
<surname>Cunningham</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Koehler</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Volckens</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Henry</surname>
<given-names>C. S.</given-names>
</name>
<article-title>Microfluidic Paper-Based Analytical Device for Particulate Metals</article-title>
.
<source>Anal. Chem.</source>
<year>2012</year>
,
<volume>84</volume>
,
<fpage>4474</fpage>
<lpage>4480</lpage>
.
<pub-id pub-id-type="doi">10.1021/ac300309c</pub-id>
.
<pub-id pub-id-type="pmid">22489881</pub-id>
</mixed-citation>
</ref>
<ref id="ref54">
<mixed-citation publication-type="journal" id="cit54">
<name>
<surname>Huynh</surname>
<given-names>K. A.</given-names>
</name>
;
<name>
<surname>Chen</surname>
<given-names>K. L.</given-names>
</name>
<article-title>Aggregation Kinetics of Citrate and Polyvinylpyrrolidone Coated Silver Nanoparticles in Monovalent and Divalent Electrolyte Solutions</article-title>
.
<source>Environ. Sci. Technol.</source>
<year>2011</year>
,
<volume>45</volume>
,
<fpage>5564</fpage>
<lpage>5571</lpage>
.
<pub-id pub-id-type="doi">10.1021/es200157h</pub-id>
.
<pub-id pub-id-type="pmid">21630686</pub-id>
</mixed-citation>
</ref>
<ref id="ref55">
<mixed-citation publication-type="journal" id="cit55">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
;
<name>
<surname>Lenhart</surname>
<given-names>J. J.</given-names>
</name>
;
<name>
<surname>Walker</surname>
<given-names>H. W.</given-names>
</name>
<article-title>Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles</article-title>
.
<source>Langmuir</source>
<year>2010</year>
,
<volume>26</volume>
,
<fpage>16690</fpage>
<lpage>16698</lpage>
.
<pub-id pub-id-type="doi">10.1021/la101768n</pub-id>
.
<pub-id pub-id-type="pmid">20879768</pub-id>
</mixed-citation>
</ref>
<ref id="ref56">
<mixed-citation publication-type="journal" id="cit56">
<name>
<surname>Shirato</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Yano</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Senba</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Akachi</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Nishinaka</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Notomi</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Matsuyama</surname>
<given-names>S.</given-names>
</name>
<article-title>Detection of Middle East respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP)</article-title>
.
<source>Virol. J.</source>
<year>2014</year>
,
<volume>11</volume>
,
<fpage>139</fpage>
<lpage>139</lpage>
.
<pub-id pub-id-type="doi">10.1186/1743-422X-11-139</pub-id>
.
<pub-id pub-id-type="pmid">25103205</pub-id>
</mixed-citation>
</ref>
<ref id="ref57">
<mixed-citation publication-type="journal" id="cit57">
<name>
<surname>Azhar</surname>
<given-names>E. I.</given-names>
</name>
;
<name>
<surname>Hashem</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>El-Kafrawy</surname>
<given-names>S. A.</given-names>
</name>
;
<name>
<surname>Sohrab</surname>
<given-names>S. S.</given-names>
</name>
;
<name>
<surname>Aburizaiza</surname>
<given-names>A. S.</given-names>
</name>
;
<name>
<surname>Farraj</surname>
<given-names>S. A.</given-names>
</name>
;
<name>
<surname>Hassan</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>Al-Saeed</surname>
<given-names>M. S.</given-names>
</name>
;
<name>
<surname>Jamjoom</surname>
<given-names>G. A.</given-names>
</name>
;
<name>
<surname>Madani</surname>
<given-names>T. A.</given-names>
</name>
<article-title>Detection of the Middle East Respiratory Syndrome Coronavirus Genome in an Air Sample Originating from a Camel Barn Owned by an Infected Patient</article-title>
.
<source>mBio</source>
<year>2014</year>
,
<volume>5</volume>
,
<fpage>e01450</fpage>
<pub-id pub-id-type="doi">10.1128/mBio.01450-14</pub-id>
.
<pub-id pub-id-type="pmid">25053787</pub-id>
</mixed-citation>
</ref>
<ref id="ref58">
<mixed-citation publication-type="journal" id="cit58">
<name>
<surname>Abreu</surname>
<given-names>A. L. P.</given-names>
</name>
;
<name>
<surname>Souza</surname>
<given-names>R. P.</given-names>
</name>
;
<name>
<surname>Gimenes</surname>
<given-names>F.</given-names>
</name>
;
<name>
<surname>Consolaro</surname>
<given-names>M. E. L.</given-names>
</name>
<article-title>A review of methods for detect human Papillomavirus infection</article-title>
.
<source>Virol. J.</source>
<year>2012</year>
,
<volume>9</volume>
,
<fpage>262</fpage>
<lpage>262</lpage>
.
<pub-id pub-id-type="doi">10.1186/1743-422X-9-262</pub-id>
.
<pub-id pub-id-type="pmid">23131123</pub-id>
</mixed-citation>
</ref>
<ref id="ref59">
<mixed-citation publication-type="journal" id="cit59">
<name>
<surname>Villa</surname>
<given-names>L. L.</given-names>
</name>
;
<name>
<surname>Denny</surname>
<given-names>L.</given-names>
</name>
<article-title>CHAPTER 7 Methods for detection of HPV infection and its clinical utility</article-title>
.
<source>Int. J. Gynecol. Obstet.</source>
<year>2006</year>
,
<volume>94</volume>
,
<fpage>S71</fpage>
<lpage>S80</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0020-7292(07)60013-7</pub-id>
.</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000126  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000126  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021