Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0001219 ( Pmc/Corpus ); précédent : 0001218; suivant : 0001220 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Consequences of Dispersity on the Self-Assembly of ABA-Type Amphiphilic Block Co-Oligomers</title>
<author>
<name sortKey="Das, Anindita" sort="Das, Anindita" uniqKey="Das A" first="Anindita" last="Das">Anindita Das</name>
</author>
<author>
<name sortKey="Petkau Milroy, Katja" sort="Petkau Milroy, Katja" uniqKey="Petkau Milroy K" first="Katja" last="Petkau-Milroy">Katja Petkau-Milroy</name>
</author>
<author>
<name sortKey="Klerks, Gilian" sort="Klerks, Gilian" uniqKey="Klerks G" first="Gilian" last="Klerks">Gilian Klerks</name>
</author>
<author>
<name sortKey="Van Genabeek, Bas" sort="Van Genabeek, Bas" uniqKey="Van Genabeek B" first="Bas" last="Van Genabeek">Bas Van Genabeek</name>
</author>
<author>
<name sortKey="Lafleur, Rene P X0a M" sort="Lafleur, Rene P X0a M" uniqKey="Lafleur R" first="René P. X0a M." last="Lafleur">René P. X0a M. Lafleur</name>
</author>
<author>
<name sortKey="Palmans, Anja R A" sort="Palmans, Anja R A" uniqKey="Palmans A" first="Anja R. A." last="Palmans">Anja R. A. Palmans</name>
</author>
<author>
<name sortKey="Meijer, E W" sort="Meijer, E W" uniqKey="Meijer E" first="E. W." last="Meijer">E. W. Meijer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">29862138</idno>
<idno type="pmc">5973780</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973780</idno>
<idno type="RBID">PMC:5973780</idno>
<idno type="doi">10.1021/acsmacrolett.8b00168</idno>
<date when="2018">2018</date>
<idno type="wicri:Area/Pmc/Corpus">000121</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000121</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Consequences of Dispersity on the Self-Assembly of ABA-Type Amphiphilic Block Co-Oligomers</title>
<author>
<name sortKey="Das, Anindita" sort="Das, Anindita" uniqKey="Das A" first="Anindita" last="Das">Anindita Das</name>
</author>
<author>
<name sortKey="Petkau Milroy, Katja" sort="Petkau Milroy, Katja" uniqKey="Petkau Milroy K" first="Katja" last="Petkau-Milroy">Katja Petkau-Milroy</name>
</author>
<author>
<name sortKey="Klerks, Gilian" sort="Klerks, Gilian" uniqKey="Klerks G" first="Gilian" last="Klerks">Gilian Klerks</name>
</author>
<author>
<name sortKey="Van Genabeek, Bas" sort="Van Genabeek, Bas" uniqKey="Van Genabeek B" first="Bas" last="Van Genabeek">Bas Van Genabeek</name>
</author>
<author>
<name sortKey="Lafleur, Rene P X0a M" sort="Lafleur, Rene P X0a M" uniqKey="Lafleur R" first="René P. X0a M." last="Lafleur">René P. X0a M. Lafleur</name>
</author>
<author>
<name sortKey="Palmans, Anja R A" sort="Palmans, Anja R A" uniqKey="Palmans A" first="Anja R. A." last="Palmans">Anja R. A. Palmans</name>
</author>
<author>
<name sortKey="Meijer, E W" sort="Meijer, E W" uniqKey="Meijer E" first="E. W." last="Meijer">E. W. Meijer</name>
</author>
</analytic>
<series>
<title level="j">ACS Macro Letters</title>
<idno type="eISSN">2161-1653</idno>
<imprint>
<date when="2018">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p content-type="toc-graphic">
<graphic xlink:href="mz-2018-00168t_0006" id="ab-tgr1"></graphic>
</p>
<p>Intriguingly, little is known about the impact of dispersity on the crystallization driven self-assembly (CDSA) of amphiphilic block copolymers in aqueous media. Here, we investigate the influence of dispersity on the CDSA of ABA-type amphiphilic block co-oligomers (ABCOs). Two pairs of ABCOs are synthesized comprising discrete (
<italic>Đ</italic>
= 1.00) or disperse (
<italic>Đ</italic>
= 1.20) isotactic
<sc>l</sc>
-lactic acid 16-mers as the semicrystalline hydrophobic block and either oligo(ethylene glycol) methyl ether (MeOoEG) or oligo(tetraethylene glycol succinate) (oTEGSuc) as the discrete hydrophilic block. Self-assembly studies in water with 10% THF reveal uniform nanofibers/2D sheets for the discrete oligomers, but such structural regularity is largely compromised in the disperse oligomers. The results are corroborated by sharp melting transitions in both solution and bulk for the discrete ABCOs, unlike their disperse analogues that show a lack of crystallization. Interestingly, the discrete MeOoEG-LLA oligomer reveals crystallization driven gelation, illustrating the contrasting differences between the discrete oligomers and their disperse counterparts.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Whitesides, G M" uniqKey="Whitesides G">G. M. Whitesides</name>
</author>
<author>
<name sortKey="Boncheva, M" uniqKey="Boncheva M">M. Boncheva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mai, Y" uniqKey="Mai Y">Y. Mai</name>
</author>
<author>
<name sortKey="Eisenberg, A" uniqKey="Eisenberg A">A. Eisenberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lutz, J F" uniqKey="Lutz J">J.-F. Lutz</name>
</author>
<author>
<name sortKey="Lehn, J M" uniqKey="Lehn J">J.-M. Lehn</name>
</author>
<author>
<name sortKey="Meijer, E W" uniqKey="Meijer E">E. W. Meijer</name>
</author>
<author>
<name sortKey="Matyjaszewski, K" uniqKey="Matyjaszewski K">K. Matyjaszewski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hawker, C J" uniqKey="Hawker C">C. J. Hawker</name>
</author>
<author>
<name sortKey="Wooley, K L" uniqKey="Wooley K">K. L. Wooley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lawrence, J" uniqKey="Lawrence J">J. Lawrence</name>
</author>
<author>
<name sortKey="Lee, S H" uniqKey="Lee S">S.-H. Lee</name>
</author>
<author>
<name sortKey="Abdilla, A" uniqKey="Abdilla A">A. Abdilla</name>
</author>
<author>
<name sortKey="Nothling, M D" uniqKey="Nothling M">M. D. Nothling</name>
</author>
<author>
<name sortKey="Ren, J M" uniqKey="Ren J">J. M. Ren</name>
</author>
<author>
<name sortKey="Knight, A S" uniqKey="Knight A">A. S. Knight</name>
</author>
<author>
<name sortKey="Fleischmann, C" uniqKey="Fleischmann C">C. Fleischmann</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Abrams, A S" uniqKey="Abrams A">A. S. Abrams</name>
</author>
<author>
<name sortKey="Schmidt, B V K J" uniqKey="Schmidt B">B. V. K. J. Schmidt</name>
</author>
<author>
<name sortKey="Hawker, M C" uniqKey="Hawker M">M. C. Hawker</name>
</author>
<author>
<name sortKey="Connal, L A" uniqKey="Connal L">L. A. Connal</name>
</author>
<author>
<name sortKey="Mcgrath, A J" uniqKey="Mcgrath A">A. J. McGrath</name>
</author>
<author>
<name sortKey="Clark, P G" uniqKey="Clark P">P. G. Clark</name>
</author>
<author>
<name sortKey="Gutekunst, W R" uniqKey="Gutekunst W">W. R. Gutekunst</name>
</author>
<author>
<name sortKey="Hawker, C J" uniqKey="Hawker C">C. J. Hawker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takizawa, K" uniqKey="Takizawa K">K. Takizawa</name>
</author>
<author>
<name sortKey="Tang, C" uniqKey="Tang C">C. Tang</name>
</author>
<author>
<name sortKey="Hawker, C J" uniqKey="Hawker C">C. J. Hawker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, Y" uniqKey="Jiang Y">Y. Jiang</name>
</author>
<author>
<name sortKey="Golder, M R" uniqKey="Golder M">M. R. Golder</name>
</author>
<author>
<name sortKey="Nguyen, H V T" uniqKey="Nguyen H">H. V.-T. Nguyen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Zhong, M" uniqKey="Zhong M">M. Zhong</name>
</author>
<author>
<name sortKey="Barnes, J C" uniqKey="Barnes J">J. C. Barnes</name>
</author>
<author>
<name sortKey="Ehrlich, D J C" uniqKey="Ehrlich D">D. J. C. Ehrlich</name>
</author>
<author>
<name sortKey="Johnson, J A" uniqKey="Johnson J">J. A. Johnson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Gitlin, I" uniqKey="Gitlin I">I. Gitlin</name>
</author>
<author>
<name sortKey="Krishnamurthy, V M" uniqKey="Krishnamurthy V">V. M. Krishnamurthy</name>
</author>
<author>
<name sortKey="Vazquez, J A" uniqKey="Vazquez J">J. A. Vazquez</name>
</author>
<author>
<name sortKey="Costello, C E" uniqKey="Costello C">C. E. Costello</name>
</author>
<author>
<name sortKey="Whitesides, G M" uniqKey="Whitesides G">G. M. Whitesides</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szekely, G" uniqKey="Szekely G">G. Székely</name>
</author>
<author>
<name sortKey="Schaepertoens, M" uniqKey="Schaepertoens M">M. Schaepertoens</name>
</author>
<author>
<name sortKey="Gaffney, P R J" uniqKey="Gaffney P">P. R. J. Gaffney</name>
</author>
<author>
<name sortKey="Livingston, A G" uniqKey="Livingston A">A. G. Livingston</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Williams, J B" uniqKey="Williams J">J. B. Williams</name>
</author>
<author>
<name sortKey="Chapman, T M" uniqKey="Chapman T">T. M. Chapman</name>
</author>
<author>
<name sortKey="Hercules, D M" uniqKey="Hercules D">D. M. Hercules</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rosales, A M" uniqKey="Rosales A">A. M. Rosales</name>
</author>
<author>
<name sortKey="Segalman, R A" uniqKey="Segalman R">R. A. Segalman</name>
</author>
<author>
<name sortKey="Zuckermann, R N" uniqKey="Zuckermann R">R. N. Zuckermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lutz, J F J F" uniqKey="Lutz J">J.-F. J.-F. Lutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ida, S" uniqKey="Ida S">S. Ida</name>
</author>
<author>
<name sortKey="Ouchi, M" uniqKey="Ouchi M">M. Ouchi</name>
</author>
<author>
<name sortKey="Sawamoto, M" uniqKey="Sawamoto M">M. Sawamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lutz, J F" uniqKey="Lutz J">J.-F. Lutz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Robertson, E J" uniqKey="Robertson E">E. J. Robertson</name>
</author>
<author>
<name sortKey="Battigelli, A" uniqKey="Battigelli A">A. Battigelli</name>
</author>
<author>
<name sortKey="Proulx, C" uniqKey="Proulx C">C. Proulx</name>
</author>
<author>
<name sortKey="Mannige, R V" uniqKey="Mannige R">R. V. Mannige</name>
</author>
<author>
<name sortKey="Haxton, T K" uniqKey="Haxton T">T. K. Haxton</name>
</author>
<author>
<name sortKey="Yun, L" uniqKey="Yun L">L. Yun</name>
</author>
<author>
<name sortKey="Whitelam, S" uniqKey="Whitelam S">S. Whitelam</name>
</author>
<author>
<name sortKey="Zuckermann, R N" uniqKey="Zuckermann R">R. N. Zuckermann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pijpers, I A B" uniqKey="Pijpers I">I. A. B. Pijpers</name>
</author>
<author>
<name sortKey="Abdelmohsen, L K E A" uniqKey="Abdelmohsen L">L. K. E. A. Abdelmohsen</name>
</author>
<author>
<name sortKey="Williams, D S" uniqKey="Williams D">D. S. Williams</name>
</author>
<author>
<name sortKey="Van Hest, J C M" uniqKey="Van Hest J">J. C. M. van Hest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdelmohsen, L K E A" uniqKey="Abdelmohsen L">L. K. E. A. Abdelmohsen</name>
</author>
<author>
<name sortKey="Williams, D S" uniqKey="Williams D">D. S. Williams</name>
</author>
<author>
<name sortKey="Pille, J" uniqKey="Pille J">J. Pille</name>
</author>
<author>
<name sortKey="Ozel, S G" uniqKey="Ozel S">S. G. Ozel</name>
</author>
<author>
<name sortKey="Rikken, R S M" uniqKey="Rikken R">R. S. M. Rikken</name>
</author>
<author>
<name sortKey="Wilson, D A" uniqKey="Wilson D">D. A. Wilson</name>
</author>
<author>
<name sortKey="Van Hest, J C M" uniqKey="Van Hest J">J. C. M. van Hest</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van X0a Genabeek, B" uniqKey="Van X0a Genabeek B">B. van Genabeek</name>
</author>
<author>
<name sortKey="De Waal, B F M" uniqKey="De Waal B">B. F. M. de Waal</name>
</author>
<author>
<name sortKey="Gosens, M M J" uniqKey="Gosens M">M. M. J. Gosens</name>
</author>
<author>
<name sortKey="Pitet, L M" uniqKey="Pitet L">L. M. Pitet</name>
</author>
<author>
<name sortKey="Palmans, A R A" uniqKey="Palmans A">A. R. A. Palmans</name>
</author>
<author>
<name sortKey="Meijer, E W" uniqKey="Meijer E">E. W. Meijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van X0a Genabeek, B" uniqKey="Van X0a Genabeek B">B. van Genabeek</name>
</author>
<author>
<name sortKey="De Waal, B F M" uniqKey="De Waal B">B. F. M. de Waal</name>
</author>
<author>
<name sortKey="Ligt, B" uniqKey="Ligt B">B. Ligt</name>
</author>
<author>
<name sortKey="Palmans, A R A" uniqKey="Palmans A">A. R. A. Palmans</name>
</author>
<author>
<name sortKey="Meijer, E W" uniqKey="Meijer E">E. W. Meijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oschmann, B" uniqKey="Oschmann B">B. Oschmann</name>
</author>
<author>
<name sortKey="Lawrence, J" uniqKey="Lawrence J">J. Lawrence</name>
</author>
<author>
<name sortKey="Schulze, M W" uniqKey="Schulze M">M. W. Schulze</name>
</author>
<author>
<name sortKey="Ren, J M" uniqKey="Ren J">J. M. Ren</name>
</author>
<author>
<name sortKey="Anastasaki, A" uniqKey="Anastasaki A">A. Anastasaki</name>
</author>
<author>
<name sortKey="Luo, Y" uniqKey="Luo Y">Y. Luo</name>
</author>
<author>
<name sortKey="Nothling, M D" uniqKey="Nothling M">M. D. Nothling</name>
</author>
<author>
<name sortKey="Pester, C W" uniqKey="Pester C">C. W. Pester</name>
</author>
<author>
<name sortKey="Delaney, K T" uniqKey="Delaney K">K. T. Delaney</name>
</author>
<author>
<name sortKey="Connal, L A" uniqKey="Connal L">L. A. Connal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Liang, Y" uniqKey="Liang Y">Y. Liang</name>
</author>
<author>
<name sortKey="Luo, J" uniqKey="Luo J">J. Luo</name>
</author>
<author>
<name sortKey="Zhao, C" uniqKey="Zhao C">C. Zhao</name>
</author>
<author>
<name sortKey="Han, C C" uniqKey="Han C">C. C. Han</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Wang, L Q" uniqKey="Wang L">L.-Q. Wang</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Tu, K" uniqKey="Tu K">K. Tu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Heald, C R" uniqKey="Heald C">C. R. Heald</name>
</author>
<author>
<name sortKey="Stolnik, S" uniqKey="Stolnik S">S. Stolnik</name>
</author>
<author>
<name sortKey="Kujawinski, K S" uniqKey="Kujawinski K">K. S. Kujawinski</name>
</author>
<author>
<name sortKey="De Matteis, C" uniqKey="De Matteis C">C. De Matteis</name>
</author>
<author>
<name sortKey="Garnett, M C" uniqKey="Garnett M">M. C. Garnett</name>
</author>
<author>
<name sortKey="Illum, L" uniqKey="Illum L">L. Illum</name>
</author>
<author>
<name sortKey="Davis, S S" uniqKey="Davis S">S. S. Davis</name>
</author>
<author>
<name sortKey="Purkiss, S C" uniqKey="Purkiss S">S. C. Purkiss</name>
</author>
<author>
<name sortKey="Barlow, R J" uniqKey="Barlow R">R. J. Barlow</name>
</author>
<author>
<name sortKey="Gellert, P R" uniqKey="Gellert P">P. R. Gellert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knop, K" uniqKey="Knop K">K. Knop</name>
</author>
<author>
<name sortKey="Hoogenboom, R" uniqKey="Hoogenboom R">R. Hoogenboom</name>
</author>
<author>
<name sortKey="Fischer, D" uniqKey="Fischer D">D. Fischer</name>
</author>
<author>
<name sortKey="Schubert, U S" uniqKey="Schubert U">U. S. Schubert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicolas, J" uniqKey="Nicolas J">J. Nicolas</name>
</author>
<author>
<name sortKey="Mura, S" uniqKey="Mura S">S. Mura</name>
</author>
<author>
<name sortKey="Brambilla, D" uniqKey="Brambilla D">D. Brambilla</name>
</author>
<author>
<name sortKey="Mackiewicz, N" uniqKey="Mackiewicz N">N. Mackiewicz</name>
</author>
<author>
<name sortKey="Couvreur, P" uniqKey="Couvreur P">P. Couvreur</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, S" uniqKey="Chen S">S. Chen</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Fan, Y" uniqKey="Fan Y">Y. Fan</name>
</author>
<author>
<name sortKey="Ma, J" uniqKey="Ma J">J. Ma</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van X0a Genabeek, B" uniqKey="Van X0a Genabeek B">B. van Genabeek</name>
</author>
<author>
<name sortKey="Lamers, B A G" uniqKey="Lamers B">B. A. G. Lamers</name>
</author>
<author>
<name sortKey="De Waal, B F M" uniqKey="De Waal B">B. F. M. de Waal</name>
</author>
<author>
<name sortKey="Van X0a Son, M H C" uniqKey="Van X0a Son M">M. H. C. van Son</name>
</author>
<author>
<name sortKey="Palmans, A R A" uniqKey="Palmans A">A. R. A. Palmans</name>
</author>
<author>
<name sortKey="Meijer, E W" uniqKey="Meijer E">E. W. Meijer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gilroy, J B" uniqKey="Gilroy J">J. B. Gilroy</name>
</author>
<author>
<name sortKey="G Dt, T" uniqKey="G Dt T">T. Gädt</name>
</author>
<author>
<name sortKey="Whittell, G R" uniqKey="Whittell G">G. R. Whittell</name>
</author>
<author>
<name sortKey="Chabanne, L" uniqKey="Chabanne L">L. Chabanne</name>
</author>
<author>
<name sortKey="Mitchels, J M" uniqKey="Mitchels J">J. M. Mitchels</name>
</author>
<author>
<name sortKey="Richardson, R M" uniqKey="Richardson R">R. M. Richardson</name>
</author>
<author>
<name sortKey="Winnik, M A" uniqKey="Winnik M">M. A. Winnik</name>
</author>
<author>
<name sortKey="Manners, I" uniqKey="Manners I">I. Manners</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pitto Barry, A" uniqKey="Pitto Barry A">A. Pitto-Barry</name>
</author>
<author>
<name sortKey="Kirby, N" uniqKey="Kirby N">N. Kirby</name>
</author>
<author>
<name sortKey="Dove, A P" uniqKey="Dove A">A. P. Dove</name>
</author>
<author>
<name sortKey="O Eilly, R K" uniqKey="O Eilly R">R. K. O’Reilly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takizawa, K" uniqKey="Takizawa K">K. Takizawa</name>
</author>
<author>
<name sortKey="Nulwala, H" uniqKey="Nulwala H">H. Nulwala</name>
</author>
<author>
<name sortKey="Hu, J" uniqKey="Hu J">J. Hu</name>
</author>
<author>
<name sortKey="Yoshinaga, K" uniqKey="Yoshinaga K">K. Yoshinaga</name>
</author>
<author>
<name sortKey="Hawker, C J" uniqKey="Hawker C">C. J. Hawker</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jeong, B" uniqKey="Jeong B">B. Jeong</name>
</author>
<author>
<name sortKey="Bae, Y H" uniqKey="Bae Y">Y. H. Bae</name>
</author>
<author>
<name sortKey="Lee, D S" uniqKey="Lee D">D. S. Lee</name>
</author>
<author>
<name sortKey="Kim, S W" uniqKey="Kim S">S. W. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sackett, D L" uniqKey="Sackett D">D. L. Sackett</name>
</author>
<author>
<name sortKey="Wolff, J" uniqKey="Wolff J">J. Wolff</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="rapid-communication" xml:lang="EN">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">ACS Macro Lett</journal-id>
<journal-id journal-id-type="iso-abbrev">ACS Macro Lett</journal-id>
<journal-id journal-id-type="publisher-id">mz</journal-id>
<journal-id journal-id-type="coden">amlccd</journal-id>
<journal-title-group>
<journal-title>ACS Macro Letters</journal-title>
</journal-title-group>
<issn pub-type="epub">2161-1653</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">29862138</article-id>
<article-id pub-id-type="pmc">5973780</article-id>
<article-id pub-id-type="doi">10.1021/acsmacrolett.8b00168</article-id>
<article-categories>
<subj-group>
<subject>Letter</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Consequences of Dispersity on the Self-Assembly of ABA-Type Amphiphilic Block Co-Oligomers</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="ath1">
<name>
<surname>Das</surname>
<given-names>Anindita</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath2">
<name>
<surname>Petkau-Milroy</surname>
<given-names>Katja</given-names>
</name>
<xref rid="cor3" ref-type="other">*</xref>
</contrib>
<contrib contrib-type="author" id="ath3">
<name>
<surname>Klerks</surname>
<given-names>Gilian</given-names>
</name>
</contrib>
<contrib contrib-type="author" id="ath4">
<name>
<surname>van Genabeek</surname>
<given-names>Bas</given-names>
</name>
</contrib>
<contrib contrib-type="author" id="ath5">
<name>
<surname>Lafleur</surname>
<given-names>René P. M.</given-names>
</name>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath6">
<name>
<surname>Palmans</surname>
<given-names>Anja R. A.</given-names>
</name>
<xref rid="cor2" ref-type="other">*</xref>
</contrib>
<contrib contrib-type="author" corresp="yes" id="ath7">
<name>
<surname>Meijer</surname>
<given-names>E. W.</given-names>
</name>
<xref rid="cor1" ref-type="other">*</xref>
</contrib>
<aff id="aff1">Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry,
<institution>Eindhoven University of Technology</institution>
, P.O. Box 513, 5600 MB Eindhoven,
<country>The Netherlands</country>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">
<label>*</label>
E-mail:
<email>e.w.meijer@tue.nl</email>
.</corresp>
<corresp id="cor2">
<label>*</label>
E-mail:
<email>a.palmans@tue.nl</email>
.</corresp>
<corresp id="cor3">
<label>*</label>
E-mail:
<email>k.petkau-milroy@tue.nl</email>
.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>16</day>
<month>04</month>
<year>2018</year>
</pub-date>
<pub-date pub-type="ppub">
<day>15</day>
<month>05</month>
<year>2018</year>
</pub-date>
<volume>7</volume>
<issue>5</issue>
<fpage>546</fpage>
<lpage>550</lpage>
<history>
<date date-type="received">
<day>28</day>
<month>02</month>
<year>2018</year>
</date>
<date date-type="accepted">
<day>04</day>
<month>04</month>
<year>2018</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2018 American Chemical Society</copyright-statement>
<copyright-year>2018</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
<license>
<license-p>This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html">License</ext-link>
, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.</license-p>
</license>
</permissions>
<abstract>
<p content-type="toc-graphic">
<graphic xlink:href="mz-2018-00168t_0006" id="ab-tgr1"></graphic>
</p>
<p>Intriguingly, little is known about the impact of dispersity on the crystallization driven self-assembly (CDSA) of amphiphilic block copolymers in aqueous media. Here, we investigate the influence of dispersity on the CDSA of ABA-type amphiphilic block co-oligomers (ABCOs). Two pairs of ABCOs are synthesized comprising discrete (
<italic>Đ</italic>
= 1.00) or disperse (
<italic>Đ</italic>
= 1.20) isotactic
<sc>l</sc>
-lactic acid 16-mers as the semicrystalline hydrophobic block and either oligo(ethylene glycol) methyl ether (MeOoEG) or oligo(tetraethylene glycol succinate) (oTEGSuc) as the discrete hydrophilic block. Self-assembly studies in water with 10% THF reveal uniform nanofibers/2D sheets for the discrete oligomers, but such structural regularity is largely compromised in the disperse oligomers. The results are corroborated by sharp melting transitions in both solution and bulk for the discrete ABCOs, unlike their disperse analogues that show a lack of crystallization. Interestingly, the discrete MeOoEG-LLA oligomer reveals crystallization driven gelation, illustrating the contrasting differences between the discrete oligomers and their disperse counterparts.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>mz8b00168</meta-value>
</custom-meta>
<custom-meta>
<meta-name>document-id-new-14</meta-name>
<meta-value>mz-2018-00168t</meta-value>
</custom-meta>
<custom-meta>
<meta-name>ccc-price</meta-name>
<meta-value></meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<p>Self-assembly of block copolymers is a topic of considerable interest in polymer science due to the tremendous potential for applications in both biomedical engineering and nanolithography.
<sup>
<xref ref-type="bibr" rid="ref1">1</xref>
,
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
Although abiotic polymers synthesized via controlled polymerization techniques show great diversity in their structures and functions, they still suffer from significant molar mass distribution and cannot match up with the architectural purity, precision, and complexity displayed by biomacromolecules.
<sup>
<xref ref-type="bibr" rid="ref3">3</xref>
,
<xref ref-type="bibr" rid="ref4">4</xref>
</sup>
In contrast, most biopolymers such as DNA, RNA, and polypeptides are monodisperse and sequence-specific, which is critical to their overall three-dimensional organization and thus their properties and functions. In the recent past, polymer research started focusing on both discrete (
<italic>Đ</italic>
< 1.000002)
<sup>
<xref ref-type="bibr" rid="ref4">4</xref>
<xref ref-type="bibr" rid="ref10">10</xref>
</sup>
and sequence-specific polymers
<sup>
<xref ref-type="bibr" rid="ref11">11</xref>
<xref ref-type="bibr" rid="ref15">15</xref>
</sup>
in an attempt to mimic these aspects of biomacromolecules.</p>
<p>Amphiphilic block copolymers (ABCPs) have been a topic of long-standing interest in biomedical research for their ability to form nanocarriers such as micelles, vesicles, nanorods, and other tailored shapes for drug delivery.
<sup>
<xref ref-type="bibr" rid="ref2">2</xref>
,
<xref ref-type="bibr" rid="ref16">16</xref>
,
<xref ref-type="bibr" rid="ref17">17</xref>
</sup>
Depending on the hydrophilic/hydrophobic block ratio, molecular weight of the polymer, and crystallinity of the hydrophobic core, the morphology and properties of these nanoparticles can be engineered. Surprisingly, the impact of the molar mass distribution (
<italic>Đ</italic>
) on nanoparticle formation, shape, structural uniformity, and efficacy for uptake and release of guest molecules has hardly been investigated in amphiphilic block copolymers. Comparative self-assembly studies between ultradefined discrete ABCPs (
<italic>Đ</italic>
= 1.000) and their disperse counterparts could be extremely important in the fundamental understanding of the influence of dispersity on their properties after self-assembly in the aqueous phase. Contrasting differences between the discrete and disperse BCPs have been recently observed in the bulk phase. Our group has reported on the self-assembly of discrete diblock co-oligomers (BCOs) composed of oligolactic acid (oLA) and oligodimethylsiloxane (oDMS) obtained by iterative coupling-deprotection based synthetic strategies.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
,
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
Whereas the discrete polymer formed well-organized lamellar structures, its disperse counterpart revealed a lower extent of ordering with an increase of the domain spacing and greater stability of the phase-separated structures.
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
In a complementary study, the group of Hawker observed similar differences in bulk between semidiscrete and disperse BCOs composed of oligomethyl methacrylate (oMMA) and oDMS.
<sup>
<xref ref-type="bibr" rid="ref20">20</xref>
</sup>
</p>
<p>Intrigued by these results, we here aim to investigate the effect of dispersity in the aqueous phase, where the high mobility of the flexible polymers chains in solution presents an additional challenge. With this objective, we synthesized two pairs of ABA-type amphiphilic block co-oligomers (ABCOs) composed of discrete (
<italic>Đ</italic>
= 1.000) or disperse (
<italic>Đ</italic>
= 1.2) isotactic oligo(L-lactic acid) (LLA) as the hydrophobic block and either oligoethylene glycol methyl ether (MeOoEG) or oligo(tetraethylene glycol succinate) (oTEGSuc) as the discrete hydrophilic block (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
A). The rationale behind choosing these blocks is as follows: the self-assembly of polylactic acid-
<italic>b</italic>
-polyethylene glycol (PLA-
<italic>b</italic>
-PEG) has been explicitly studied
<sup>
<xref ref-type="bibr" rid="ref21">21</xref>
<xref ref-type="bibr" rid="ref23">23</xref>
</sup>
in the context of drug delivery and regenerative medicine because these polymers are known to be biocompatible.
<sup>
<xref ref-type="bibr" rid="ref24">24</xref>
,
<xref ref-type="bibr" rid="ref25">25</xref>
</sup>
oTEGSuc block was chosen as a biodegradable substitute to PEG, to generate fully biodegradable ABCOs.
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
</sup>
Discrete chains of oTEGSuc can be synthesized following the iterative synthetic approach presented in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
. The
<sc>l</sc>
-lactic acid 16-mer was selected as the hydrophobic core either as a discrete 16-mer of exact molecular weight (LLA
<sub>16</sub>
) or as a disperse one (LLA
<sub>∼16</sub>
) with
<italic>Đ</italic>
= 1.20. Discrete LLA
<sub>16</sub>
is semicrystalline and forms ordered lamellae in the bulk.
<sup>
<xref ref-type="bibr" rid="ref27">27</xref>
</sup>
In the context of drug delivery, the crystallization driven self-assembly (CDSA) of amphiphilic block copolymers with a crystallizable hydrophobic core has been applied to fabricate nonspherical nanostructures in solution.
<sup>
<xref ref-type="bibr" rid="ref28">28</xref>
,
<xref ref-type="bibr" rid="ref29">29</xref>
</sup>
However, as of yet there is no study on understanding the consequence of dispersity on block crystallinity in solution, which is investigated in the present work.</p>
<fig id="fig1" position="float">
<label>Figure 1</label>
<caption>
<p>(a) Structures of discrete and disperse amphiphilic block co-oligomers and (b) their MALDI-ToF spectra.</p>
</caption>
<graphic xlink:href="mz-2018-00168t_0001" id="gr2" position="float"></graphic>
</fig>
<fig id="sch1" position="float">
<label>Scheme 1</label>
<caption>
<title>Synthesis of (a) Discrete Tetraethylene Glycol Succinate (TEGSuc)
<sub>
<italic>x</italic>
</sub>
Oligomers, (b) Their MALDI-ToF Spectra, and (c) Synthesis of Discrete ABCOs</title>
</caption>
<graphic xlink:href="mz-2018-00168t_0005" id="gr1" position="float"></graphic>
</fig>
<p>For the synthesis of discrete oTEGSuc, we followed a modified iterative coupling-deprotection route (
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
a) recently reported by our group for monodisperse lactic acid oligomers.
<sup>
<xref ref-type="bibr" rid="ref18">18</xref>
</sup>
Succinic acid monobenzyl ester (
<bold>1</bold>
) was coupled with mono
<italic>tert</italic>
-butyl dimethylsilyl (TBDMS) ether protected tetraethylene glycol (TEG;
<bold>2</bold>
) to obtain double-protected monomer
<bold>(TEGSuc)
<sub>1</sub>
</bold>
. Orthogonal deprotection of the TBDMS ether and the benzyl ester resulted in free hydroxyl and carboxylic acid containing
<bold>3</bold>
and
<bold>4</bold>
, respectively. Carbodiimide-promoted coupling between the two afforded double-protected dimer
<bold>(TEGSuc)
<sub>2</sub>
</bold>
. By repetition of the deprotection and coupling steps, tetramer
<bold>(TEGSuc)
<sub>4</sub>
</bold>
was obtained. A stack plot of the MALDI-ToF spectra of the double-protected
<bold>(TEGSuc)
<sub>
<italic>x</italic>
</sub>
</bold>
oligomers from monomer to tetramer is shown in
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
b. Single peaks corresponding to the mass of the desired species complexed with sodium ion and potassium ion indicate that precisely defined block lengths were obtained.</p>
<p>The synthesis of discrete telechelic LLA
<sub>16</sub>
with free carboxylic acid moieties (HOOC-SA-LLA
<sub>16</sub>
-COOH,
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
c) is based on the synthetic strategy previously reported by Hawker and co-workers.
<sup>
<xref ref-type="bibr" rid="ref30">30</xref>
</sup>
Disperse telechelic LLA
<sub>∼16</sub>
was synthesized by ring-opening polymerization. The dispersity of LLA
<sub>∼16</sub>
(
<italic>Đ</italic>
= 1.2) was determined using size exclusion chromatography. Full synthetic details on the preparation of the hydrophobic blocks can be found in the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Supporting Information</ext-link>
. Subsequent ligation of the acid functionalized LLA block with two equivalents of hydroxyl functionalized discrete (TEGSuc)
<sub>2</sub>
-OH, or commercially available discrete MeOoEG
<sub>11</sub>
–OH resulted in the target ABA-type ABCOs
<bold>P1</bold>
and
<bold>P2</bold>
(
<xref rid="sch1" ref-type="scheme">Scheme
<xref rid="sch1" ref-type="scheme">1</xref>
</xref>
c). The discrete ABCOs are designated as
<bold>P
<italic>x</italic>
</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and their disperse analogues are referred to as
<bold>P
<italic>x</italic>
</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
. All the compounds were purified by automated column chromatography and fully analyzed by
<sup>1</sup>
H NMR,
<sup>13</sup>
C NMR, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figures S1–S9</ext-link>
). Despite similar degrees of polymerization based on
<sup>1</sup>
H NMR, the MALDI-ToF spectra of the discrete and the disperse oligomers reveal a wide distribution in the chain length for disperse samples compared to a single peak for the discrete ones (
<xref rid="fig1" ref-type="fig">Figure
<xref rid="fig1" ref-type="fig">1</xref>
</xref>
).</p>
<p>The thermal behavior and degree of ordering in the bulk of the discrete and disperse ABCOs was investigated using differential scanning calorimetry (DSC;
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figures S10 and S11</ext-link>
) and small and wide angle X-ray scattering (SAXS and WAXS;
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S12</ext-link>
). The introduction of dispersity into the LLA block has a clear effect on the position and intensity of the DSC transitions for both the
<bold>P1</bold>
and
<bold>P2</bold>
systems (see
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">SI</ext-link>
for a detailed discussion). Notably, the SAXS data show a primary scattering peak only for the discrete samples, corresponding to
<italic>d</italic>
= 6.5 nm for
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<italic>d</italic>
= 10.5 nm for
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
<italic>Bn</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S12</ext-link>
). A higher order scattering peak at
<italic>d</italic>
= 5.2 nm in case of
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
<italic>Bn</italic>
suggests a lamellar packing of the ABCO in the bulk. Such clear scattering peaks at low
<italic>q</italic>
values are absent for both disperse
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
and
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
<italic>Bn</italic>
, indicating reduced phase segregation between the two blocks and a less defined morphology. All in all, the differences in bulk properties of discrete and disperse ABCOs are in good correspondence to our previous results published on oLLA-oDMS block-
<italic>co</italic>
-oligomers,
<sup>
<xref ref-type="bibr" rid="ref19">19</xref>
</sup>
where we observed a significant loss in long-range order when dispersity was introduced into the oLLA block.</p>
<p>Subsequently, the self-assembly of the ABCOs was studied in aqueous media. Due to the more hydrophobic nature of TEGSuc as compared to MeOoEG,
<bold>P2</bold>
could not be dissolved in pure water. As a result, all the studies were performed in water/THF mixtures with 10% THF.
<sup>
<xref ref-type="bibr" rid="ref31">31</xref>
</sup>
To prepare the solutions, each compound was dissolved in THF, and water was added dropwise to reach a 1:9 THF/water binary mixture at 1–5 mg ABCO per mL. The formation of the nanoparticles was studied with light and X-ray scattering (LS and SAXS), micro-DSC, and microscopy (cryoTEM and total internal reflection fluorescence (TIRF) microscopy). Diffusion coefficients were obtained from multiangle light scattering by fitting the decay rate (
<inline-formula id="d30e534">
<inline-graphic xlink:href="mz-2018-00168t_m001.gif"></inline-graphic>
</inline-formula>
) versus the scattering vector (
<italic>q</italic>
) plot (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S13</ext-link>
). Using the Stoke–Einstein equation, the hydrodynamic radius (
<italic>R</italic>
<sub>h</sub>
) of the particles was calculated. After self-assembly in water, the
<italic>R</italic>
<sub>h</sub>
was found to be larger for the discrete variants (
<italic>R</italic>
<sub>h</sub>
= 74 nm for
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and 125 nm for
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
) than for the disperse analogues (
<italic>R</italic>
<sub>h</sub>
= 42 nm for
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
and 90 nm for
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
). When comparing the LS data of
<bold>P1</bold>
with
<bold>P2</bold>
, it appears that larger particles are for the
<bold>P2</bold>
pairs. However, fitting the decay rate versus the scattering vector reveals some anisotropy in the structures, indicating that the particles are not spherical, and thus, the Stoke–Einstein equation does not apply. To get an indication of the shape of the particles formed, the scattering intensity (
<italic>I</italic>
) was plotted against
<italic>q</italic>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S14</ext-link>
). The slope of −1 for both
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
indicates that this ABCO self-assembles into cylindrical micelles, whereas
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
<italic>self-assemble</italic>
into vesicles or flat bilayers (slope of −2). The morphology of an ABCP is largely dependent on the hydrophobic/hydrophilic block ratio.
<sup>
<xref ref-type="bibr" rid="ref2">2</xref>
</sup>
For an invariant ratio, MeOoEG was replaced with a TEGSuc block of comparable molar mass. Possibly, the more hydrophobic nature of the TEGSuc block
<sup>
<xref ref-type="bibr" rid="ref26">26</xref>
</sup>
changes this balance, leading to the formation of vesicles or bilayers.</p>
<p>To substantiate the formation of cylindrical micelles by
<bold>P1</bold>
in solution, SAXS measurements were performed. The SAXS profile obtained of
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
was best fitted with a flexible cylinder model (
<xref rid="fig2" ref-type="fig">Figures
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
a and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">S15a</ext-link>
). The radius of 3.2 nm, the Kuhn length of 103 nm and the overall length of 1038 nm agrees well with the cryoTEM observations (
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
b), which confirms the formation of elongated thin fibers of consistent width. In contrast, the cryoTEM image (
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
a) of the
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
reveals the coexistence of two populations. Next to the elongated thin fibers, bundles of shorter but much wider fibers are present. This bundling effect might be due to the coassembly of LLA blocks of varying lengths. The SAXS profile of
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
could not be fit well, which is likely due to an overlay of the scattering of multiple species present in solution (
<xref rid="fig2" ref-type="fig">Figures
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
a and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">S15b</ext-link>
). The results above clearly exemplify the pronounced impact of LLA block dispersity on the homogeneity of the self-assembled structures. In addition, the morphologies formed were highly stable over time. CryoTEM images of aged samples for both
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S16</ext-link>
) retained the same morphologies even after keeping the solutions at room temperature for around 90 days.</p>
<fig id="fig2" position="float">
<label>Figure 2</label>
<caption>
<p>Solution SAXS traces of (a)
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
(0.5 mg mL
<sup>–1</sup>
) and of (b)
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
(0.6 mg mL
<sup>–1</sup>
) after self-assembly in water with 10% THF; (a, inset) self-assembly of
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
(gel) and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
(sol) at 5 mg mL
<sup>–1</sup>
in water with 10% THF. The lines represent the best fit to the data using either a flexible cylinder (a) or the lamellar (b) model.</p>
</caption>
<graphic xlink:href="mz-2018-00168t_0002" id="gr3" position="float"></graphic>
</fig>
<fig id="fig3" position="float">
<label>Figure 3</label>
<caption>
<p>CryoTEM images at 25000 magnification of (a)
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
and (b)
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
, both at 5 mg mL
<sup>–1</sup>
in water with 10% THF, and (c)
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
and (d)
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
both at 2 mg mL
<sup>–1</sup>
in water with 10% THF. Large dark round particles in “a” are crystalline ice particles and not part of the sample. The images were recorded at 10 μm (a, b, d) and 5 μm defocus (c). For corresponding low-magnification images see
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S17</ext-link>
.</p>
</caption>
<graphic xlink:href="mz-2018-00168t_0003" id="gr4" position="float"></graphic>
</fig>
<p>Interestingly, the discrete oligomer
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
formed a transparent gel at 5 mg mL
<sup>–1</sup>
when the solution was heated and cooled back to room temperature (
<xref rid="fig2" ref-type="fig">Figure
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
a, inset). The gelation process was found to be reversible and repeatable. The gel–sol transition (
<italic>T</italic>
<sub>gel</sub>
), as determined visually for multiple cycles, varied between 42 and 48 °C upon heating the sample. This transition is very close to the melting temperature (
<italic>T</italic>
<sub>m</sub>
= 41 °C) of discrete LLA
<sub>16</sub>
block measured in the bulk (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S10a</ext-link>
), as well as the transition temperature of 43 °C measured in solution by micro-DSC (
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
, vide infra). Notably, no gelation was observed for
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
under identical conditions, although gelation in disperse PEG-PLLA-PEG based triblock copolymer is well reported via interdigitation of micelles through PEG chains.
<sup>
<xref ref-type="bibr" rid="ref32">32</xref>
</sup>
Such discrepancy in the gelation behavior of
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
nicely corroborates with their distinctly different morphologies as observed from cryoTEM.</p>
<fig id="fig4" position="float">
<label>Figure 4</label>
<caption>
<p>Micro-DSC traces of
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
at 5 mg mL
<sup>–1</sup>
after self-assembly in water with 10% THF.</p>
</caption>
<graphic xlink:href="mz-2018-00168t_0004" id="gr5" position="float"></graphic>
</fig>
<p>The self-assembly of the
<bold>P2</bold>
pair was further investigated using SAXS in solution. The SAXS profile for both
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
shows a slope of −2, indicating the formation of vesicles or flat bilayers (
<xref rid="fig2" ref-type="fig">Figures
<xref rid="fig2" ref-type="fig">2</xref>
</xref>
b and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">S15c,d</ext-link>
). In contrast to the
<bold>P1</bold>
pair, both profiles for
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
are very similar. The SAXS profiles were fitted best using the lamellae model, indicating a lamellae thickness of 7 nm (
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
) or 8 nm (
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
). Since the
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
sample was not transparent, indicative of the formation of large aggregates, cryoTEM imaging of
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
was first performed of a filtered sample, revealing the presence of uniform sheets rolled into U-shape (
<xref rid="fig3" ref-type="fig">Figures
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
c and
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">S18</ext-link>
). Flat sheets were observed in a sample that was not filtered prior to imaging (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S18</ext-link>
). To visualize the aggregates of
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
at the μm length scale, TIRF microscopy was performed after the addition of the dye Nile Red. This hydrophobic dye is weakly fluorescent in water but becomes highly fluorescent after incorporation into hydrophobic domains.
<sup>
<xref ref-type="bibr" rid="ref33">33</xref>
</sup>
Besides the sheets rolled into U-shape, other spherical morphologies and large aggregates were present (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S18</ext-link>
). In contrast, for
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
only the formation of long sheets was observed by cryoTEM imaging (
<xref rid="fig3" ref-type="fig">Figure
<xref rid="fig3" ref-type="fig">3</xref>
</xref>
d), as well as by TIRF microscopy (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S19</ext-link>
). Also for the
<bold>P2</bold>
set, the results clearly exemplify that the dispersity of the LLA
<sub>∼16</sub>
block inhibits the uniformity of the self-assembled structures in solution.</p>
<p>To study whether the self-assembly in solution is driven by the crystallization of the LLA block, microdifferential scanning calorimetry (microDSC) in 1:9 THF/water was performed. The solutions were heated from 5 to 70 °C at a rate of 0.5 K min
<sup>–1</sup>
(
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
).
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
showed clear endothermic and exothermic transitions in the heating and the cooling runs corresponding to melting (
<italic>T</italic>
<sub>m</sub>
= 43 °C) and crystallization (
<italic>T</italic>
<sub>c</sub>
= 33 °C), respectively. The
<italic>T</italic>
<sub>m</sub>
in solution (
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
) corresponds well with the melting (
<italic>T</italic>
<sub>m</sub>
= 41 °C) in bulk (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S10a</ext-link>
) for
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
indicating that this transition is indeed connected to the LLA
<sub>16</sub>
crystallization. Further, close matching of the
<italic>T</italic>
<sub>m</sub>
with the
<italic>T</italic>
<sub>gel–sol</sub>
of
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
substantiates crystallization driven gelation. Interestingly, no phase transitions were observed for the discrete
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S20</ext-link>
), suggesting that the change in the hydrophilic block from MeOoEG to TEGSuc might influence the crystallization of the LLA
<sub>16</sub>
core. This corroborates well with the amorphous nature of TEGSuc block as observed from its DSC profile (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S11a</ext-link>
) in contrast to the semicrystalline PEG chain (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S11b</ext-link>
). The very slow rate of crystallization of
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
<italic>Bn</italic>
in the bulk (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S10b,c</ext-link>
) further supports our interpretation that the PEG chains aid the ordering of the LLA
<sub>16</sub>
block unlike TEGSuc chains for discrete pairs.</p>
<p>No clear transitions were observed for
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
(
<xref rid="fig4" ref-type="fig">Figure
<xref rid="fig4" ref-type="fig">4</xref>
</xref>
) or
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
(
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">Figure S20</ext-link>
). Such distinct differences between
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
and
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
reveal the negative impact of dispersity on the core crystallinity of the amphiphiles in the solution phase, leading to their varying self-assembly behavior. Possibly, the dispersity in the hydrophobic block does not allow effective packing of the LLA chains of varying length within the core of the nanoparticles in
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
, unlike in
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
. Although there are multiple reports on crystallization driven self-assembly of block copolymer amphiphiles, this is the first demonstration of the consequence of dispersity on the crystallization mediated self-assembly of oligomeric amphiphiles in aqueous solution.</p>
<p>In summary, we have methodically manifested the effect of dispersity on the assembly behavior of two sets of discrete amphiphilic block co-oligomers by comparing their solution self-assembly behaviors with their disperse counterparts. The finding of this work reveals remarkable differences between the discrete and the disperse ABCOs not just in the bulk but also in the solution phase in terms of crystallinity, gelation, morphology, and homogeneity of the self-assembled structures. We anticipate that further fundamental studies on pharmaceutically relevant PEG–PLLA based block co-oligomers will pave the way for synthesis of tailor-made nanocarriers with more control over their structures, dynamics, and functions as delivery vehicles.</p>
</body>
<back>
<notes id="notes-1" notes-type="si">
<title>Supporting Information Available</title>
<p>The Supporting Information is available free of charge on the
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org">ACS Publications website</ext-link>
at DOI:
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/abs/10.1021/acsmacrolett.8b00168">10.1021/acsmacrolett.8b00168</ext-link>
.
<list id="silist" list-type="simple">
<list-item>
<p>Experimental procedures, synthesis, and characterization data for all compounds, bulk characterization, and Figures S1–S20 (
<ext-link ext-link-type="uri" xlink:href="http://pubs.acs.org/doi/suppl/10.1021/acsmacrolett.8b00168/suppl_file/mz8b00168_si_001.pdf">PDF</ext-link>
).</p>
</list-item>
</list>
</p>
</notes>
<sec sec-type="supplementary-material">
<title>Supplementary Material</title>
<supplementary-material content-type="local-data" id="sifile1">
<media xlink:href="mz8b00168_si_001.pdf">
<caption>
<p>mz8b00168_si_001.pdf</p>
</caption>
</media>
</supplementary-material>
</sec>
<notes notes-type="" id="notes-2">
<title>Author Contributions</title>
<p>All authors have given approval to the final version of the manuscript.</p>
</notes>
<notes notes-type="COI-statement" id="NOTES-d440e1223-autogenerated">
<p>The authors declare no competing financial interest.</p>
</notes>
<ack>
<title>Acknowledgments</title>
<p>The authors acknowledge financial support from the Dutch Ministry of Education, Culture and Science (Gravity Program 024.001.035). The BM29 beamline at the European Synchrotron Radiation Facilities (Grenoble, France) is acknowledged for access to the synchrotron facilities and for help with acquiring SAXS data. We gratefully thank G.M. ter Huurne for his help of acquiring the SAXS data and S. P. W. Wijnands for his help with TIRF microscopy.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="ref1">
<mixed-citation publication-type="journal" id="cit1">
<name>
<surname>Whitesides</surname>
<given-names>G. M.</given-names>
</name>
;
<name>
<surname>Boncheva</surname>
<given-names>M.</given-names>
</name>
<article-title>Beyond Molecules: Self-Assembly of Mesoscopic and Macroscopic Components</article-title>
.
<source>Proc. Natl. Acad. Sci. U. S. A.</source>
<year>2002</year>
,
<volume>99</volume>
,
<fpage>4769</fpage>
<lpage>4774</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.082065899</pub-id>
.
<pub-id pub-id-type="pmid">11959929</pub-id>
</mixed-citation>
</ref>
<ref id="ref2">
<mixed-citation publication-type="journal" id="cit2">
<name>
<surname>Mai</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Eisenberg</surname>
<given-names>A.</given-names>
</name>
<article-title>Self-Assembly of Block Copolymers</article-title>
.
<source>Chem. Soc. Rev.</source>
<year>2012</year>
,
<volume>41</volume>
,
<fpage>5969</fpage>
<pub-id pub-id-type="doi">10.1039/c2cs35115c</pub-id>
.
<pub-id pub-id-type="pmid">22776960</pub-id>
</mixed-citation>
</ref>
<ref id="ref3">
<mixed-citation publication-type="journal" id="cit3">
<name>
<surname>Lutz</surname>
<given-names>J.-F.</given-names>
</name>
;
<name>
<surname>Lehn</surname>
<given-names>J.-M.</given-names>
</name>
;
<name>
<surname>Meijer</surname>
<given-names>E. W.</given-names>
</name>
;
<name>
<surname>Matyjaszewski</surname>
<given-names>K.</given-names>
</name>
<article-title>From Precision Polymers to Complex Materials and Systems</article-title>
.
<source>Nat. Rev. Mater.</source>
<year>2016</year>
,
<volume>1</volume>
,
<fpage>16024</fpage>
<pub-id pub-id-type="doi">10.1038/natrevmats.2016.24</pub-id>
.</mixed-citation>
</ref>
<ref id="ref4">
<mixed-citation publication-type="journal" id="cit4">
<name>
<surname>Hawker</surname>
<given-names>C. J.</given-names>
</name>
;
<name>
<surname>Wooley</surname>
<given-names>K. L.</given-names>
</name>
<article-title>The Convergence of Synthetic Organic and Polymer Chemistries</article-title>
.
<source>Science</source>
<year>2005</year>
,
<volume>309</volume>
,
<fpage>1200</fpage>
<lpage>1205</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1109778</pub-id>
.
<pub-id pub-id-type="pmid">16109874</pub-id>
</mixed-citation>
</ref>
<ref id="ref5">
<mixed-citation publication-type="journal" id="cit5">
<name>
<surname>Lawrence</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>S.-H.</given-names>
</name>
;
<name>
<surname>Abdilla</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Nothling</surname>
<given-names>M. D.</given-names>
</name>
;
<name>
<surname>Ren</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Knight</surname>
<given-names>A. S.</given-names>
</name>
;
<name>
<surname>Fleischmann</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Abrams</surname>
<given-names>A. S.</given-names>
</name>
;
<name>
<surname>Schmidt</surname>
<given-names>B. V. K. J.</given-names>
</name>
;
<name>
<surname>Hawker</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Connal</surname>
<given-names>L. A.</given-names>
</name>
;
<name>
<surname>McGrath</surname>
<given-names>A. J.</given-names>
</name>
;
<name>
<surname>Clark</surname>
<given-names>P. G.</given-names>
</name>
;
<name>
<surname>Gutekunst</surname>
<given-names>W. R.</given-names>
</name>
;
<name>
<surname>Hawker</surname>
<given-names>C. J.</given-names>
</name>
<article-title>A Versatile and Scalable Strategy to Discrete Oligomers</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2016</year>
,
<volume>138</volume>
,
<fpage>6306</fpage>
<lpage>6310</lpage>
.
<pub-id pub-id-type="doi">10.1021/jacs.6b03127</pub-id>
.
<pub-id pub-id-type="pmid">27152711</pub-id>
</mixed-citation>
</ref>
<ref id="ref6">
<mixed-citation publication-type="journal" id="cit6">
<name>
<surname>Takizawa</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Tang</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Hawker</surname>
<given-names>C. J.</given-names>
</name>
<article-title>Molecularly Defined Caprolactone Oligomers and Polymers: Synthesis and Characterization</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2008</year>
,
<volume>130</volume>
,
<fpage>1718</fpage>
<lpage>1726</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja077149w</pub-id>
.
<pub-id pub-id-type="pmid">18189397</pub-id>
</mixed-citation>
</ref>
<ref id="ref7">
<mixed-citation publication-type="journal" id="cit7">
<name>
<surname>Jiang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Golder</surname>
<given-names>M. R.</given-names>
</name>
;
<name>
<surname>Nguyen</surname>
<given-names>H. V.-T.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Zhong</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Barnes</surname>
<given-names>J. C.</given-names>
</name>
;
<name>
<surname>Ehrlich</surname>
<given-names>D. J. C.</given-names>
</name>
;
<name>
<surname>Johnson</surname>
<given-names>J. A.</given-names>
</name>
<article-title>Iterative Exponential Growth Synthesis and Assembly of Uniform Diblock Copolymers</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2016</year>
,
<volume>138</volume>
,
<fpage>9369</fpage>
<lpage>9372</lpage>
.
<pub-id pub-id-type="doi">10.1021/jacs.6b04964</pub-id>
.
<pub-id pub-id-type="pmid">27406892</pub-id>
</mixed-citation>
</ref>
<ref id="ref8">
<mixed-citation publication-type="journal" id="cit8">
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Gitlin</surname>
<given-names>I.</given-names>
</name>
;
<name>
<surname>Krishnamurthy</surname>
<given-names>V. M.</given-names>
</name>
;
<name>
<surname>Vazquez</surname>
<given-names>J. A.</given-names>
</name>
;
<name>
<surname>Costello</surname>
<given-names>C. E.</given-names>
</name>
;
<name>
<surname>Whitesides</surname>
<given-names>G. M.</given-names>
</name>
<article-title>Synthesis of Monodisperse Polymers from Proteins</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2003</year>
,
<volume>125</volume>
,
<fpage>12392</fpage>
<lpage>12393</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja035978l</pub-id>
.
<pub-id pub-id-type="pmid">14531666</pub-id>
</mixed-citation>
</ref>
<ref id="ref9">
<mixed-citation publication-type="journal" id="cit9">
<name>
<surname>Székely</surname>
<given-names>G.</given-names>
</name>
;
<name>
<surname>Schaepertoens</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Gaffney</surname>
<given-names>P. R. J.</given-names>
</name>
;
<name>
<surname>Livingston</surname>
<given-names>A. G.</given-names>
</name>
<article-title>Beyond PEG2000: Synthesis and Functionalisation of Monodisperse PEGylated Homostars and Clickable Bivalent Polyethyleneglycols</article-title>
.
<source>Chem. - Eur. J.</source>
<year>2014</year>
,
<volume>20</volume>
,
<fpage>10038</fpage>
<lpage>10051</lpage>
.
<pub-id pub-id-type="doi">10.1002/chem.201402186</pub-id>
.
<pub-id pub-id-type="pmid">25043915</pub-id>
</mixed-citation>
</ref>
<ref id="ref10">
<mixed-citation publication-type="journal" id="cit10">
<name>
<surname>Williams</surname>
<given-names>J. B.</given-names>
</name>
;
<name>
<surname>Chapman</surname>
<given-names>T. M.</given-names>
</name>
;
<name>
<surname>Hercules</surname>
<given-names>D. M.</given-names>
</name>
<article-title>Synthesis of Discrete Mass Poly(butylene glutarate) Oligomers</article-title>
.
<source>Macromolecules</source>
<year>2003</year>
,
<volume>36</volume>
,
<fpage>3898</fpage>
<lpage>3908</lpage>
.
<pub-id pub-id-type="doi">10.1021/ma021056b</pub-id>
.</mixed-citation>
</ref>
<ref id="ref11">
<mixed-citation publication-type="journal" id="cit11">
<name>
<surname>Rosales</surname>
<given-names>A. M.</given-names>
</name>
;
<name>
<surname>Segalman</surname>
<given-names>R. A.</given-names>
</name>
;
<name>
<surname>Zuckermann</surname>
<given-names>R. N.</given-names>
</name>
<article-title>Polypeptoids: A Model System to Study the Effect of Monomer Sequence on Polymer Properties and Self-Assembly</article-title>
.
<source>Soft Matter</source>
<year>2013</year>
,
<volume>9</volume>
,
<fpage>8400</fpage>
<lpage>8414</lpage>
.
<pub-id pub-id-type="doi">10.1039/c3sm51421h</pub-id>
.</mixed-citation>
</ref>
<ref id="ref12">
<mixed-citation publication-type="journal" id="cit12">
<name>
<surname>Lutz</surname>
<given-names>J.-F. J.-F.</given-names>
</name>
<article-title>Sequence-Controlled Polymerizations: The next Holy Grail in Polymer Science?</article-title>
.
<source>Polym. Chem.</source>
<year>2010</year>
,
<volume>1</volume>
,
<fpage>55</fpage>
<lpage>62</lpage>
.
<pub-id pub-id-type="doi">10.1039/b9py00329k</pub-id>
.</mixed-citation>
</ref>
<ref id="ref13">
<mixed-citation publication-type="journal" id="cit13">
<name>
<surname>Ida</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Ouchi</surname>
<given-names>M.</given-names>
</name>
;
<name>
<surname>Sawamoto</surname>
<given-names>M.</given-names>
</name>
<article-title>Template-Assisted Selective Radical Addition toward Sequence-Regulated Polymerization: Lariat Capture of Target Monomer by Template Initiator</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2010</year>
,
<volume>132</volume>
,
<fpage>14748</fpage>
<lpage>14750</lpage>
.
<pub-id pub-id-type="doi">10.1021/ja1070575</pub-id>
.
<pub-id pub-id-type="pmid">20886904</pub-id>
</mixed-citation>
</ref>
<ref id="ref14">
<mixed-citation publication-type="journal" id="cit14">
<name>
<surname>Lutz</surname>
<given-names>J.-F.</given-names>
</name>
<article-title>Defining the Field of Sequence-Controlled Polymers</article-title>
.
<source>Macromol. Rapid Commun.</source>
<year>2017</year>
,
<volume>38</volume>
,
<fpage>1700582</fpage>
<pub-id pub-id-type="doi">10.1002/marc.201700582</pub-id>
.</mixed-citation>
</ref>
<ref id="ref15">
<mixed-citation publication-type="journal" id="cit15">
<name>
<surname>Robertson</surname>
<given-names>E. J.</given-names>
</name>
;
<name>
<surname>Battigelli</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Proulx</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Mannige</surname>
<given-names>R. V.</given-names>
</name>
;
<name>
<surname>Haxton</surname>
<given-names>T. K.</given-names>
</name>
;
<name>
<surname>Yun</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Whitelam</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Zuckermann</surname>
<given-names>R. N.</given-names>
</name>
<article-title>Design, Synthesis, Assembly, and Engineering of Peptoid Nanosheets</article-title>
.
<source>Acc. Chem. Res.</source>
<year>2016</year>
,
<volume>49</volume>
,
<fpage>379</fpage>
<lpage>389</lpage>
.
<pub-id pub-id-type="doi">10.1021/acs.accounts.5b00439</pub-id>
.
<pub-id pub-id-type="pmid">26741294</pub-id>
</mixed-citation>
</ref>
<ref id="ref16">
<mixed-citation publication-type="journal" id="cit16">
<name>
<surname>Pijpers</surname>
<given-names>I. A. B.</given-names>
</name>
;
<name>
<surname>Abdelmohsen</surname>
<given-names>L. K. E. A.</given-names>
</name>
;
<name>
<surname>Williams</surname>
<given-names>D. S.</given-names>
</name>
;
<name>
<surname>van Hest</surname>
<given-names>J. C. M.</given-names>
</name>
<article-title>Morphology Under Control: Engineering Biodegradable Stomatocytes</article-title>
.
<source>ACS Macro Lett.</source>
<year>2017</year>
,
<volume>6</volume>
,
<fpage>1217</fpage>
<lpage>1222</lpage>
.
<pub-id pub-id-type="doi">10.1021/acsmacrolett.7b00723</pub-id>
.
<pub-id pub-id-type="pmid">29214115</pub-id>
</mixed-citation>
</ref>
<ref id="ref17">
<mixed-citation publication-type="journal" id="cit17">
<name>
<surname>Abdelmohsen</surname>
<given-names>L. K. E. A.</given-names>
</name>
;
<name>
<surname>Williams</surname>
<given-names>D. S.</given-names>
</name>
;
<name>
<surname>Pille</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Ozel</surname>
<given-names>S. G.</given-names>
</name>
;
<name>
<surname>Rikken</surname>
<given-names>R. S. M.</given-names>
</name>
;
<name>
<surname>Wilson</surname>
<given-names>D. A.</given-names>
</name>
;
<name>
<surname>van Hest</surname>
<given-names>J. C. M.</given-names>
</name>
<article-title>Formation of Well-Defined, Functional Nanotubes via Osmotically Induced Shape Transformation of Biodegradable Polymersomes</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2016</year>
,
<volume>138</volume>
,
<fpage>9353</fpage>
<lpage>9356</lpage>
.
<pub-id pub-id-type="doi">10.1021/jacs.6b03984</pub-id>
.
<pub-id pub-id-type="pmid">27374777</pub-id>
</mixed-citation>
</ref>
<ref id="ref18">
<mixed-citation publication-type="journal" id="cit18">
<name>
<surname>van Genabeek</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>de Waal</surname>
<given-names>B. F. M.</given-names>
</name>
;
<name>
<surname>Gosens</surname>
<given-names>M. M. J.</given-names>
</name>
;
<name>
<surname>Pitet</surname>
<given-names>L. M.</given-names>
</name>
;
<name>
<surname>Palmans</surname>
<given-names>A. R. A.</given-names>
</name>
;
<name>
<surname>Meijer</surname>
<given-names>E. W.</given-names>
</name>
<article-title>Synthesis and Self-Assembly of Discrete Dimethylsiloxane–Lactic Acid Diblock Co-Oligomers: The Dononacontamer and Its Shorter Homologues</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2016</year>
,
<volume>138</volume>
,
<fpage>4210</fpage>
<lpage>4218</lpage>
.
<pub-id pub-id-type="doi">10.1021/jacs.6b00629</pub-id>
.
<pub-id pub-id-type="pmid">26999049</pub-id>
</mixed-citation>
</ref>
<ref id="ref19">
<mixed-citation publication-type="journal" id="cit19">
<name>
<surname>van Genabeek</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>de Waal</surname>
<given-names>B. F. M.</given-names>
</name>
;
<name>
<surname>Ligt</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Palmans</surname>
<given-names>A. R. A.</given-names>
</name>
;
<name>
<surname>Meijer</surname>
<given-names>E. W.</given-names>
</name>
<article-title>Dispersity under Scrutiny: Phase Behavior Differences between Disperse and Discrete Low Molecular Weight Block Co-Oligomers</article-title>
.
<source>ACS Macro Lett.</source>
<year>2017</year>
,
<volume>6</volume>
,
<fpage>674</fpage>
<lpage>678</lpage>
.
<pub-id pub-id-type="doi">10.1021/acsmacrolett.7b00266</pub-id>
.
<pub-id pub-id-type="pmid">28781926</pub-id>
</mixed-citation>
</ref>
<ref id="ref20">
<mixed-citation publication-type="journal" id="cit20">
<name>
<surname>Oschmann</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Lawrence</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Schulze</surname>
<given-names>M. W.</given-names>
</name>
;
<name>
<surname>Ren</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Anastasaki</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Luo</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Nothling</surname>
<given-names>M. D.</given-names>
</name>
;
<name>
<surname>Pester</surname>
<given-names>C. W.</given-names>
</name>
;
<name>
<surname>Delaney</surname>
<given-names>K. T.</given-names>
</name>
;
<name>
<surname>Connal</surname>
<given-names>L. A.</given-names>
</name>
; et al.
<article-title>Effects of Tailored Dispersity on the Self-Assembly of Dimethylsiloxane–Methyl Methacrylate Block Co-Oligomers</article-title>
.
<source>ACS Macro Lett.</source>
<year>2017</year>
,
<volume>6</volume>
,
<fpage>668</fpage>
<lpage>673</lpage>
.
<pub-id pub-id-type="doi">10.1021/acsmacrolett.7b00262</pub-id>
.</mixed-citation>
</ref>
<ref id="ref21">
<mixed-citation publication-type="journal" id="cit21">
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Liang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Luo</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Zhao</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Han</surname>
<given-names>C. C.</given-names>
</name>
<article-title>Multilength Scale Studies of the Confined Crystallization in Poly(
<sc>l</sc>
-lactide)-
<italic>b-</italic>
Poly(ethylene glycol) Copolymer</article-title>
.
<source>Macromolecules</source>
<year>2012</year>
,
<volume>45</volume>
(
<issue>10</issue>
),
<fpage>4254</fpage>
<lpage>4261</lpage>
.
<pub-id pub-id-type="doi">10.1021/ma202505f</pub-id>
.</mixed-citation>
</ref>
<ref id="ref22">
<mixed-citation publication-type="journal" id="cit22">
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>L.-Q.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Tu</surname>
<given-names>K.</given-names>
</name>
<article-title>Micellization Phenomena of Amphiphilic Block Copolymers Based on Methoxy Poly(ethylene glycol) and Either Crystalline or Amorphous Poly(caprolactone-
<italic>b</italic>
-lactide)</article-title>
.
<source>Biomacromolecules</source>
<year>2006</year>
,
<volume>7</volume>
,
<fpage>2492</fpage>
<lpage>2500</lpage>
.
<pub-id pub-id-type="doi">10.1021/bm0601732</pub-id>
.
<pub-id pub-id-type="pmid">16961309</pub-id>
</mixed-citation>
</ref>
<ref id="ref23">
<mixed-citation publication-type="journal" id="cit23">
<name>
<surname>Heald</surname>
<given-names>C. R.</given-names>
</name>
;
<name>
<surname>Stolnik</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Kujawinski</surname>
<given-names>K. S.</given-names>
</name>
;
<name>
<surname>De Matteis</surname>
<given-names>C.</given-names>
</name>
;
<name>
<surname>Garnett</surname>
<given-names>M. C.</given-names>
</name>
;
<name>
<surname>Illum</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Davis</surname>
<given-names>S. S.</given-names>
</name>
;
<name>
<surname>Purkiss</surname>
<given-names>S. C.</given-names>
</name>
;
<name>
<surname>Barlow</surname>
<given-names>R. J.</given-names>
</name>
;
<name>
<surname>Gellert</surname>
<given-names>P. R.</given-names>
</name>
<article-title>Poly(lactic acid)–Poly(ethylene oxide) (PLA–PEG) Nanoparticles: NMR Studies of the Central Solidlike PLA Core and the Liquid PEG Corona</article-title>
.
<source>Langmuir</source>
<year>2002</year>
,
<volume>18</volume>
,
<fpage>3669</fpage>
<lpage>3675</lpage>
.
<pub-id pub-id-type="doi">10.1021/la011393y</pub-id>
.</mixed-citation>
</ref>
<ref id="ref24">
<mixed-citation publication-type="journal" id="cit24">
<name>
<surname>Knop</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Hoogenboom</surname>
<given-names>R.</given-names>
</name>
;
<name>
<surname>Fischer</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Schubert</surname>
<given-names>U. S.</given-names>
</name>
<article-title>Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives</article-title>
.
<source>Angew. Chem., Int. Ed.</source>
<year>2010</year>
,
<volume>49</volume>
,
<fpage>6288</fpage>
<lpage>6308</lpage>
.
<pub-id pub-id-type="doi">10.1002/anie.200902672</pub-id>
.</mixed-citation>
</ref>
<ref id="ref25">
<mixed-citation publication-type="journal" id="cit25">
<name>
<surname>Nicolas</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Mura</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Brambilla</surname>
<given-names>D.</given-names>
</name>
;
<name>
<surname>Mackiewicz</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Couvreur</surname>
<given-names>P.</given-names>
</name>
<article-title>Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/biocompatible Polymer-Based Nanocarriers for Drug Delivery</article-title>
.
<source>Chem. Soc. Rev.</source>
<year>2013</year>
,
<volume>42</volume>
,
<fpage>1147</fpage>
<lpage>1235</lpage>
.
<pub-id pub-id-type="doi">10.1039/C2CS35265F</pub-id>
.
<pub-id pub-id-type="pmid">23238558</pub-id>
</mixed-citation>
</ref>
<ref id="ref26">
<mixed-citation publication-type="journal" id="cit26">
<name>
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
;
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Fan</surname>
<given-names>Y.</given-names>
</name>
;
<name>
<surname>Ma</surname>
<given-names>J.</given-names>
</name>
<article-title>Synthesis of Amphiphilic Poly(tetraethylene glycol succinate) and the Thermosensitivity of Its Aggregation in Water</article-title>
.
<source>J. Biomed. Mater. Res., Part A</source>
<year>2009</year>
,
<volume>88A</volume>
,
<fpage>769</fpage>
<lpage>777</lpage>
.
<pub-id pub-id-type="doi">10.1002/jbm.a.31909</pub-id>
.</mixed-citation>
</ref>
<ref id="ref27">
<mixed-citation publication-type="journal" id="cit27">
<name>
<surname>van Genabeek</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Lamers</surname>
<given-names>B. A. G.</given-names>
</name>
;
<name>
<surname>de Waal</surname>
<given-names>B. F. M.</given-names>
</name>
;
<name>
<surname>van Son</surname>
<given-names>M. H. C.</given-names>
</name>
;
<name>
<surname>Palmans</surname>
<given-names>A. R. A.</given-names>
</name>
;
<name>
<surname>Meijer</surname>
<given-names>E. W.</given-names>
</name>
<article-title>Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-Oligomers</article-title>
.
<source>J. Am. Chem. Soc.</source>
<year>2017</year>
,
<volume>139</volume>
,
<fpage>14869</fpage>
<lpage>14872</lpage>
.
<pub-id pub-id-type="doi">10.1021/jacs.7b08627</pub-id>
.
<pub-id pub-id-type="pmid">28994585</pub-id>
</mixed-citation>
</ref>
<ref id="ref28">
<mixed-citation publication-type="journal" id="cit28">
<name>
<surname>Gilroy</surname>
<given-names>J. B.</given-names>
</name>
;
<name>
<surname>Gädt</surname>
<given-names>T.</given-names>
</name>
;
<name>
<surname>Whittell</surname>
<given-names>G. R.</given-names>
</name>
;
<name>
<surname>Chabanne</surname>
<given-names>L.</given-names>
</name>
;
<name>
<surname>Mitchels</surname>
<given-names>J. M.</given-names>
</name>
;
<name>
<surname>Richardson</surname>
<given-names>R. M.</given-names>
</name>
;
<name>
<surname>Winnik</surname>
<given-names>M. A.</given-names>
</name>
;
<name>
<surname>Manners</surname>
<given-names>I.</given-names>
</name>
<article-title>Monodisperse Cylindrical Micelles by Crystallization-Driven Living Self-Assembly</article-title>
.
<source>Nat. Chem.</source>
<year>2010</year>
,
<volume>2</volume>
,
<fpage>566</fpage>
<lpage>570</lpage>
.
<pub-id pub-id-type="doi">10.1038/nchem.664</pub-id>
.
<pub-id pub-id-type="pmid">20571575</pub-id>
</mixed-citation>
</ref>
<ref id="ref29">
<mixed-citation publication-type="journal" id="cit29">
<name>
<surname>Pitto-Barry</surname>
<given-names>A.</given-names>
</name>
;
<name>
<surname>Kirby</surname>
<given-names>N.</given-names>
</name>
;
<name>
<surname>Dove</surname>
<given-names>A. P.</given-names>
</name>
;
<name>
<surname>O’Reilly</surname>
<given-names>R. K.</given-names>
</name>
<article-title>Expanding the Scope of the Crystallization-Driven Self-Assembly of Polylactide-Containing Polymers</article-title>
.
<source>Polym. Chem.</source>
<year>2014</year>
,
<volume>5</volume>
,
<fpage>1427</fpage>
<lpage>1436</lpage>
.
<pub-id pub-id-type="doi">10.1039/C3PY01048A</pub-id>
.</mixed-citation>
</ref>
<ref id="ref30">
<mixed-citation publication-type="journal" id="cit30">
<name>
<surname>Takizawa</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Nulwala</surname>
<given-names>H.</given-names>
</name>
;
<name>
<surname>Hu</surname>
<given-names>J.</given-names>
</name>
;
<name>
<surname>Yoshinaga</surname>
<given-names>K.</given-names>
</name>
;
<name>
<surname>Hawker</surname>
<given-names>C. J.</given-names>
</name>
<article-title>Molecularly Defined (L)-Lactic Acid Oligomers and Polymers: Synthesis and Characterization</article-title>
.
<source>J. Polym. Sci., Part A: Polym. Chem.</source>
<year>2008</year>
,
<volume>46</volume>
,
<fpage>5977</fpage>
<lpage>5990</lpage>
.
<pub-id pub-id-type="doi">10.1002/pola.22944</pub-id>
.</mixed-citation>
</ref>
<ref id="ref31">
<note>
<p>
<bold>P1</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
/
<bold>P1</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
show higher solubility (up to 5 mg mL
<sup>–1</sup>
instead of only 2 mg mL
<sup>–1</sup>
for
<bold>P2</bold>
<sup>
<italic>
<bold>discrete</bold>
</italic>
</sup>
/
<bold>P2</bold>
<sup>
<italic>
<bold>disperse</bold>
</italic>
</sup>
) and are soluble in pure water as well.</p>
</note>
</ref>
<ref id="ref32">
<mixed-citation publication-type="journal" id="cit32">
<name>
<surname>Jeong</surname>
<given-names>B.</given-names>
</name>
;
<name>
<surname>Bae</surname>
<given-names>Y. H.</given-names>
</name>
;
<name>
<surname>Lee</surname>
<given-names>D. S.</given-names>
</name>
;
<name>
<surname>Kim</surname>
<given-names>S. W.</given-names>
</name>
<article-title>Biodegradable Block Copolymers as Injectable Drug-Delivery Systems</article-title>
.
<source>Nature</source>
<year>1997</year>
,
<volume>388</volume>
,
<fpage>860</fpage>
<pub-id pub-id-type="doi">10.1038/42218</pub-id>
.
<pub-id pub-id-type="pmid">9278046</pub-id>
</mixed-citation>
</ref>
<ref id="ref33">
<mixed-citation publication-type="journal" id="cit33">
<name>
<surname>Sackett</surname>
<given-names>D. L.</given-names>
</name>
;
<name>
<surname>Wolff</surname>
<given-names>J.</given-names>
</name>
<article-title>Nile Red as a Polarity-Sensitive Fluorescent Probe of Hydrophobic Protein Surfaces</article-title>
.
<source>Anal. Biochem.</source>
<year>1987</year>
,
<volume>167</volume>
,
<fpage>228</fpage>
<lpage>234</lpage>
.
<pub-id pub-id-type="doi">10.1016/0003-2697(87)90157-6</pub-id>
.
<pub-id pub-id-type="pmid">3442318</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0001219 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0001219 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021