Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000920 ( Pmc/Corpus ); précédent : 0000919; suivant : 0000921 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Novel Electrophototrophic Bacterium
<italic>Rhodopseudomonas palustris</italic>
Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments</title>
<author>
<name sortKey="Venkidusamy, Krishnaveni" sort="Venkidusamy, Krishnaveni" uniqKey="Venkidusamy K" first="Krishnaveni" last="Venkidusamy">Krishnaveni Venkidusamy</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Megharaj, Mallavarapu" sort="Megharaj, Mallavarapu" uniqKey="Megharaj M" first="Mallavarapu" last="Megharaj">Mallavarapu Megharaj</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Global Centre for Environmental Risk Assessment and Remediation, The University of Newcastle, Callaghan, NSW</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27462307</idno>
<idno type="pmc">4940424</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4940424</idno>
<idno type="RBID">PMC:4940424</idno>
<idno type="doi">10.3389/fmicb.2016.01071</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000092</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000092</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">A Novel Electrophototrophic Bacterium
<italic>Rhodopseudomonas palustris</italic>
Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments</title>
<author>
<name sortKey="Venkidusamy, Krishnaveni" sort="Venkidusamy, Krishnaveni" uniqKey="Venkidusamy K" first="Krishnaveni" last="Venkidusamy">Krishnaveni Venkidusamy</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Megharaj, Mallavarapu" sort="Megharaj, Mallavarapu" uniqKey="Megharaj M" first="Mallavarapu" last="Megharaj">Mallavarapu Megharaj</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SA</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff3">
<institution>Global Centre for Environmental Risk Assessment and Remediation, The University of Newcastle, Callaghan, NSW</institution>
<country>Australia</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Microbiology</title>
<idno type="eISSN">1664-302X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>An electrophototrophic, hydrocarbonoclastic bacterium
<italic>Rhodopseudomonas palustris</italic>
stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m
<sup>2</sup>
(1000Ω) was generated (power density 131.65 ± 10 mW/m
<sup>2</sup>
) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m
<sup>2</sup>
; power density 720 ± 7 μW/m
<sup>2</sup>
, 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l
<sup>-1</sup>
of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Achenbach, L A" uniqKey="Achenbach L">L. A. Achenbach</name>
</author>
<author>
<name sortKey="Carey, J" uniqKey="Carey J">J. Carey</name>
</author>
<author>
<name sortKey="Madigan, M T" uniqKey="Madigan M">M. T. Madigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bose, A" uniqKey="Bose A">A. Bose</name>
</author>
<author>
<name sortKey="Gardel, E J" uniqKey="Gardel E">E. J. Gardel</name>
</author>
<author>
<name sortKey="Vidoudez, C" uniqKey="Vidoudez C">C. Vidoudez</name>
</author>
<author>
<name sortKey="Parra, E" uniqKey="Parra E">E. Parra</name>
</author>
<author>
<name sortKey="Girguis, P R" uniqKey="Girguis P">P. R. Girguis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bretschger, O" uniqKey="Bretschger O">O. Bretschger</name>
</author>
<author>
<name sortKey="Obraztsova, A" uniqKey="Obraztsova A">A. Obraztsova</name>
</author>
<author>
<name sortKey="Sturm, C A" uniqKey="Sturm C">C. A. Sturm</name>
</author>
<author>
<name sortKey="Chang, I S" uniqKey="Chang I">I. S. Chang</name>
</author>
<author>
<name sortKey="Gorby, Y A" uniqKey="Gorby Y">Y. A. Gorby</name>
</author>
<author>
<name sortKey="Reed, S B" uniqKey="Reed S">S. B. Reed</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Byrne, J M" uniqKey="Byrne J">J. M. Byrne</name>
</author>
<author>
<name sortKey="Klueglein, N" uniqKey="Klueglein N">N. Klueglein</name>
</author>
<author>
<name sortKey="Pearce, C" uniqKey="Pearce C">C. Pearce</name>
</author>
<author>
<name sortKey="Rosso, K M" uniqKey="Rosso K">K. M. Rosso</name>
</author>
<author>
<name sortKey="Appel, E" uniqKey="Appel E">E. Appel</name>
</author>
<author>
<name sortKey="Kappler, A" uniqKey="Kappler A">A. Kappler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cantera, J J L" uniqKey="Cantera J">J. J. L. Cantera</name>
</author>
<author>
<name sortKey="Kawasaki, H" uniqKey="Kawasaki H">H. Kawasaki</name>
</author>
<author>
<name sortKey="Seki, T" uniqKey="Seki T">T. Seki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chaudhuri, S K" uniqKey="Chaudhuri S">S. K. Chaudhuri</name>
</author>
<author>
<name sortKey="Lovley, D R" uniqKey="Lovley D">D. R. Lovley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S. Cheng</name>
</author>
<author>
<name sortKey="Liu, H" uniqKey="Liu H">H. Liu</name>
</author>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Donmez, G C" uniqKey="Donmez G">G. Ç. Dönmez</name>
</author>
<author>
<name sortKey="Ozturk, A" uniqKey="Ozturk A">A. Öztürk</name>
</author>
<author>
<name sortKey="Cakmakci, L" uniqKey="Cakmakci L">L. Çakmakçi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dutton, P" uniqKey="Dutton P">P. Dutton</name>
</author>
<author>
<name sortKey="Evans, W" uniqKey="Evans W">W. Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckersley, K" uniqKey="Eckersley K">K. Eckersley</name>
</author>
<author>
<name sortKey="Dow, C S" uniqKey="Dow C">C. S. Dow</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feng, Y" uniqKey="Feng Y">Y. Feng</name>
</author>
<author>
<name sortKey="Yang, Q" uniqKey="Yang Q">Q. Yang</name>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
</author>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harwood, C S" uniqKey="Harwood C">C. S. Harwood</name>
</author>
<author>
<name sortKey="Gibson, J" uniqKey="Gibson J">J. Gibson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hiraishi, A" uniqKey="Hiraishi A">A. Hiraishi</name>
</author>
<author>
<name sortKey="Ueda, Y" uniqKey="Ueda Y">Y. Ueda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Holmes, D E" uniqKey="Holmes D">D. E. Holmes</name>
</author>
<author>
<name sortKey="Chaudhuri, S K" uniqKey="Chaudhuri S">S. K. Chaudhuri</name>
</author>
<author>
<name sortKey="Nevin, K P" uniqKey="Nevin K">K. P. Nevin</name>
</author>
<author>
<name sortKey="Mehta, T" uniqKey="Mehta T">T. Mehta</name>
</author>
<author>
<name sortKey="Methe, B A" uniqKey="Methe B">B. A. Methé</name>
</author>
<author>
<name sortKey="Liu, A" uniqKey="Liu A">A. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, L" uniqKey="Huang L">L. Huang</name>
</author>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S. Cheng</name>
</author>
<author>
<name sortKey="Chen, G" uniqKey="Chen G">G. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hungate, R" uniqKey="Hungate R">R. Hungate</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Imhoff, J F" uniqKey="Imhoff J">J. F. Imhoff</name>
</author>
<author>
<name sortKey="Bias Lmhoff, U" uniqKey="Bias Lmhoff U">U. Bias-lmhoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Inglesby, A E" uniqKey="Inglesby A">A. E. Inglesby</name>
</author>
<author>
<name sortKey="Beatty, D A" uniqKey="Beatty D">D. A. Beatty</name>
</author>
<author>
<name sortKey="Fisher, A C" uniqKey="Fisher A">A. C. Fisher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, B H" uniqKey="Kim B">B.-H. Kim</name>
</author>
<author>
<name sortKey="Kim, H J" uniqKey="Kim H">H.-J. Kim</name>
</author>
<author>
<name sortKey="Hyun, M S" uniqKey="Hyun M">M.-S. Hyun</name>
</author>
<author>
<name sortKey="Park, D H" uniqKey="Park D">D.-H. Park</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, H J" uniqKey="Kim H">H. J. Kim</name>
</author>
<author>
<name sortKey="Park, H S" uniqKey="Park H">H. S. Park</name>
</author>
<author>
<name sortKey="Hyun, M S" uniqKey="Hyun M">M. S. Hyun</name>
</author>
<author>
<name sortKey="Chang, I S" uniqKey="Chang I">I. S. Chang</name>
</author>
<author>
<name sortKey="Kim, M" uniqKey="Kim M">M. Kim</name>
</author>
<author>
<name sortKey="Kim, B H" uniqKey="Kim B">B. H. Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kranz, R G" uniqKey="Kranz R">R. G. Kranz</name>
</author>
<author>
<name sortKey="Haselkorn, R" uniqKey="Haselkorn R">R. Haselkorn</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Krooneman, J" uniqKey="Krooneman J">J. Krooneman</name>
</author>
<author>
<name sortKey="Van Den Akker, S" uniqKey="Van Den Akker S">S. van den Akker</name>
</author>
<author>
<name sortKey="Gomes, T M P" uniqKey="Gomes T">T. M. P. Gomes</name>
</author>
<author>
<name sortKey="Forney, L J" uniqKey="Forney L">L. J. Forney</name>
</author>
<author>
<name sortKey="Gottschal, J C" uniqKey="Gottschal J">J. C. Gottschal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larimer, F W" uniqKey="Larimer F">F. W. Larimer</name>
</author>
<author>
<name sortKey="Chain, P" uniqKey="Chain P">P. Chain</name>
</author>
<author>
<name sortKey="Hauser, L" uniqKey="Hauser L">L. Hauser</name>
</author>
<author>
<name sortKey="Lamerdin, J" uniqKey="Lamerdin J">J. Lamerdin</name>
</author>
<author>
<name sortKey="Malfatti, S" uniqKey="Malfatti S">S. Malfatti</name>
</author>
<author>
<name sortKey="Do, L" uniqKey="Do L">L. Do</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, X" uniqKey="Li X">X. Li</name>
</author>
<author>
<name sortKey="Liu, T" uniqKey="Liu T">T. Liu</name>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
</author>
<author>
<name sortKey="Waite, T D" uniqKey="Waite T">T. D. Waite</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Logan, B" uniqKey="Logan B">B. Logan</name>
</author>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S. Cheng</name>
</author>
<author>
<name sortKey="Watson, V" uniqKey="Watson V">V. Watson</name>
</author>
<author>
<name sortKey="Estadt, G" uniqKey="Estadt G">G. Estadt</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lojou, E" uniqKey="Lojou E">E. Lojou</name>
</author>
<author>
<name sortKey="Bianco, P" uniqKey="Bianco P">P. Bianco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovley, D R" uniqKey="Lovley D">D. R. Lovley</name>
</author>
<author>
<name sortKey="Giovannoni, S J" uniqKey="Giovannoni S">S. J. Giovannoni</name>
</author>
<author>
<name sortKey="White, D C" uniqKey="White D">D. C. White</name>
</author>
<author>
<name sortKey="Champine, J E" uniqKey="Champine J">J. E. Champine</name>
</author>
<author>
<name sortKey="Phillips, E" uniqKey="Phillips E">E. Phillips</name>
</author>
<author>
<name sortKey="Gorby, Y A" uniqKey="Gorby Y">Y. A. Gorby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovley, D R" uniqKey="Lovley D">D. R. Lovley</name>
</author>
<author>
<name sortKey="Phillips, E J" uniqKey="Phillips E">E. J. Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lovley, D R" uniqKey="Lovley D">D. R. Lovley</name>
</author>
<author>
<name sortKey="Phillips, E J" uniqKey="Phillips E">E. J. Phillips</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcgrath, J E" uniqKey="Mcgrath J">J. E. McGrath</name>
</author>
<author>
<name sortKey="Harfoot, C G" uniqKey="Harfoot C">C. G. Harfoot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mehrabi, S" uniqKey="Mehrabi S">S. Mehrabi</name>
</author>
<author>
<name sortKey="Ekanemesang, U M" uniqKey="Ekanemesang U">U. M. Ekanemesang</name>
</author>
<author>
<name sortKey="Aikhionbare, F O" uniqKey="Aikhionbare F">F. O. Aikhionbare</name>
</author>
<author>
<name sortKey="Kimbro, K S" uniqKey="Kimbro K">K. S. Kimbro</name>
</author>
<author>
<name sortKey="Bender, J" uniqKey="Bender J">J. Bender</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Min, B" uniqKey="Min B">B. Min</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J. Kim</name>
</author>
<author>
<name sortKey="Oh, S" uniqKey="Oh S">S. Oh</name>
</author>
<author>
<name sortKey="Regan, J M" uniqKey="Regan J">J. M. Regan</name>
</author>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morris, J M" uniqKey="Morris J">J. M. Morris</name>
</author>
<author>
<name sortKey="Jin, S" uniqKey="Jin S">S. Jin</name>
</author>
<author>
<name sortKey="Crimi, B" uniqKey="Crimi B">B. Crimi</name>
</author>
<author>
<name sortKey="Pruden, A" uniqKey="Pruden A">A. Pruden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oda, Y" uniqKey="Oda Y">Y. Oda</name>
</author>
<author>
<name sortKey="Samanta, S K" uniqKey="Samanta S">S. K. Samanta</name>
</author>
<author>
<name sortKey="Rey, F E" uniqKey="Rey F">F. E. Rey</name>
</author>
<author>
<name sortKey="Wu, L" uniqKey="Wu L">L. Wu</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X. Liu</name>
</author>
<author>
<name sortKey="Yan, T" uniqKey="Yan T">T. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oh, S" uniqKey="Oh S">S. Oh</name>
</author>
<author>
<name sortKey="Min, B" uniqKey="Min B">B. Min</name>
</author>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Park, T J" uniqKey="Park T">T.-J. Park</name>
</author>
<author>
<name sortKey="Ding, W" uniqKey="Ding W">W. Ding</name>
</author>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S. Cheng</name>
</author>
<author>
<name sortKey="Brar, M S" uniqKey="Brar M">M. S. Brar</name>
</author>
<author>
<name sortKey="Ma, A P Y" uniqKey="Ma A">A. P. Y. Ma</name>
</author>
<author>
<name sortKey="Tun, H M" uniqKey="Tun H">H. M. Tun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roy, A S" uniqKey="Roy A">A. S. Roy</name>
</author>
<author>
<name sortKey="Baruah, R" uniqKey="Baruah R">R. Baruah</name>
</author>
<author>
<name sortKey="Gogoi, D" uniqKey="Gogoi D">D. Gogoi</name>
</author>
<author>
<name sortKey="Borah, M" uniqKey="Borah M">M. Borah</name>
</author>
<author>
<name sortKey="Singh, A K" uniqKey="Singh A">A. K. Singh</name>
</author>
<author>
<name sortKey="Boruah, H P D" uniqKey="Boruah H">H. P. D. Boruah</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sambrook, J" uniqKey="Sambrook J">J. Sambrook</name>
</author>
<author>
<name sortKey="Fritsch, E F" uniqKey="Fritsch E">E. F. Fritsch</name>
</author>
<author>
<name sortKey="Maniatis, T" uniqKey="Maniatis T">T. Maniatis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K. Tamura</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D. Peterson</name>
</author>
<author>
<name sortKey="Peterson, N" uniqKey="Peterson N">N. Peterson</name>
</author>
<author>
<name sortKey="Stecher, G" uniqKey="Stecher G">G. Stecher</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M. Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vainshtein, M" uniqKey="Vainshtein M">M. Vainshtein</name>
</author>
<author>
<name sortKey="Suzina, N" uniqKey="Suzina N">N. Suzina</name>
</author>
<author>
<name sortKey="Sorokin, V" uniqKey="Sorokin V">V. Sorokin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Venkidusamy, K" uniqKey="Venkidusamy K">K. Venkidusamy</name>
</author>
<author>
<name sortKey="Megharaj, M" uniqKey="Megharaj M">M. Megharaj</name>
</author>
<author>
<name sortKey="Marzorati, M" uniqKey="Marzorati M">M. Marzorati</name>
</author>
<author>
<name sortKey="Lockington, R" uniqKey="Lockington R">R. Lockington</name>
</author>
<author>
<name sortKey="Naidu, R" uniqKey="Naidu R">R. Naidu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Venkidusamy, K" uniqKey="Venkidusamy K">K. Venkidusamy</name>
</author>
<author>
<name sortKey="Megharaj, M" uniqKey="Megharaj M">M. Megharaj</name>
</author>
<author>
<name sortKey="Schroder, U" uniqKey="Schroder U">U. Schröder</name>
</author>
<author>
<name sortKey="Karouta, F" uniqKey="Karouta F">F. Karouta</name>
</author>
<author>
<name sortKey="Mohan, S V" uniqKey="Mohan S">S. V. Mohan</name>
</author>
<author>
<name sortKey="Naidu, R" uniqKey="Naidu R">R. Naidu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weisburg, W G" uniqKey="Weisburg W">W. G. Weisburg</name>
</author>
<author>
<name sortKey="Barns, S M" uniqKey="Barns S">S. M. Barns</name>
</author>
<author>
<name sortKey="Pelletier, D A" uniqKey="Pelletier D">D. A. Pelletier</name>
</author>
<author>
<name sortKey="Lane, D J" uniqKey="Lane D">D. J. Lane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Whittenbury, R" uniqKey="Whittenbury R">R. Whittenbury</name>
</author>
<author>
<name sortKey="Mclee, A" uniqKey="Mclee A">A. McLee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wrighton, K C" uniqKey="Wrighton K">K. C. Wrighton</name>
</author>
<author>
<name sortKey="Agbo, P" uniqKey="Agbo P">P. Agbo</name>
</author>
<author>
<name sortKey="Warnecke, F" uniqKey="Warnecke F">F. Warnecke</name>
</author>
<author>
<name sortKey="Weber, K A" uniqKey="Weber K">K. A. Weber</name>
</author>
<author>
<name sortKey="Brodie, E L" uniqKey="Brodie E">E. L. Brodie</name>
</author>
<author>
<name sortKey="Desantis, T Z" uniqKey="Desantis T">T. Z. DeSantis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xing, D" uniqKey="Xing D">D. Xing</name>
</author>
<author>
<name sortKey="Zuo, Y" uniqKey="Zuo Y">Y. Zuo</name>
</author>
<author>
<name sortKey="Cheng, S" uniqKey="Cheng S">S. Cheng</name>
</author>
<author>
<name sortKey="Regan, J M" uniqKey="Regan J">J. M. Regan</name>
</author>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
</author>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H. Yang</name>
</author>
<author>
<name sortKey="Huang, Z" uniqKey="Huang Z">Z. Huang</name>
</author>
<author>
<name sortKey="Zhang, W" uniqKey="Zhang W">W. Zhang</name>
</author>
<author>
<name sortKey="Liu, S J" uniqKey="Liu S">S.-J. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuo, Y" uniqKey="Zuo Y">Y. Zuo</name>
</author>
<author>
<name sortKey="Xing, D" uniqKey="Xing D">D. Xing</name>
</author>
<author>
<name sortKey="Regan, J M" uniqKey="Regan J">J. M. Regan</name>
</author>
<author>
<name sortKey="Logan, B E" uniqKey="Logan B">B. E. Logan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Microbiol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Microbiol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Microbiology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-302X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27462307</article-id>
<article-id pub-id-type="pmc">4940424</article-id>
<article-id pub-id-type="doi">10.3389/fmicb.2016.01071</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Microbiology</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>A Novel Electrophototrophic Bacterium
<italic>Rhodopseudomonas palustris</italic>
Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Venkidusamy</surname>
<given-names>Krishnaveni</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/343127/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Megharaj</surname>
<given-names>Mallavarapu</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/36475/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA</institution>
<country>Australia</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SA</institution>
<country>Australia</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Global Centre for Environmental Risk Assessment and Remediation, The University of Newcastle, Callaghan, NSW</institution>
<country>Australia</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by:
<italic>Yong Xiao, The Chinese Academy of Sciences, China</italic>
</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by:
<italic>Luciano Takeshi Kishi, Universidade Estadual Paulista, Brazil; Zheng Chen, Xi’an Jiaotong-Liverpool University, China</italic>
</p>
</fn>
<corresp id="fn001">*Correspondence:
<italic>Krishnaveni Venkidusamy,
<email xlink:type="simple">krishnaveni.venkidusamy@mymail.unisa.edu.au</email>
</italic>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>12</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>7</volume>
<elocation-id>1071</elocation-id>
<history>
<date date-type="received">
<day>19</day>
<month>4</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>6</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Venkidusamy and Megharaj.</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Venkidusamy and Megharaj</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>An electrophototrophic, hydrocarbonoclastic bacterium
<italic>Rhodopseudomonas palustris</italic>
stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m
<sup>2</sup>
(1000Ω) was generated (power density 131.65 ± 10 mW/m
<sup>2</sup>
) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m
<sup>2</sup>
; power density 720 ± 7 μW/m
<sup>2</sup>
, 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l
<sup>-1</sup>
of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.</p>
</abstract>
<kwd-group>
<kwd>microbial electrochemical remediation</kwd>
<kwd>hydrocarbonoclastic bacterium</kwd>
<kwd>photoorganotrophic hydrocarbon degradation</kwd>
<kwd>electrode respiring bacteria</kwd>
<kwd>
<italic>Rhodopseudomonas palustris</italic>
strain RP2</kwd>
</kwd-group>
<counts>
<fig-count count="6"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="50"></ref-count>
<page-count count="12"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Soil and groundwater petroleum hydrocarbon contamination has long been a serious concern to environmental and public health. Of these petroleum hydrocarbon (PH) contaminants, diesel range hydrocarbons (DRH) have been documented as one of the most abundant pollutants; they can be biodegradable in both oxic and anoxic conditions (
<xref rid="B15" ref-type="bibr">Huang et al., 2011</xref>
). Microbial remediation of these petrochemical compounds is claimed to be an efficient, economic, versatile alternative to the physicochemical methods. However, the rate of microbial utilization of these PH compounds is very slow especially in anaerobic environments where the availability of relevant electron acceptors is limited. The recent research on such recalcitrant contaminant removal using bioelectrochemical systems is leading to a new interest in its practical applications. An emerging microbial electrochemical remediation systems (MERS) shows potential as an effective approach that can exploit microorganisms for treating contaminants while generating electricity in the process. This has recently been proposed for the remediation of PH contaminants by capitalizing on the bio-catalytic potential of electrode respiring bacteria (ERB;
<xref rid="B34" ref-type="bibr">Morris et al., 2009</xref>
;
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
).</p>
<p>Electrode respiring bacteria are a group that has received much attention in the field of electromicrobiology because of their exoelectrogenic capabilities to degrade substrates that range from easily degradable natural organic compounds to xenobiotic compounds such as PH contaminants. Many studies have shown the presence of diverse, electro active-microbial communities on fuel cell electrodes including members of the
<italic>Alphaproteobacteria</italic>
(
<xref rid="B50" ref-type="bibr">Zuo et al., 2008</xref>
),
<italic>Betaproteobacteria</italic>
(
<xref rid="B6" ref-type="bibr">Chaudhuri and Lovley, 2003</xref>
),
<italic>Gammaproteobacteria</italic>
(
<xref rid="B20" ref-type="bibr">Kim et al., 2002</xref>
),
<italic>Deltaproteobacteria</italic>
(
<xref rid="B14" ref-type="bibr">Holmes et al., 2006</xref>
), and
<italic>Firmicutes</italic>
(
<xref rid="B47" ref-type="bibr">Wrighton et al., 2008</xref>
). Of these,
<italic>Gammaproteobacteria</italic>
was the dominant class found on the anodes of organic contaminants such as PH fed MERS (
<xref rid="B34" ref-type="bibr">Morris et al., 2009</xref>
;
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
). Several bacterial strains from this class have been isolated either from electrochemical systems fed with wastewater or defined carbons sources and their physiological roles have been studied. However, the microbial community composition is divergent in MERS (
<xref rid="B34" ref-type="bibr">Morris et al., 2009</xref>
;
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
), and the physiology of such populations remains to be investigated. Therefore, identification of such ERB which can be used in MERS systems for the enhanced removal of PH contaminants is of current importance.</p>
<p>In the present study, such a novel electrode respiring, hydrocarbonoclastic bacterial strain was isolated from the biofilms of PH fed MERS anodes and analyzed its physiology and activities in pure culture studies. This strain was found to be a Fe (III) respiring bacterium, phylogenetically related to
<italic>Rhodopseudomonas palustris</italic>
and designated as
<italic>R. palustris</italic>
strain RP2. The electrochemical activity was determined by using cyclic voltammetry and fuel cell techniques. Here, we show the existence of hydrocarbonoclastic behavior by the strain RP2, first such organism from MERS environments with several novel features.</p>
</sec>
<sec sec-type="materials|methods" id="s1">
<title>Materials and Methods</title>
<sec>
<title>Bacterial Strain</title>
<p>The bacterium used in this study was isolated from the anodic biofilm of a MERS through serial dilution techniques. The initial source of inoculum for the PH fed MERS was a PH contaminated ground water inoculated with activated sludge. Bacterial cells of the anodic biofilm were extracted into a sterile phosphate buffer and shaken vigorously to separate cells from the electrode. The extracted cell suspensions were serially diluted and plated on modified Hungate’s medium (
<xref rid="B16" ref-type="bibr">Hungate, 1950</xref>
) and incubated anaerobically in a glove box (Don Whitley Scientific, MG500, Australia) for a period of two weeks. Single colonies were randomly selected and transferred to anaerobic agar plates filled with Luria Bertani (LB) medium (
<xref rid="B39" ref-type="bibr">Sambrook et al., 1989</xref>
). Cultures were routinely cultivated using anoxic rich medium (LB) under illuminated conditions. A chemically defined medium supplemented with Wolfe’s trace elements and vitamins was used in the fuel cell experiments as previously described (
<xref rid="B36" ref-type="bibr">Oh et al., 2004</xref>
).</p>
</sec>
<sec>
<title>Culture Conditions and Biodegradation Experiments</title>
<p>Bacterial cells were grown under anoxic photosynthetic conditions with acetate (20 mM) as an electron donor in phosphate buffer saline supplemented with Wolfe’s trace elements and vitamins and sealed with aluminum crimps. For experiments with different electron acceptors 10 mM nitrate, 10 mM sulfate, 10 mM iron (III) citrate, and 10 mM iron (III) oxide were used. The cells were cultured under different physiological conditions, including phototrophic and chemotrophic, oxic and anoxic conditions. The photosynthetic pigments were analyzed by measuring the whole cell absorption spectra in the UV-visible ranges from 300 to 1100 nm as described by
<xref rid="B32" ref-type="bibr">Mehrabi et al. (2001)</xref>
. Biolog-GN2 plates were used to determine the carbon source utilization using the strain RP2 (Biolog., USA) according to the manufacturer’s instructions under anoxic, illuminated conditions. The cells were also tested for their growth with nitrogen-deficient solid medium lacking a carbon source according to
<xref rid="B21" ref-type="bibr">Kranz and Haselkorn (1986)</xref>
. DRHs was also used as the electron donor in biodegradation experiments at a concentration of 4000 mg l
<sup>-1</sup>
. Hydrocarbonoclastic potential of the strain RP2 was monitored under different electron accepting, growth environments (nitrate, sulfate, iron (III) as terminal electron acceptors) including phototrophic and chemotrophic conditions. All cell cultures were maintained in triplicates for each experiment. All procedures for anoxic growth experiments, from medium preparation to manipulating the strain were performed using standard anoxic conditions. All culturing was prepared in sealed serum vials with nitrogen/carbon dioxide (80:20, v/v) in the headspace.</p>
</sec>
<sec>
<title>Fe(III) Oxide Reduction</title>
<p>For investigating Fe(III) respiration process, cells were grown in two different environments: anoxic photoheterotrophic and chemoheterotrophic culture conditions supplemented with crystalline Fe(III) oxide (10 mM) as the terminal electron acceptor. The cells were grown in Wolfe’s medium using acetate (20 mM) supplemented with trace elements and vitamins (
<xref rid="B29" ref-type="bibr">Lovley and Phillips, 1988a</xref>
). Fe(III) reduction was determined using the ferrozine assay (
<xref rid="B30" ref-type="bibr">Lovley and Phillips, 1988b</xref>
). The bacterial suspension was added to a pre-weighed vial containing 0.5 M HCL. HCL extracted samples were added to 5 ml of ferrozine (1 g l
<sup>-1</sup>
) in 50 mM HEPS buffer. The filtered samples were then analyzed in a UV-Vis spectrophotometer (maxima@λ 562 nm) to quantify the Fe(II) formation as previously described (
<xref rid="B30" ref-type="bibr">Lovley and Phillips, 1988b</xref>
).</p>
</sec>
<sec>
<title>Microscopy</title>
<p>Samples for transmission electron microscopy were fixed in electron microscopy fixative (4% paraformaldehyde/1.25% glutaraldehyde in PBS, + 4% sucrose, pH-7.2) and washed with buffer. Samples were postfixed in 2% aqueous osmium tetroxide. They were dehydrated in a graded series of ethanol, and then infiltrated with procure/araldite epoxy resin. Blocks were polymerized overnight at 70°C. Sections were cut on a Leica UC6 Ultramicrotome using a diamond knife, stained with uranyl acetate and lead citrate, and examined in a FEI Tecnai G2 Spirit Transmission Electron Microscope. The electrode samples were fixed and prepared as described earlier (
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
). The dried brush samples were examined using a scanning electron microscope (Quanta FEG 450, FEI) at an accelerating voltage of 20 kV.</p>
</sec>
<sec>
<title>16S rRNA Gene and Phylogenetic Analysis</title>
<p>Genomic DNA of
<italic>R. palustris</italic>
strain RP2 was extracted from photoheterotrophically grown cells by using the UltraClean microbial DNA isolation kit (MO BIO, Carlsbad, CA, USA) following the manufacturer’s instructions. The universal primers were used to amplify16S rRNA gene according to the procedure devised by
<xref rid="B45" ref-type="bibr">Weisburg et al. (1991)</xref>
. The PCR products were purified via the UltraClean PCR clean-up kit (Mo Bio, Carlsbad, CA, USA) following the manufacturer’s instructions, and sequenced by the Southern Pathology Sequencing Facility at Flinders Medical Centre. The neighbor joining tree was constructed using the molecular evolutionary genetic analysis package version 5.0 based on 1000 bootstrap values (
<xref rid="B40" ref-type="bibr">Tamura et al., 2011</xref>
). The presence of the
<italic>puf</italic>
M gene was identified using published
<italic>puf</italic>
M primers (
<xref rid="B1" ref-type="bibr">Achenbach et al., 2001</xref>
). The presence of
<italic>nif</italic>
H gene was also analyzed using a gene specific primer (
<xref rid="B5" ref-type="bibr">Cantera et al., 2004</xref>
).
<italic>In silico</italic>
analysis was done by using the blast programs to search the GenBank and NCBI databases (
<ext-link ext-link-type="uri" xlink:href="http://www.ncbi.nlm.nih.gov">http://www.ncbi.nlm.nih.gov</ext-link>
).</p>
</sec>
<sec>
<title>Microbial Fuel Cell (MFC) construction</title>
<p>Single chamber and dual chamber cubic MFC reactors were used to evaluate power generation from strain RP2. Single chamber bottle MFCs were made from laboratory Schott duran bottles with a capacity of 300 ml as suggested by
<xref rid="B25" ref-type="bibr">Logan et al. (2007)</xref>
. The liquid volume of the chamber was 280 ml. Dual chamber cubic MFCs were constructed using two lexan glasses separated by a cation exchange membrane (Membrane International Inc., USA). The liquid volume of a dual chamber cubic MFC was 150 ml. Anodes were carbon paper or graphite fiber brushes of 5 cm in diameter and 7 cm in length. The graphite brushes were treated as previously described (
<xref rid="B11" ref-type="bibr">Feng et al., 2010</xref>
). Plain carbon paper was used as the anode material in dual chamber cubic MFC systems. Single chamber air cathodes contained 0.5 mg cm
<sup>-2</sup>
of platinum catalyst on the liquid facing side with diffusional layers of PTFE applied to the air facing side (
<xref rid="B7" ref-type="bibr">Cheng et al., 2006</xref>
). All the reactors were sterilized before use.</p>
</sec>
<sec>
<title>MFC Operational Conditions</title>
<p>Strain RP2 was used for fuel cell experiments with acetate (1 g/L) as the electron donor in 50 mM PBS buffer. A higher concentration (200 mM) of buffer was also used in fuel cell experiments to examine the effect on power generation. A stationary phase culture was used in the anode chamber and the cells were operated under illuminated conditions. The anodic chamber was flushed with nitrogen gas and filled with anaerobic growth medium. The anolyte was agitated using a magnetic stirrer operating at 100 rpm. In the cubic MFC, the cathode chamber was provided with air through a 0.45 μ pore sized membrane filter. Solutions were replaced when the voltage dropped <10 mV. Open circuit MFC studies were also carried out and then switched to closed circuit with a selected external load (R-1000 Ω unless stated otherwise). DRH compounds were also used as sole source of energy in degradation experiments using the strain RP2 at a concentration of 800 mg l
<sup>-1</sup>
in MERS studies. All the reactors were maintained in photoheterotrophic and chemoheterotrophic culture conditions at room temperature in triplicates.</p>
</sec>
<sec>
<title>Electrochemical Analysis</title>
<p>The electrochemical activity of strain RP2 was examined using cyclic voltammetry with a conventional three electrode electrochemical cell with a 25 ml capacity as described earlier (
<xref rid="B19" ref-type="bibr">Kim et al., 1999</xref>
). Bacterial cells grown (aerobic and anaerobic growth environments) in Fe(III) oxide liquid cultures were harvested and used for testing electrochemical activities. Cyclic voltammograms of the bacterial suspension were obtained using a potentiostat (Electrochemical analyser, BAS 100B, USA) connected to a personal computer with BAS software. A glassy carbon working electrode (3 mm, diameter, MF-2012, BAS) and silver/silver chloride reference electrode (MW-4130, BAS) and platinum counter electrode (MW-4130, BAS) were used in a conventional three electrode system. The working electrodes were polished with alumina slurry on cotton wool before each measurement. The electrochemical cells were purged with nitrogen gas for 15 minutes before each measurement. Different scan rates were used from 5 to 100 mV/sec with a potential range from -800 to 800 mV.</p>
</sec>
<sec>
<title>Analytical Methods and Calculations</title>
<p>Fe(III) reduction was monitored by measuring Fe(II) production by the ferrozine method (
<xref rid="B30" ref-type="bibr">Lovley and Phillips, 1988b</xref>
). The DRH was extracted in acetone-methylene chloride (1:1) mixture, dewatered and concentrated by evaporator, and then concentrations were measured by GC-FID using a HP-5 capillary column (15 m length, 0.32 mm thickness, 0.1 μm internal diameter) following the USEPA protocol (
<xref rid="B41" ref-type="bibr">USEPA, 1996</xref>
). The resulting chromatograms were analyzed using Agilent software (GC-FID Agilent model 6890) to identify the hydrocarbon degradation products. Chemical oxygen demand was measured by COD analyser (Chemetrics, K-7365). Fuel cell power output was monitored using a DMM (Keithly Model 2701, USA) linked to a multi-channel scanner (Module 7700, Keithly Instruments, USA). Data were recorded digitally on an Intel computer via IEEE 488 input system and Keithly cable. To measure the current under closed circuit conditions, the external load was connected (R-1000Ω unless stated otherwise). Current was calculated by using
<italic>I</italic>
=
<italic>V/R</italic>
, and power was calculated via
<italic>P</italic>
=
<italic>VI</italic>
. Power density and current density were normalized to the projected surface area of a cathode. Polarization curves were plotted using various external loads with a range of 10 Ω to open circuit. Coulombic efficiency (CE) was calculated at the end of the cycle from COD removal as previously described by an
<xref rid="B26" ref-type="bibr">Logan (2008)</xref>
.</p>
</sec>
<sec>
<title>Nucleotide Sequence Numbers</title>
<p>The 16S rRNA,
<italic>puf</italic>
M,
<italic>nif</italic>
H gene sequences have been deposited in the GenBank database under the accession numbers of KJ460004, J1289478, J223658.</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Strain Identification</title>
<p>In our laboratory experiments, a strain of
<italic>R. palustris</italic>
strain RP2 emerged as a dominant species was isolated from the anodic biofilm PH fed MERS.
<italic>R. palustris</italic>
strain RP2 is a cosmopolitan phototrophic bacterium, contains double membrane bilayers, lamellar thylakoid membrane system, produce chains of magnetosomes (
<xref rid="B44" ref-type="bibr">Venkidusamy et al., 2015</xref>
), and grow as long bacillus-shaped (0.5 to 1 μm wide and 2.0 to 6 μm long cells) with asymmetric cell division. Cell division occurred by budding, with dumbbell shaped daughter cells, forming rosette-like structures. Thin section transmission electron micrographs revealed the presence of a lamellar thylakoid membrane system presumably containing the photosynthetic apparatus in anoxic phototrophically grown cells (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM1">S1A</xref>
) whereas cells grown in the dark lacked intra cytoplasmic (ICM) membranes (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM1">S1B</xref>
).</p>
</sec>
<sec>
<title>Photosynthetic Pigments</title>
<p>Photosynthetically grown anoxic liquid cells were dark red (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM1">S2A</xref>
) in color whereas chemosynthetically grown anoxic cells were colorless (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM1">S2B</xref>
). Cultures grown under aerobic conditions were faint pink to colorless. Thin section transmission electron micrographs revealed the presence of a lamellar thylakoid membrane system presumably containing the photosynthetic apparatus in anoxic phototrophically grown cells. Absorption maxima of the homogenized photosynthetic cells showed three bacteriochlorophyll peaks at 379, 473, and 503 nm, and peaks at 545, 594, 807, and 875 nm indicated the presence of carotenoid pigments of the spillriloxanthin series. In contrast, no peaks were observed in the chemosynthetically grown cells. The presence of the photosynthetic gene (
<italic>puf</italic>
M gene) in the strain RP2 was shown using PCR with primers specific for this gene, resulting in a 230 bp product.</p>
</sec>
<sec>
<title>Physiological and Metabolic Characters</title>
<p>The cells of strain RP2 have exceptionally flexible growth based on environmental signals such as photoorganotrophic, photolithotrophic, dark fermentative, and aerobic heterotrophic mechanisms. Optimum bacterial growth was observed at 25 to 30°C at a neutral pH, whilst no growth was detected above 40°C. Experiments to determine the growth factor requirements for the strain RP2 clearly shows the need for
<italic>p</italic>
-aminobenzoate, pyridoxine HCl, and folic acid (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, anaerobic nitrate reduction, carbon dioxide fixation, free living diazotrophy, and the ability to degrade n-alkane components of PH under anoxic environments. Strain RP2 showed growth in minimal medium in the absence of both nitrogen and carbon sources under anoxic, photosynthetic conditions. Nitrogen fixation trait was confirmed by the detection of a
<italic>nif</italic>
H gene required for nitrogen fixation in the strain. The strain RP2 differed from a previously reported exoelectrogenic strain of
<italic>R. palustris</italic>
DX1 (
<xref rid="B48" ref-type="bibr">Xing et al., 2008</xref>
) with respect to its ability of photoassimilating a range of substrates including gluconate, aspartate, glycerol, and amino-ethanol. However, the strain RP2 was unable to utilize some compounds such as sebacic acid, threonine,
<sc>L</sc>
-ornithine, and
<sc>L</sc>
-proline. The ability to utilize sodium benzoate distinguishes the strain from other species of purple sulfur bacteria. The strain RP2 can assimilate acetate photosynthetically with nitrate, sulfate, and iron as terminal electron acceptors (Supplementary Figure
<xref ref-type="supplementary-material" rid="SM1">S3</xref>
). We cultured RP2 cells under two different environmental conditions: anoxic photoheterotrophic and anoxic chemoheterotrophic with crystalline Fe(III) oxide as a terminal electron acceptor to investigate the dissimilatory metal oxide reduction trait. Fe(III) oxide reduction was monitored by color change and hydroxylamine Fe(II)extraction assay. Fe(III) oxide reduction of 69.5% ± 0.41% was observed only in anoxic photoheterotrophic environments (
<xref rid="B44" ref-type="bibr">Venkidusamy et al., 2015</xref>
) whereas chemosynthetic grown cells showed no reduction. During this process, peculiar extracellular electrically conductive nanofilamentous structures were observed in the phototrophic growth conditions as stated previously (
<xref rid="B44" ref-type="bibr">Venkidusamy et al., 2015</xref>
). When colonies are incubated for longer incubations (for a period of 4-5 weeks) under anoxic chemosynthetic conditions, they develop a complex morphology such as spore formation with a well-defined outer layer (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
).</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>
<bold>Micrographs of spore formation in chemosynthetically grown cells of
<italic>R. palustris</italic>
strain RP2. (A)</bold>
SEM micrograph.
<bold>(B)</bold>
TEM micrograph.</p>
</caption>
<graphic xlink:href="fmicb-07-01071-g001"></graphic>
</fig>
</sec>
<sec>
<title>Phylogeny</title>
<p>ClustalW alignment was used to align 1420 bp of the 16S ribosomal RNA gene sequence of strain RP2 with the same region of several related non-sulfur alphaproteobacteria groups. Using this multiple alignment, the neighborhood phylogenetic tree was constructed (
<bold>Figure
<xref ref-type="fig" rid="F2">2</xref>
</bold>
). Phylogenetic analysis of 16S rRNA gene sequences of strain RP2 demonstrated that the strain was closely linked to the genera of
<italic>Rhodopseudomonas</italic>
with 98% identity to sequences from
<italic>R. palustris</italic>
ATCC (17005) and
<italic>Rhodopseudomonas</italic>
sp. DPT4 (2001).</p>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>
<bold>Phylogenetic tree based on 16S rRNA sequences showing the positions of the isolate,
<italic>R. palustris</italic>
strain RP2 and representatives of other closely related species.</bold>
The tree was constructed form 1,420 aligned bases; Scale bar represents 0.002 substitution per nucleotide.</p>
</caption>
<graphic xlink:href="fmicb-07-01071-g002"></graphic>
</fig>
</sec>
<sec>
<title>Current Generation by
<italic>R. palustris</italic>
Strain RP2 in Acetate MFCs</title>
<p>Current was generated in all the MFCs inoculated with strain RP2 using acetate as an energy source. After three days, voltage started to follow a constant pattern and then stabilized. The fuel cell electrodes were discharged through a 1000 Ω external resistance once it reached the plateau voltage generation stage. The voltage fell quickly from 690 ± 10 mV to 446 ± 5 mV after a 1000 Ω fixed resistor was connected. The maximum output range of voltage and current density were 446 ± 7 mV, 305 ± 10 mA/m
<sup>2</sup>
(
<italic>R</italic>
= 1000 Ω) after four cycles of operation. Few representative initial cycles (average current density from triplicates) of current density are shown in (
<bold>Figure
<xref ref-type="fig" rid="F3">3A</xref>
</bold>
). After six refilling batches with a fresh substrate, the maximum current output of each batch became stable (300 ± 7 mA/m
<sup>2</sup>
). The maximum open circuit voltage was 700 ± 7 mV and attainable power density was 131.65 ± 10 mW/m
<sup>2</sup>
(
<italic>R</italic>
= 1000 Ω) (
<bold>Figure
<xref ref-type="fig" rid="F3">3B</xref>
</bold>
). The CEs showed the increased trend with the increased current densities as shown in the
<bold>Figure
<xref ref-type="fig" rid="F3">3C</xref>
</bold>
. The maximum CE was 46.7% which corresponded to the maximum current density of 259.90 mA/m
<sup>2</sup>
. The higher buffer (200 mM) concentration were also examined at the same resistance which produced a maximum power density of 300 ± 20 mW/m
<sup>2</sup>
.</p>
<fig id="F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>
<bold>(A)</bold>
A few representative initial cycles of current density (average from triplicates) generated by strain RP2 fed with acetate.
<bold>(B)</bold>
Power density and voltage generation as a function of current density from strain RP2 inoculated acetate-fed bottle MFCs.
<bold>(C)</bold>
Coulombic efficiency (CE) of a few representative batches of acetate-fed bottle MFCs.</p>
</caption>
<graphic xlink:href="fmicb-07-01071-g003"></graphic>
</fig>
<p>Experiments were also conducted using dual chamber cubic MFCs (CMFC) containing carbon flat paper anodes at a fixed resistance of 1000 Ω. The voltage profile of the cubic MFC revealed that the voltage produced was less than that for the air cathode MFC. A long lag time was observed with the carbon paper anode whereas a treated brush anode reduced the strain acclimation period and resulted in an increased power generation. The maximum open circuit potential and power output of CMFC were 600 ± 7 mV and 70 mW/m
<sup>2</sup>
, respectively. Constant power and voltage output indicated the formation of a stable biofilm around the electrode surface. Scanning electron micrographs revealed that the bacterial population from the graphite brush anode was homogenous in shape (
<bold>Figure
<xref ref-type="fig" rid="F4">4</xref>
</bold>
).</p>
<fig id="F4" position="float">
<label>FIGURE 4</label>
<caption>
<p>
<bold>Anode micrographs of
<italic>R. palustris</italic>
strain RP2 inoculated acetate-fed MFCs. (A)</bold>
Treated control anode,
<bold>(B)</bold>
Strain RP2- biofilm on graphite surface and
<bold>(C)</bold>
Cells with high magnification.</p>
</caption>
<graphic xlink:href="fmicb-07-01071-g004"></graphic>
</fig>
</sec>
<sec>
<title>Electrochemical Activity of
<italic>R. palustris</italic>
Strain RP2</title>
<p>Cell suspensions were prepared from the bacterial cells grown under anaerobic and aerobic environments to determine the electrochemical activities of the strain RP2 using cyclic voltammetry (CV) studies. Oxidation and reduction peaks of CV were observed in anaerobic grown bacterial cells (
<bold>Figure
<xref ref-type="fig" rid="F5">5A</xref>
</bold>
) whereas aerobically grown cells lacked the electrochemical activity (
<bold>Figure
<xref ref-type="fig" rid="F5">5B</xref>
</bold>
). Reduction peaks ranging from -394 mV to -399 mV and oxidation peaks ranging from -200 mV to +100 mV were observed at the electrode interface from washed cells suspensions. The calculated mid-point potential was about -278 mV. This asymmetric CV peak shows that the redox reaction is a quasi-reversible reaction. The amplitude of the peaks increased according to the growth stage of the culture in batch mode. The highest peaks were present during the exponential growth stage which indicated that the development of biofilm was the main factor for the electron transfer. One redox couple was observed from the CV peak and number of electrons transferred was calculated based on the Nernst equation (
<xref rid="B26" ref-type="bibr">Logan, 2008</xref>
). The CV peaks were not observed from the suspension of aerobically grown cells or autoclaved controls.</p>
<fig id="F5" position="float">
<label>FIGURE 5</label>
<caption>
<p>
<bold>Cyclic Voltammetry studies of
<italic>R. palustris</italic>
strain RP2. (A)</bold>
Anoxic grown cells;
<bold>(B)</bold>
Aerobically grown cells; Scan rate: 5 mV s
<sup>-1</sup>
.</p>
</caption>
<graphic xlink:href="fmicb-07-01071-g005"></graphic>
</fig>
</sec>
<sec>
<title>Hydrocarbonosclastic Potential of
<italic>R. palustris</italic>
Strain RP2 in Anoxic Environments</title>
<sec>
<title>Degradation of Hydrocarbons in Anoxic, Photosynthetic Incubations</title>
<p>To study the hydrocarbon degradation potential of the strain RP2, experiments were performed under four different environments: oxic, anoxic, photosynthetic, and chemosynthetic. Cultures were inoculated into Wolfe’s media with DRHs as a sole carbon source with different electron accepting conditions. These incubation experiments indicate that photosynthetic anaerobic degradation of hydrocarbons occurred, however, no increase in biomass or hydrocarbon degradation was observed in chemosynthetically grown anaerobic or aerobic samples. The rate and extent of biodegradation was interpreted from GC chromatograms of the residual hydrocarbons.
<bold>Figure
<xref ref-type="fig" rid="F6">6A</xref>
</bold>
shows the possible anoxic photoheterotrophic degradation of DRH compounds under different electron accepting conditions [Photosynthetic only (PS); Photosynthetic + Nitrate (PS+N); Photosynthetic + Sulfate (PS+S); Photosynthetic + Iron (PS+Fe)]. For a substrate concentration of 4000 mg/l, cells showed ~10 to 30% of DRH removal by the end of the experiment. A higher percentage of DRH removal (30.6 ± 0.68%, 90th day) was noticed in the triplicates of sulfate containing anoxic, photoheterotrophic samples. Abiotic loss of DRH was measured under each condition was less than 5%.</p>
<fig id="F6" position="float">
<label>FIGURE 6</label>
<caption>
<p>
<bold>(A)</bold>
Photoorganotrophic hydrocarbon degradation under different electron accepting conditions (PS-photosynthetic; PS+N- Photosynthetic + Nitrate; PS+S; Photosynthetic + Sulfate; PS+Fe- Photosynthetic + Iron).
<bold>(B)</bold>
A representative current density cycle of diesel fed microbial fuel cell system using strain RP2.
<bold>(C)</bold>
Hydrocarbon degradation under different reactor operating conditions (AC, Abiotic controls; OC, Open circuit controls; CC- Closed Circuit).</p>
</caption>
<graphic xlink:href="fmicb-07-01071-g006"></graphic>
</fig>
</sec>
<sec>
<title>Degradation of Hydrocarbons in MERS Environments</title>
<p>The ability of the strain RP2 to produce electricity using DRH as a sole carbon source was also examined using an initial concentration of 800 mg l
<sup>-1</sup>
of DRHs for three complete cycles. A lag time of 90 h was observed in DRH fed MERS before a constant current was established. A maximum current and power density generated at this concentration were 21 ± 3 mA/m
<sup>2</sup>
(
<bold>Figure
<xref ref-type="fig" rid="F6">6B</xref>
</bold>
), 720 ± 7 μW/m
<sup>2</sup>
. An average of 47.4 ± 2.7% decrease in DRH was observed in closed circuit MERS inoculated with the strain RP2 by the end of experiment (30days). In the case of the abiotic (AC) and open circuit (OC) controls, DRH removal rates were 6.7 ± 0.43% and 10.1 ± 1.7% by the end of experiment. The current density and degradation profiles suggest that MERS could utilize the DRH as a sole source of energy generation which indicated the acclimation of strain RP2 biofilm (
<bold>Figure
<xref ref-type="fig" rid="F6">6C</xref>
</bold>
). However, no increase in biomass or hydrocarbon degradation or current generation was observed in chemosynthetically incubated MERS samples.</p>
</sec>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>
<italic>Rhodopseudomonas</italic>
species are associated with a variety of environments such as limnetic zones (
<xref rid="B10" ref-type="bibr">Eckersley and Dow, 1980</xref>
), marine environments (
<xref rid="B23" ref-type="bibr">Larimer et al., 2004</xref>
), sewage sludges (
<xref rid="B13" ref-type="bibr">Hiraishi and Ueda, 1995</xref>
), euxinic lagoons (
<xref rid="B46" ref-type="bibr">Whittenbury and McLee, 1967</xref>
), and poorly drained soils. The strain RP2 is a facultatively anaerobic, Gram negative purple non-sulfur photosynthetic rod shaped bacterium, containing lamellar ICMs as previously described (
<xref rid="B32" ref-type="bibr">Mehrabi et al., 2001</xref>
). It is a magnetotactic bacterium (
<xref rid="B42" ref-type="bibr">Vainshtein et al., 1997</xref>
), capable of nitrogen (
<xref rid="B5" ref-type="bibr">Cantera et al., 2004</xref>
), and carbon dioxide fixation (
<xref rid="B23" ref-type="bibr">Larimer et al., 2004</xref>
) as reported earlier. The detection of the
<italic>nif</italic>
H and
<italic>puf</italic>
M genes confirmed the presence of diazotrophic and photosynthetic traits as stated previously (
<xref rid="B1" ref-type="bibr">Achenbach et al., 2001</xref>
;
<xref rid="B35" ref-type="bibr">Oda et al., 2005</xref>
). With respect to this, it shares general characteristics with the
<italic>Rhodopseudomonas</italic>
genus of Rhodopspirillaceae. However, a few distinctive features make this strain different from the existing members of the family, these include photoheterotrophic anoxic Fe(III) oxide reduction, electrically conductive filaments (
<xref rid="B44" ref-type="bibr">Venkidusamy et al., 2015</xref>
), spore formation, (
<bold>Figure
<xref ref-type="fig" rid="F1">1</xref>
</bold>
) growth factor requirements and the ability to degrade
<italic>n</italic>
-alkane components of DRHs in anoxic and MERS environments.</p>
<p>The normal growth mode of photosynthetic purple non-sulfur bacteria is photoheterotrophic; however, strain RP2 is able to switch to other metabolic modes such as photoorganoheterotrophic, phtotoorganoautotrophic, chemorg- anoheterotrophic, photolithoautotrophic, and chemoautotrophic growth. The strain RP2 also showed photolithotrophic growth with thiosulphate as an electron donor whereas pure cultures of
<italic>R. blastica</italic>
cannot utilize thiosulphate as an inorganic electron donor (
<xref rid="B10" ref-type="bibr">Eckersley and Dow, 1980</xref>
). Aerobic growth of the strain RP2 was also possible under both illuminated and non-illuminated conditions; however, strains of
<italic>Rhodopsedumonas</italic>
such as
<italic>R. faecalis</italic>
(
<xref rid="B49" ref-type="bibr">Zhang et al., 2002</xref>
), and
<italic>R. palustris</italic>
-17 (
<xref rid="B8" ref-type="bibr">Dönmez et al., 1999</xref>
) are unable to grow in oxygen rich, illuminated environments. The strain RP2 has a quite different pattern of carbon source utilization compared to other members of the genus
<italic>Rhodopseudomonas</italic>
(Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S1</xref>
). For example, strain RP2 was able to use gluconate and aspartate whereas
<italic>R. palustris</italic>
DX1 and
<italic>R. palustris</italic>
TIE-1 were unable to utilize those compounds (
<xref rid="B48" ref-type="bibr">Xing et al., 2008</xref>
). Under anaerobic conditions, the strain RP2 can utilize sodium benzoate as a carbon and energy source whereas the strain
<italic>Rhodopseudomons</italic>
DCP-3 can oxidize benzoate only under aerobic conditions (
<xref rid="B22" ref-type="bibr">Krooneman et al., 1999</xref>
). The same pattern of glucose utilization under photoheterotrophic conditions has been reported (
<xref rid="B17" ref-type="bibr">Imhoff and Bias-lmhoff, 1995</xref>
), however few strains of
<italic>Rhodopseudomonas</italic>
are unable to grow when the medium is enriched with glucose as a sole substrate (
<xref rid="B8" ref-type="bibr">Dönmez et al., 1999</xref>
). Different patterns of vitamin requirements including p-amino benzoic acid, folic acid and pyridoxine HCl highlighted differences in the requirements of photosynthetic non-sulfur bacteria (
<xref rid="B8" ref-type="bibr">Dönmez et al., 1999</xref>
). The most interesting feature of the strain is photoheterotrophic ferric oxide reduction which required both light and an organic carbon source. This also provided evidence of a dissimilatory metal oxide reduction pathway (DMRB) similar to that seen in other electrochemically active bacterial strains (
<xref rid="B28" ref-type="bibr">Lovley et al., 1993</xref>
;
<xref rid="B3" ref-type="bibr">Bretschger et al., 2007</xref>
). On the other hand, photoferrotrophic growth of
<italic>R. palustris</italic>
strain TIE-1 has been demonstrated in the studies of anaerobic oxidation of Fe(II) (
<xref rid="B2" ref-type="bibr">Bose et al., 2014</xref>
;
<xref rid="B4" ref-type="bibr">Byrne et al., 2015</xref>
). Considering these features, this strain RP2 appears to be a novel member of the purple non-sulfur photosynthetic bacterial genus of
<italic>Rhodopseudomonas.</italic>
</p>
<p>The strain RP2 can transfer the electrons to extracellular, insoluble electron acceptors as reported earlier (
<xref rid="B48" ref-type="bibr">Xing et al., 2008</xref>
;
<xref rid="B44" ref-type="bibr">Venkidusamy et al., 2015</xref>
). Recent investigations have revealed the potential of using such phototrophic biofilms in a mediator free MFC systems (
<xref rid="B37" ref-type="bibr">Park et al., 2014</xref>
;
<xref rid="B24" ref-type="bibr">Li et al., 2015</xref>
). For instance,
<xref rid="B48" ref-type="bibr">Xing et al. (2008)</xref>
, documented the highest power density of 2.72 ± 0.06 W/m
<sup>2</sup>
by
<italic>R. palustris</italic>
DX1 using dual chamber MFCs which is higher than that produced by mixed biofilms.
<italic>R. palustris</italic>
micro MFCs fed with renewable substrates such as blue green algae produced more power output of 10.4 mW/m
<sup>3</sup>
than other chemical substrates used (
<xref rid="B18" ref-type="bibr">Inglesby et al., 2012</xref>
). The present study showed a maximum power density of 131.65 ± 10 mW/m
<sup>2</sup>
(acetate fed MFC, 50 mM buffer concentration) with an electron recovery of more than 40% as current using the strain RP2. However, the maximum power densities by such pure exoelectrogens are considerably influenced by a number of reactor parameters, operating conditions such as electrodes and its distance, electrode surface area to the volume ratio, pH, dissolved oxygen, resistance, electrolytes, etc. as reported earlier (
<xref rid="B33" ref-type="bibr">Min et al., 2005</xref>
;
<xref rid="B26" ref-type="bibr">Logan, 2008</xref>
). Biofilms and supernatant of the strain RP2 was used to determine the electrochemical activity through the release of redox proteins using CV analysis (
<bold>Figures
<xref ref-type="fig" rid="F5">5A,B</xref>
</bold>
). These results suggest that the presence of redox compounds in strain RP2 may be involved in extracellular electron transfer. The CV of
<italic>R. palustris</italic>
strain RP2 biofilm with Fe(III) oxide revealed the distinct redox peaks at -398 mV, +150 mV. The mid-potential of the CV peaks obtained matched the outer membrane cytochromes (OmcA) that have redox potential around -240 to -320 mV as reported in
<italic>Shewanella oniendensis</italic>
MR (
<xref rid="B20" ref-type="bibr">Kim et al., 2002</xref>
),
<italic>Geobacter</italic>
,
<italic>Desulfuromonas acetoxidans</italic>
(
<xref rid="B27" ref-type="bibr">Lojou and Bianco, 2004</xref>
). Further, CV curves from a bacterial cell suspension showed a smaller cell potential value than the theoretical electrode potential which was responsible for poor performance and operating conditions of MFCs (
<xref rid="B19" ref-type="bibr">Kim et al., 1999</xref>
). The results also suggest that oxygenated liquid cultures prevent the synthesis of the outer membrane cytochromes which plays important role in extracellular electron transfer to insoluble metal oxides.</p>
<sec>
<title>Metabolic Specialization and Biotechnological Potential of
<italic>R. palustris</italic>
Strain RP2</title>
<p>The genus
<italic>Rhodopseudomonas</italic>
has been studied as a versatile bioremediation candidate because of its exceptional growth flexibility involving the metabolism of diverse compounds. These include utilization of N-aromatic rings (
<xref rid="B9" ref-type="bibr">Dutton and Evans, 1969</xref>
), heterocyclic compounds, chlorinated compounds (
<xref rid="B31" ref-type="bibr">McGrath and Harfoot, 1997</xref>
), heavy metals and other groups of xenobiotic pollutants, for instance, phenolic compounds (
<xref rid="B32" ref-type="bibr">Mehrabi et al., 2001</xref>
), and other dihydroxylated aromatic aldehydes (
<xref rid="B12" ref-type="bibr">Harwood and Gibson, 1986</xref>
). However, the degradation of aliphatic hydrocarbons compounds by the genus
<italic>Rhodopseudomonas</italic>
is previously unknown. It was demonstrated here for the first time that the strain RP2 is capable of mineralizing DRHs in anaerobic environments.</p>
<p>In order to assess the hydrocarbon degradation potential of the strain RP2, GC scan was performed using the photoheterotrophicaly grown samples grown under different electron accepting conditions. We showed evidence for the existence of anaerobic hydrocarbon degrading capability in the strain RP2 when grown under illuminated conditions in the presence of thiosulfate. To obtain deeper insights into hydrocarbon degradation mechanism by the strain RP2, further research is required in terms of catabolic genes encoding alkane degrading enzymes such as Cytochrome 450,
<italic>alk</italic>
genes including
<italic>alk</italic>
B,
<italic>alk</italic>
M,
<italic>alk</italic>
A etc., The presence of such specific catabolic genes was investigated using the PCR mediated amplification method with various oligonucleotide primers (Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S3</xref>
). This strain, however, showed negative and non-specific results for CYP153A,
<italic>alk</italic>
B and its related,
<italic>alk</italic>
M and
<italic>alk</italic>
A genes. Efforts are being made using
<italic>R. palustris</italic>
strain RP2 genome sequence analysis to improve our understanding of anoxic photoorganotrophic hydrocarbon degradation mechanism in strain RP2. Metabolic prediction analysis using KEGG (Kyoto encyclopedia of Genes and Genome) reveals the presence of key enzymes involved in biodegradation of hydrocarbons. Supplementary Table
<xref ref-type="supplementary-material" rid="SM1">S2</xref>
shows the comparison of metabolic genes present in the genome of
<italic>R. palustris</italic>
strain RP2 with other genomes obtained from database. Results of this study shows that the strain RP2 possesses alkane sulfonate monooxygenase and catechol 1,2-dioxygenase for hydrocarbon degradation as recently mentioned in
<italic>Pseudomonas aeruginosa</italic>
strain N0002 (
<xref rid="B38" ref-type="bibr">Roy et al., 2013</xref>
).</p>
<p>Previously, the remediation of hydrocarbons in MERS systems required mixed biofilms or enriched biofilms (
<xref rid="B34" ref-type="bibr">Morris et al., 2009</xref>
;
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
). The present study also demonstrated the potential of generating current in the presence of hydrocarbon compounds using the strain RP2 in MERS for the first time. However, the maximum current and power densities of hydrocarbons fed MERS were much lesser than the mixed culture MERS studies using freshly inoculated anodes (70.57 mA/m
<sup>2</sup>
at a concentration of 800 mg L
<sup>-1</sup>
) (
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
), suggesting that the lower rate of hydrocarbons assimilation (47.4 ± 2.7% by 30th day) limited the power generation. Whereas mixed culture MERS system showed nearly 84% of DRH removal at this concentration by the end of batch experiment (
<xref rid="B43" ref-type="bibr">Venkidusamy et al., 2016</xref>
). This perhaps indicates the presence of microbial interactions and its synergistic effects between different species in the mixed culture MERS systems. Interestingly, the strain RP2 also showed the physiological induction of electrically conductive nanofilaments in energetically engineered environments as recently reported (
<xref rid="B44" ref-type="bibr">Venkidusamy et al., 2015</xref>
). It will be interesting to examine whether the induction of these nanofilaments are involved in enhanced bioremediation of hydrocarbon contaminants in energetically engineered environments.</p>
</sec>
</sec>
<sec>
<title>Conclusion</title>
<p>The members of
<italic>Rhodopseudomonas</italic>
species appear to have a cosmopolitan distribution as their presence has been detected in marine environments. The present study demonstrated for the first time, the hydrocarbon bioremediation potential of
<italic>R. palustris</italic>
strain RP2 in anaerobic and MERS environments. The findings of this study not only expand our knowledge of the range of bacteria known to degrade hydrocarbon contaminants but also provide further research opportunities in the field of sustainable remediation (MERS), molecular biology of hydrocarbon bio-degradative genes in EABs and their interactions in oil contaminated sites. Thus, this study will undoubtedly contribute to the biotechnological applications involved in advanced bioremediation techniques (MERS) and bioremedial process of hydrocarbons at photic, marine environments.</p>
</sec>
<sec>
<title>Author Contributions</title>
<p>KV and MM proposed the study. KV conducted the experiments under the supervision of MM. KV prepared the draft with contributions from MM.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>The authors thank R. Lockington for comments and suggestions on previous versions of this manuscript. KV thanks Australian Federal Government, University of South Australia for International Postgraduate scholarship award (IPRS) and CRC CARE for the research top-up award.</p>
</ack>
<sec sec-type="supplementary material">
<title>Supplementary Material</title>
<p>The Supplementary Material for this article can be found online at:
<ext-link ext-link-type="uri" xlink:href="http://journal.frontiersin.org/article/10.3389/fmicb.2016.01071">http://journal.frontiersin.org/article/10.3389/fmicb.2016.01071</ext-link>
</p>
<supplementary-material content-type="local-data" id="SM1">
<media xlink:href="Data_Sheet_1.PDF">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Achenbach</surname>
<given-names>L. A.</given-names>
</name>
<name>
<surname>Carey</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Madigan</surname>
<given-names>M. T.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments.</article-title>
<source>
<italic>App. Environ. Microbiol.</italic>
</source>
<volume>67</volume>
<fpage>2922</fpage>
<lpage>2926</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.67.7.2922-2926.2001</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bose</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Gardel</surname>
<given-names>E. J.</given-names>
</name>
<name>
<surname>Vidoudez</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Parra</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Girguis</surname>
<given-names>P. R.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Electron uptake by iron-oxidizing phototrophic bacteria.</article-title>
<source>
<italic>Nature commun.</italic>
</source>
<volume>5</volume>
<issue>3391</issue>
<pub-id pub-id-type="doi">10.1038/ncomms4391</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bretschger</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Obraztsova</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sturm</surname>
<given-names>C. A.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Gorby</surname>
<given-names>Y. A.</given-names>
</name>
<name>
<surname>Reed</surname>
<given-names>S. B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Current production and metal oxide reduction by
<italic>Shewanella oneidensis</italic>
MR-1 wild type and mutants.</article-title>
<source>
<italic>App. Environ. Microbiol.</italic>
</source>
<volume>73</volume>
<fpage>7003</fpage>
<lpage>7012</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.01087-07</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Byrne</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Klueglein</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Pearce</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rosso</surname>
<given-names>K. M.</given-names>
</name>
<name>
<surname>Appel</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Kappler</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Redox cycling of Fe (II) and Fe (III) in magnetite by Fe-metabolizing bacteria.</article-title>
<source>
<italic>Science</italic>
</source>
<volume>347</volume>
<fpage>1473</fpage>
<lpage>1476</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.aaa4834</pub-id>
<pub-id pub-id-type="pmid">25814583</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cantera</surname>
<given-names>J. J. L.</given-names>
</name>
<name>
<surname>Kawasaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Seki</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>The nitrogen-fixing gene (nifH) of
<italic>Rhodopseudomonas palustris</italic>
: a case of lateral gene transfer?</article-title>
<source>
<italic>Microbiol.</italic>
</source>
<volume>150</volume>
<fpage>2237</fpage>
<lpage>2246</lpage>
.
<pub-id pub-id-type="doi">10.1099/mic.0.26940-0</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chaudhuri</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Lovley</surname>
<given-names>D. R.</given-names>
</name>
</person-group>
(
<year>2003</year>
).
<article-title>Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.</article-title>
<source>
<italic>Nat. Biotechnol.</italic>
</source>
<volume>21</volume>
<fpage>1229</fpage>
<lpage>1232</lpage>
.
<pub-id pub-id-type="doi">10.1038/nbt867</pub-id>
<pub-id pub-id-type="pmid">12960964</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Increased performance of single-chamber microbial fuel cells using an improved cathode structure.</article-title>
<source>
<italic>Electrochem. Commun.</italic>
</source>
<volume>8</volume>
<fpage>489</fpage>
<lpage>494</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.elecom.2006.01.010</pub-id>
</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dönmez</surname>
<given-names>G. Ç.</given-names>
</name>
<name>
<surname>Öztürk</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Çakmakçi</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Properties of the
<italic>Rhodopseudomonas palustris</italic>
strains isolated from an alkaline lake in Turkey.</article-title>
<source>
<italic>Turkish J. Biol.</italic>
</source>
<volume>23</volume>
<fpage>457</fpage>
<lpage>464</lpage>
.</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dutton</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>W.</given-names>
</name>
</person-group>
(
<year>1969</year>
).
<article-title>The metabolism of aromatic compounds by
<italic>Rhodopseudomonas palustris</italic>
.</article-title>
<source>
<italic>Biochem. J.</italic>
</source>
<volume>113</volume>
<fpage>525</fpage>
<lpage>536</lpage>
.
<pub-id pub-id-type="pmid">5807211</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eckersley</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Dow</surname>
<given-names>C. S.</given-names>
</name>
</person-group>
(
<year>1980</year>
).
<article-title>
<italic>Rhodopseudomonas</italic>
blastica sp. nov.: a member of the
<italic>Rhodospirillaceae</italic>
.</article-title>
<source>
<italic>J. Gen. Microbiol.</italic>
</source>
<volume>119</volume>
<fpage>465</fpage>
<lpage>473</lpage>
.
<pub-id pub-id-type="doi">10.1099/00221287-119-2-465</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Feng</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells.</article-title>
<source>
<italic>J. Power Sources</italic>
</source>
<volume>195</volume>
<fpage>1841</fpage>
<lpage>1844</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jpowsour.2009.10.030</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harwood</surname>
<given-names>C. S.</given-names>
</name>
<name>
<surname>Gibson</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>1986</year>
).
<article-title>Uptake of benzoate by
<italic>Rhodopseudomonas palustris</italic>
grown anaerobically in light.</article-title>
<source>
<italic>J. bacteriol.</italic>
</source>
<volume>165</volume>
<fpage>504</fpage>
<lpage>509</lpage>
.
<pub-id pub-id-type="pmid">3944059</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hiraishi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ueda</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>1995</year>
).
<article-title>Isolation and characterization of
<italic>Rhodovulum strictum</italic>
sp. nov. and some other purple nonsulfur bacteria from colored blooms in tidal and seawater pools.</article-title>
<source>
<italic>Int. J. Syst. Bacteriol.</italic>
</source>
<volume>45</volume>
<fpage>319</fpage>
<lpage>326</lpage>
.
<pub-id pub-id-type="pmid">7537066</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Holmes</surname>
<given-names>D. E.</given-names>
</name>
<name>
<surname>Chaudhuri</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Nevin</surname>
<given-names>K. P.</given-names>
</name>
<name>
<surname>Mehta</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Methé</surname>
<given-names>B. A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2006</year>
).
<article-title>Microarray and genetic analysis of electron transfer to electrodes in
<italic>Geobacter sulfurreducens</italic>
.</article-title>
<source>
<italic>Environ. Microbiol.</italic>
</source>
<volume>8</volume>
<fpage>1805</fpage>
<lpage>1815</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1462-2920.2006.01065.x</pub-id>
<pub-id pub-id-type="pmid">16958761</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>Bioelectrochemical systems for efficient recalcitrant wastes treatment.</article-title>
<source>
<italic>J. Chem. Technol. Biotechnol.</italic>
</source>
<volume>86</volume>
<fpage>481</fpage>
<lpage>491</lpage>
.
<pub-id pub-id-type="doi">10.1002/jctb.2551</pub-id>
</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hungate</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1950</year>
).
<article-title>The anaerobic mesophilic cellulolytic bacteria.</article-title>
<source>
<italic>Bacteriol. Rev.</italic>
</source>
<volume>14</volume>
<fpage>1</fpage>
<lpage>49</lpage>
.
<pub-id pub-id-type="pmid">15420122</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Imhoff</surname>
<given-names>J. F.</given-names>
</name>
<name>
<surname>Bias-lmhoff</surname>
<given-names>U.</given-names>
</name>
</person-group>
(
<year>1995</year>
). “
<article-title>Lipids, quinones and fatty acids of anoxygenic phototrophic bacteria</article-title>
,” in
<source>
<italic>Anoxygenic Photosynthetic Bacteria</italic>
</source>
<role>eds</role>
<person-group person-group-type="editor">
<name>
<surname>Blankenship</surname>
<given-names>R. E.</given-names>
</name>
<name>
<surname>Madigan</surname>
<given-names>M. T.</given-names>
</name>
<name>
<surname>Bauer</surname>
<given-names>C. E.</given-names>
</name>
</person-group>
(
<publisher-loc>Dordrecht</publisher-loc>
:
<publisher-name>Springer</publisher-name>
)
<fpage>179</fpage>
<lpage>205</lpage>
.</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Inglesby</surname>
<given-names>A. E.</given-names>
</name>
<name>
<surname>Beatty</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Fisher</surname>
<given-names>A. C.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>
<italic>Rhodopseudomonas palustris</italic>
purple bacteria fed
<italic>Arthrospira maxima</italic>
cyanobacteria: demonstration of application in microbial fuel cells.</article-title>
<source>
<italic>RSC. Adv.</italic>
</source>
<volume>2</volume>
<fpage>4829</fpage>
<lpage>4838</lpage>
.
<pub-id pub-id-type="doi">10.1039/c2ra20264f</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>B.-H.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>H.-J.</given-names>
</name>
<name>
<surname>Hyun</surname>
<given-names>M.-S.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>D.-H.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Direct electrode reaction of Fe (III)-reducing bacterium,
<italic>Shewanella putrefaciens</italic>
.</article-title>
<source>
<italic>J. Microbiol. Biotechnol.</italic>
</source>
<volume>9</volume>
<fpage>127</fpage>
<lpage>131</lpage>
.
<pub-id pub-id-type="doi">10.1371/journal.pone.0147899</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>H. J.</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>H. S.</given-names>
</name>
<name>
<surname>Hyun</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>I. S.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>B. H.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>A mediator-less microbial fuel cell using a metal reducing bacterium,
<italic>Shewanella putrefaciens</italic>
.</article-title>
<source>
<italic>Enzyme Microb. Technol.</italic>
</source>
<volume>30</volume>
<fpage>145</fpage>
<lpage>152</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0141-0229(01)00478-1</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kranz</surname>
<given-names>R. G.</given-names>
</name>
<name>
<surname>Haselkorn</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>1986</year>
).
<article-title>Anaerobic regulation of nitrogen-fixation genes in
<italic>Rhodopseudomonas</italic>
capsulata.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>83</volume>
<fpage>6805</fpage>
<lpage>6809</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.83.18.6805</pub-id>
<pub-id pub-id-type="pmid">3018747</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Krooneman</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>van den Akker</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>T. M. P.</given-names>
</name>
<name>
<surname>Forney</surname>
<given-names>L. J.</given-names>
</name>
<name>
<surname>Gottschal</surname>
<given-names>J. C.</given-names>
</name>
</person-group>
(
<year>1999</year>
).
<article-title>Degradation of 3-chlorobenzoate under low-oxygen conditions in pure and mixed cultures of the anoxygenic photoheterotroph
<italic>Rhodopseudomonas palustris</italic>
DCP3 and an aerobic
<italic>Alcaligenes</italic>
species.</article-title>
<source>
<italic>App. Environ. Microbiol.</italic>
</source>
<volume>65</volume>
<fpage>131</fpage>
<lpage>137</lpage>
.</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Larimer</surname>
<given-names>F. W.</given-names>
</name>
<name>
<surname>Chain</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hauser</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lamerdin</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Malfatti</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Do</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Complete genome sequence of the metabolically versatile photosynthetic bacterium
<italic>Rhodopseudomonas palustris</italic>
.</article-title>
<source>
<italic>Nature Biotechnol.</italic>
</source>
<volume>22</volume>
<fpage>55</fpage>
<lpage>61</lpage>
.
<pub-id pub-id-type="doi">10.1038/nbt923</pub-id>
<pub-id pub-id-type="pmid">14704707</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Waite</surname>
<given-names>T. D.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Light-induced extracellular electron transport by the marine Raphidophyte
<italic>Chattonella</italic>
marina.</article-title>
<source>
<italic>Environ. Sci. Technol.</italic>
</source>
<volume>49</volume>
<fpage>1392</fpage>
<lpage>1399</lpage>
.
<pub-id pub-id-type="doi">10.1021/es503511m</pub-id>
<pub-id pub-id-type="pmid">25569116</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Logan</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Estadt</surname>
<given-names>G.</given-names>
</name>
</person-group>
(
<year>2007</year>
).
<article-title>Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.</article-title>
<source>
<italic>Environ. Sci. Technol.</italic>
</source>
<volume>41</volume>
<fpage>3341</fpage>
<lpage>3346</lpage>
.
<pub-id pub-id-type="doi">10.1021/es062644y</pub-id>
<pub-id pub-id-type="pmid">17539547</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<source>
<italic>Microbial Fuel Cells.</italic>
</source>
<publisher-loc>Hoboken, NJ</publisher-loc>
:
<publisher-name>John Wiley & Sons</publisher-name>
.</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lojou</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bianco</surname>
<given-names>P.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Membrane electrodes for protein and enzyme electrochemistry.</article-title>
<source>
<italic>Electroanalysis</italic>
</source>
<volume>16</volume>
<fpage>1113</fpage>
<lpage>1121</lpage>
.
<pub-id pub-id-type="doi">10.1002/elan.200403001</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovley</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Giovannoni</surname>
<given-names>S. J.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>D. C.</given-names>
</name>
<name>
<surname>Champine</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gorby</surname>
<given-names>Y. A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>1993</year>
).
<article-title>
<italic>Geobacter metallireducens</italic>
gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals.</article-title>
<source>
<italic>Archiv. Microbiol.</italic>
</source>
<volume>159</volume>
<fpage>336</fpage>
<lpage>344</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00290916</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovley</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>E. J.</given-names>
</name>
</person-group>
(
<year>1988a</year>
).
<article-title>Manganese inhibition of microbial iron reduction in anaerobic sediments.</article-title>
<source>
<italic>Geomicrobiol. J.</italic>
</source>
<volume>6</volume>
<fpage>145</fpage>
<lpage>155</lpage>
.
<pub-id pub-id-type="doi">10.1080/01490458809377834</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lovley</surname>
<given-names>D. R.</given-names>
</name>
<name>
<surname>Phillips</surname>
<given-names>E. J.</given-names>
</name>
</person-group>
(
<year>1988b</year>
).
<article-title>Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.</article-title>
<source>
<italic>App. Environ. Microbiol.</italic>
</source>
<volume>54</volume>
<fpage>1472</fpage>
<lpage>1480</lpage>
.</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McGrath</surname>
<given-names>J. E.</given-names>
</name>
<name>
<surname>Harfoot</surname>
<given-names>C. G.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>Reductive dehalogenation of halocarboxylic acids by the phototrophic genera
<italic>Rhodospirillum</italic>
and
<italic>Rhodopseudomonas</italic>
.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>63</volume>
<fpage>3333</fpage>
<lpage>3335</lpage>
.
<pub-id pub-id-type="pmid">9251226</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mehrabi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Ekanemesang</surname>
<given-names>U. M.</given-names>
</name>
<name>
<surname>Aikhionbare</surname>
<given-names>F. O.</given-names>
</name>
<name>
<surname>Kimbro</surname>
<given-names>K. S.</given-names>
</name>
<name>
<surname>Bender</surname>
<given-names>J.</given-names>
</name>
</person-group>
(
<year>2001</year>
).
<article-title>Identification and characterization of
<italic>Rhodopseudomonas</italic>
spp., a purple, non-sulfur bacterium from microbial mats.</article-title>
<source>
<italic>Biomol. Eng.</italic>
</source>
<volume>18</volume>
<fpage>49</fpage>
<lpage>56</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1389-0344(01)00086-7</pub-id>
<pub-id pub-id-type="pmid">11535416</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Min</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Oh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Regan</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Electricity generation from swine wastewater using microbial fuel cells.</article-title>
<source>
<italic>Water Res.</italic>
</source>
<volume>39</volume>
<fpage>4961</fpage>
<lpage>4968</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.watres.2005.09.039</pub-id>
<pub-id pub-id-type="pmid">16293279</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Crimi</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Pruden</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Microbial fuel cell in enhancing anaerobic biodegradation of diesel.</article-title>
<source>
<italic>Chem. Eng. J.</italic>
</source>
<volume>146</volume>
<fpage>161</fpage>
<lpage>167</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cej.2008.05.028</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oda</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Samanta</surname>
<given-names>S. K.</given-names>
</name>
<name>
<surname>Rey</surname>
<given-names>F. E.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium
<italic>Rhodopseudomonas palustris</italic>
.</article-title>
<source>
<italic>J. Bacteriol.</italic>
</source>
<volume>187</volume>
<fpage>7784</fpage>
<lpage>7794</lpage>
.
<pub-id pub-id-type="doi">10.1128/JB.187.22.7784-7794.2005</pub-id>
<pub-id pub-id-type="pmid">16267302</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oh</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Min</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>Cathode performance as a factor in electricity generation in microbial fuel cells.</article-title>
<source>
<italic>Environ. Sci. Technol.</italic>
</source>
<volume>38</volume>
<fpage>4900</fpage>
<lpage>4904</lpage>
.
<pub-id pub-id-type="doi">10.1021/es049422p</pub-id>
<pub-id pub-id-type="pmid">15487802</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Park</surname>
<given-names>T.-J.</given-names>
</name>
<name>
<surname>Ding</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Brar</surname>
<given-names>M. S.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>A. P. Y.</given-names>
</name>
<name>
<surname>Tun</surname>
<given-names>H. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Microbial community in microbial fuel cell (MFC) medium and effluent enriched with purple photosynthetic bacterium (
<italic>Rhodopseudomonas</italic>
sp.).</article-title>
<source>
<italic>AMB Exp.</italic>
</source>
<volume>4</volume>
<issue>22</issue>
<pub-id pub-id-type="doi">10.1186/s13568-014-0022-2</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roy</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Baruah</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gogoi</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Borah</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Singh</surname>
<given-names>A. K.</given-names>
</name>
<name>
<surname>Boruah</surname>
<given-names>H. P. D.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Draft genome sequence of
<italic>Pseudomonas aeruginosa</italic>
strain N002, isolated from crude oil-contaminated soil from Geleky, Assam, India.</article-title>
<source>
<italic>Genome Announc.</italic>
</source>
<volume>1</volume>
<fpage>e00104</fpage>
<lpage>e00112</lpage>
.
<pub-id pub-id-type="doi">10.1128/genomeA.00104-12</pub-id>
<pub-id pub-id-type="pmid">23405324</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sambrook</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Fritsch</surname>
<given-names>E. F.</given-names>
</name>
<name>
<surname>Maniatis</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>1989</year>
).
<source>
<italic>Molecular Cloning: A Laboratory Manual</italic>
</source>
<edition>2nd Edn.</edition>
<publisher-loc>Plainview, NY</publisher-loc>
:
<publisher-name>Cold spring harbor laboratory press</publisher-name>
.</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Stecher</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.</article-title>
<source>
<italic>Mol. Biol.Evol.</italic>
</source>
<volume>28</volume>
<fpage>2731</fpage>
<lpage>2739</lpage>
.
<pub-id pub-id-type="doi">10.1093/molbev/msr121</pub-id>
<pub-id pub-id-type="pmid">21546353</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="book">
<collab>USEPA</collab>
(
<year>1996</year>
).
<source>
<italic>SW-846 Method 8015B-3rd Edn, Updates I, II, IIA and III.: Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, Superintendent of Documents.</italic>
</source>
<publisher-loc>Washington, DC</publisher-loc>
:
<publisher-name>U.S.Governement printing office</publisher-name>
.</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vainshtein</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Suzina</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Sorokin</surname>
<given-names>V.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>A new type of magnet-sensitive inclusions in cells of photosynthetic purple bacteria.</article-title>
<source>
<italic>Sys. Appl. Microbiol.</italic>
</source>
<volume>20</volume>
<fpage>182</fpage>
<lpage>186</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0723-2020(97)80064-1</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Venkidusamy</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Megharaj</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Marzorati</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lockington</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Naidu</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2016</year>
).
<article-title>Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes.</article-title>
<source>
<italic>Sci. Total Environ.</italic>
</source>
<volume>539</volume>
<fpage>61</fpage>
<lpage>69</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.scitotenv.2015.08.098</pub-id>
<pub-id pub-id-type="pmid">26360455</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Venkidusamy</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Megharaj</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Schröder</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Karouta</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Mohan</surname>
<given-names>S. V.</given-names>
</name>
<name>
<surname>Naidu</surname>
<given-names>R.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Electron transport through electrically conductive nanofilaments in
<italic>Rhodopseudomonas palustris</italic>
strain RP2.</article-title>
<source>
<italic>RSC Adv.</italic>
</source>
<volume>5</volume>
<fpage>100790</fpage>
<lpage>100798</lpage>
.
<pub-id pub-id-type="doi">10.1039/C5RA08742B</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weisburg</surname>
<given-names>W. G.</given-names>
</name>
<name>
<surname>Barns</surname>
<given-names>S. M.</given-names>
</name>
<name>
<surname>Pelletier</surname>
<given-names>D. A.</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>D. J.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>16S ribosomal DNA amplification for phylogenetic study.</article-title>
<source>
<italic>J. Bacteriol.</italic>
</source>
<volume>173</volume>
<fpage>697</fpage>
<lpage>703</lpage>
.
<pub-id pub-id-type="pmid">1987160</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Whittenbury</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>McLee</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>1967</year>
).
<article-title>
<italic>Rhodopseudomonas palustris</italic>
and Rh. viridis—photosynthetic budding bacteria.</article-title>
<source>
<italic>Arch. Mikrobiol.</italic>
</source>
<volume>59</volume>
<fpage>324</fpage>
<lpage>334</lpage>
.
<pub-id pub-id-type="doi">10.1007/BF00406346</pub-id>
<pub-id pub-id-type="pmid">5602470</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wrighton</surname>
<given-names>K. C.</given-names>
</name>
<name>
<surname>Agbo</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Warnecke</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>K. A.</given-names>
</name>
<name>
<surname>Brodie</surname>
<given-names>E. L.</given-names>
</name>
<name>
<surname>DeSantis</surname>
<given-names>T. Z.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells.</article-title>
<source>
<italic>ISME J.</italic>
</source>
<volume>2</volume>
<fpage>1146</fpage>
<lpage>1156</lpage>
.
<pub-id pub-id-type="doi">10.1038/ismej.2008.48</pub-id>
<pub-id pub-id-type="pmid">18769460</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xing</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Regan</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Electricity generation by
<italic>Rhodopseudomonas palustris</italic>
DX-1.</article-title>
<source>
<italic>Environ. Sci. Technol.</italic>
</source>
<volume>42</volume>
<fpage>4146</fpage>
<lpage>4151</lpage>
.
<pub-id pub-id-type="doi">10.1021/es800312v</pub-id>
<pub-id pub-id-type="pmid">18589979</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>S.-J.</given-names>
</name>
</person-group>
(
<year>2002</year>
).
<article-title>
<italic>Rhodopseudomonas faecalis</italic>
sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces.</article-title>
<source>
<italic>Inten. J. Sys. Evol. Microbiol.</italic>
</source>
<volume>52</volume>
<fpage>2055</fpage>
<lpage>2060</lpage>
.
<pub-id pub-id-type="doi">10.1099/00207713-52-6-2055</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zuo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Regan</surname>
<given-names>J. M.</given-names>
</name>
<name>
<surname>Logan</surname>
<given-names>B. E.</given-names>
</name>
</person-group>
(
<year>2008</year>
).
<article-title>Isolation of the exoelectrogenic bacterium
<italic>Ochrobactrum anthropi</italic>
YZ-1 by using a U-tube microbial fuel cell.</article-title>
<source>
<italic>Appl. Environ. Microbiol.</italic>
</source>
<volume>74</volume>
<fpage>3130</fpage>
<lpage>3137</lpage>
.
<pub-id pub-id-type="doi">10.1128/AEM.02732-07</pub-id>
<pub-id pub-id-type="pmid">18359834</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000920 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000920 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021