Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0000910 ( Pmc/Corpus ); précédent : 0000909; suivant : 0000911 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen</title>
<author>
<name sortKey="Yamaoka, Yutaro" sort="Yamaoka, Yutaro" uniqKey="Yamaoka Y" first="Yutaro" last="Yamaoka">Yutaro Yamaoka</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Virology III, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Virology I, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsunaga, Satoko" sort="Matsunaga, Satoko" uniqKey="Matsunaga S" first="Satoko" last="Matsunaga">Satoko Matsunaga</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsushima, Yuki" sort="Matsushima, Yuki" uniqKey="Matsushima Y" first="Yuki" last="Matsushima">Yuki Matsushima</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>Division of Virology, Kawasaki City Institute for Public Health</institution>
<country>Kawasaki, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuroyama, Hiroyuki" sort="Kuroyama, Hiroyuki" uniqKey="Kuroyama H" first="Hiroyuki" last="Kuroyama">Hiroyuki Kuroyama</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kimura, Hirokazu" sort="Kimura, Hirokazu" uniqKey="Kimura H" first="Hirokazu" last="Kimura">Hirokazu Kimura</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Infectious Disease Surveillance Center, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Takeda, Makoto" sort="Takeda, Makoto" uniqKey="Takeda M" first="Makoto" last="Takeda">Makoto Takeda</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Virology III, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chimuro, Tomoyuki" sort="Chimuro, Tomoyuki" uniqKey="Chimuro T" first="Tomoyuki" last="Chimuro">Tomoyuki Chimuro</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryo, Akihide" sort="Ryo, Akihide" uniqKey="Ryo A" first="Akihide" last="Ryo">Akihide Ryo</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27148198</idno>
<idno type="pmc">4837155</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4837155</idno>
<idno type="RBID">PMC:4837155</idno>
<idno type="doi">10.3389/fmicb.2016.00509</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000091</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000091</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen</title>
<author>
<name sortKey="Yamaoka, Yutaro" sort="Yamaoka, Yutaro" uniqKey="Yamaoka Y" first="Yutaro" last="Yamaoka">Yutaro Yamaoka</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff2">
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsuyama, Shutoku" sort="Matsuyama, Shutoku" uniqKey="Matsuyama S" first="Shutoku" last="Matsuyama">Shutoku Matsuyama</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Virology III, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Fukushi, Shuetsu" sort="Fukushi, Shuetsu" uniqKey="Fukushi S" first="Shuetsu" last="Fukushi">Shuetsu Fukushi</name>
<affiliation>
<nlm:aff id="aff4">
<institution>Department of Virology I, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsunaga, Satoko" sort="Matsunaga, Satoko" uniqKey="Matsunaga S" first="Satoko" last="Matsunaga">Satoko Matsunaga</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Matsushima, Yuki" sort="Matsushima, Yuki" uniqKey="Matsushima Y" first="Yuki" last="Matsushima">Yuki Matsushima</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff5">
<institution>Division of Virology, Kawasaki City Institute for Public Health</institution>
<country>Kawasaki, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kuroyama, Hiroyuki" sort="Kuroyama, Hiroyuki" uniqKey="Kuroyama H" first="Hiroyuki" last="Kuroyama">Hiroyuki Kuroyama</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Kimura, Hirokazu" sort="Kimura, Hirokazu" uniqKey="Kimura H" first="Hirokazu" last="Kimura">Hirokazu Kimura</name>
<affiliation>
<nlm:aff id="aff6">
<institution>Infectious Disease Surveillance Center, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Takeda, Makoto" sort="Takeda, Makoto" uniqKey="Takeda M" first="Makoto" last="Takeda">Makoto Takeda</name>
<affiliation>
<nlm:aff id="aff3">
<institution>Department of Virology III, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Chimuro, Tomoyuki" sort="Chimuro, Tomoyuki" uniqKey="Chimuro T" first="Tomoyuki" last="Chimuro">Tomoyuki Chimuro</name>
<affiliation>
<nlm:aff id="aff2">
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ryo, Akihide" sort="Ryo, Akihide" uniqKey="Ryo A" first="Akihide" last="Ryo">Akihide Ryo</name>
<affiliation>
<nlm:aff id="aff1">
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in Microbiology</title>
<idno type="eISSN">1664-302X</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Protein nativity is one of the most critical factors for the quality of antigens used as immunogens and the reactivities of the resultant antibodies. The preparation and purification of native viral antigens in conventional cell-based protein expression systems are often accompanied by technical hardships. These challenges are attributable mainly to protein aggregation and insolubility during expression and purification, as well as to very low expression levels associated with the toxicity of some viral proteins. Here, we describe a novel approach for the production of monoclonal antibodies (mAbs) against nucleocapsid protein (NP) of the Middle East respiratory syndrome coronavirus (MERS-CoV). Using a wheat germ cell-free protein synthesis system, we successfully prepared large amounts of MERS-CoV NP antigen in a state that was highly soluble and intact for immunization. Following mouse immunization and hybridoma generation, we selected seven hybridoma clones that produced mAbs with exclusive reactivity against MERS-CoV NP. Epitope mapping and subsequent bioinformatic analysis revealed that these mAbs recognized epitopes located within relatively highly conserved regions of the MERS-CoV amino-acid sequence. Consistently, the mAbs exhibited no obvious cross-reactivity with NPs derived from other related viruses, including SARS coronavirus. After determining the optimal combinations of these mAbs, we developed an enzyme-linked immunosorbent assay and a rapid immunochromatographic antigen detection test that can be reliably used for laboratory diagnosis of MERS-CoV. Thus, this study provides strong evidence that the wheat germ cell-free system is useful for the production of diagnostic mAbs against emerging pathogens.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Banik, G R" uniqKey="Banik G">G. R. Banik</name>
</author>
<author>
<name sortKey="Khandaker, G" uniqKey="Khandaker G">G. Khandaker</name>
</author>
<author>
<name sortKey="Rashid, H" uniqKey="Rashid H">H. Rashid</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chang, C" uniqKey="Chang C">C. Chang</name>
</author>
<author>
<name sortKey="Hou, M H" uniqKey="Hou M">M.-H. Hou</name>
</author>
<author>
<name sortKey="Chang, C F" uniqKey="Chang C">C.-F. Chang</name>
</author>
<author>
<name sortKey="Hsiao, C D" uniqKey="Hsiao C">C.-D. Hsiao</name>
</author>
<author>
<name sortKey="Huang, T" uniqKey="Huang T">T. Huang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, C Y" uniqKey="Chen C">C.-Y. Chen</name>
</author>
<author>
<name sortKey="Chang, C K" uniqKey="Chang C">C.-K. Chang</name>
</author>
<author>
<name sortKey="Chang, Y W" uniqKey="Chang Y">Y.-W. Chang</name>
</author>
<author>
<name sortKey="Sue, S C" uniqKey="Sue S">S.-C. Sue</name>
</author>
<author>
<name sortKey="Bai, H I" uniqKey="Bai H">H.-I. Bai</name>
</author>
<author>
<name sortKey="Riang, L" uniqKey="Riang L">L. Riang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Chan, K H" uniqKey="Chan K">K.-H. Chan</name>
</author>
<author>
<name sortKey="Kang, Y" uniqKey="Kang Y">Y. Kang</name>
</author>
<author>
<name sortKey="Chen, H" uniqKey="Chen H">H. Chen</name>
</author>
<author>
<name sortKey="Luk, H K" uniqKey="Luk H">H. K. Luk</name>
</author>
<author>
<name sortKey="Poon, R W" uniqKey="Poon R">R. W. Poon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cheng, Y S E" uniqKey="Cheng Y">Y.-S. E. Cheng</name>
</author>
<author>
<name sortKey="Lo, K H" uniqKey="Lo K">K.-H. Lo</name>
</author>
<author>
<name sortKey="Hsu, H H" uniqKey="Hsu H">H.-H. Hsu</name>
</author>
<author>
<name sortKey="Shao, Y M" uniqKey="Shao Y">Y.-M. Shao</name>
</author>
<author>
<name sortKey="Yang, W B" uniqKey="Yang W">W.-B. Yang</name>
</author>
<author>
<name sortKey="Lin, C H" uniqKey="Lin C">C.-H. Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V. M. Corman</name>
</author>
<author>
<name sortKey="Albarrak, A M" uniqKey="Albarrak A">A. M. Albarrak</name>
</author>
<author>
<name sortKey="Omrani, A S" uniqKey="Omrani A">A. S. Omrani</name>
</author>
<author>
<name sortKey="Albarrak, M M" uniqKey="Albarrak M">M. M. Albarrak</name>
</author>
<author>
<name sortKey="Farah, M E" uniqKey="Farah M">M. E. Farah</name>
</author>
<author>
<name sortKey="Almasri, M" uniqKey="Almasri M">M. Almasri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V. M. Corman</name>
</author>
<author>
<name sortKey="Eckerle, I" uniqKey="Eckerle I">I. Eckerle</name>
</author>
<author>
<name sortKey="Bleicker, T" uniqKey="Bleicker T">T. Bleicker</name>
</author>
<author>
<name sortKey="Zaki, A" uniqKey="Zaki A">A. Zaki</name>
</author>
<author>
<name sortKey="Landt, O" uniqKey="Landt O">O. Landt</name>
</author>
<author>
<name sortKey="Eschbach Bludau, M" uniqKey="Eschbach Bludau M">M. Eschbach-Bludau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V. M. Corman</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M. A. Müller</name>
</author>
<author>
<name sortKey="Costabel, U" uniqKey="Costabel U">U. Costabel</name>
</author>
<author>
<name sortKey="Timm, J" uniqKey="Timm J">J. Timm</name>
</author>
<author>
<name sortKey="Binger, T" uniqKey="Binger T">T. Binger</name>
</author>
<author>
<name sortKey="Meyer, B" uniqKey="Meyer B">B. Meyer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Das, D" uniqKey="Das D">D. Das</name>
</author>
<author>
<name sortKey="Suresh, M R" uniqKey="Suresh M">M. R. Suresh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Groot, R J" uniqKey="De Groot R">R. J. de Groot</name>
</author>
<author>
<name sortKey="Baker, S C" uniqKey="Baker S">S. C. Baker</name>
</author>
<author>
<name sortKey="Baric, R S" uniqKey="Baric R">R. S. Baric</name>
</author>
<author>
<name sortKey="Brown, C S" uniqKey="Brown C">C. S. Brown</name>
</author>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C. Drosten</name>
</author>
<author>
<name sortKey="Enjuanes, L" uniqKey="Enjuanes L">L. Enjuanes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Drosten, C" uniqKey="Drosten C">C. Drosten</name>
</author>
<author>
<name sortKey="Seilmaier, M" uniqKey="Seilmaier M">M. Seilmaier</name>
</author>
<author>
<name sortKey="Corman, V M" uniqKey="Corman V">V. M. Corman</name>
</author>
<author>
<name sortKey="Hartmann, W" uniqKey="Hartmann W">W. Hartmann</name>
</author>
<author>
<name sortKey="Scheible, G" uniqKey="Scheible G">G. Scheible</name>
</author>
<author>
<name sortKey="Sack, S" uniqKey="Sack S">S. Sack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edgar, R C" uniqKey="Edgar R">R. C. Edgar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Endo, Y" uniqKey="Endo Y">Y. Endo</name>
</author>
<author>
<name sortKey="Sawasaki, T" uniqKey="Sawasaki T">T. Sawasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Endo, Y" uniqKey="Endo Y">Y. Endo</name>
</author>
<author>
<name sortKey="Sawasaki, T" uniqKey="Sawasaki T">T. Sawasaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gelderblom, H R" uniqKey="Gelderblom H">H. R. Gelderblom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goshima, N" uniqKey="Goshima N">N. Goshima</name>
</author>
<author>
<name sortKey="Kawamura, Y" uniqKey="Kawamura Y">Y. Kawamura</name>
</author>
<author>
<name sortKey="Fukumoto, A" uniqKey="Fukumoto A">A. Fukumoto</name>
</author>
<author>
<name sortKey="Miura, A" uniqKey="Miura A">A. Miura</name>
</author>
<author>
<name sortKey="Honma, R" uniqKey="Honma R">R. Honma</name>
</author>
<author>
<name sortKey="Satoh, R" uniqKey="Satoh R">R. Satoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guex, N" uniqKey="Guex N">N. Guex</name>
</author>
<author>
<name sortKey="Peitsch, M C" uniqKey="Peitsch M">M. C. Peitsch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="He, Q" uniqKey="He Q">Q. He</name>
</author>
<author>
<name sortKey="Du, Q" uniqKey="Du Q">Q. Du</name>
</author>
<author>
<name sortKey="Lau, S" uniqKey="Lau S">S. Lau</name>
</author>
<author>
<name sortKey="Manopo, I" uniqKey="Manopo I">I. Manopo</name>
</author>
<author>
<name sortKey="Lu, L" uniqKey="Lu L">L. Lu</name>
</author>
<author>
<name sortKey="Chan, S W" uniqKey="Chan S">S.-W. Chan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huang, Q" uniqKey="Huang Q">Q. Huang</name>
</author>
<author>
<name sortKey="Yu, L" uniqKey="Yu L">L. Yu</name>
</author>
<author>
<name sortKey="Petros, A M" uniqKey="Petros A">A. M. Petros</name>
</author>
<author>
<name sortKey="Gunasekera, A" uniqKey="Gunasekera A">A. Gunasekera</name>
</author>
<author>
<name sortKey="Liu, Z" uniqKey="Liu Z">Z. Liu</name>
</author>
<author>
<name sortKey="Xu, N" uniqKey="Xu N">N. Xu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, L" uniqKey="Jiang L">L. Jiang</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Zuo, T" uniqKey="Zuo T">T. Zuo</name>
</author>
<author>
<name sortKey="Shi, X" uniqKey="Shi X">X. Shi</name>
</author>
<author>
<name sortKey="Poon, K M V" uniqKey="Poon K">K.-M. V. Poon</name>
</author>
<author>
<name sortKey="Wu, Y" uniqKey="Wu Y">Y. Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kapoor, M" uniqKey="Kapoor M">M. Kapoor</name>
</author>
<author>
<name sortKey="Pringle, K" uniqKey="Pringle K">K. Pringle</name>
</author>
<author>
<name sortKey="Kumar, A" uniqKey="Kumar A">A. Kumar</name>
</author>
<author>
<name sortKey="Dearth, S" uniqKey="Dearth S">S. Dearth</name>
</author>
<author>
<name sortKey="Liu, L" uniqKey="Liu L">L. Liu</name>
</author>
<author>
<name sortKey="Lovchik, J" uniqKey="Lovchik J">J. Lovchik</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimura, K" uniqKey="Kimura K">K. Kimura</name>
</author>
<author>
<name sortKey="Nozaki, N" uniqKey="Nozaki N">N. Nozaki</name>
</author>
<author>
<name sortKey="Enomoto, T" uniqKey="Enomoto T">T. Enomoto</name>
</author>
<author>
<name sortKey="Tanaka, M" uniqKey="Tanaka M">M. Tanaka</name>
</author>
<author>
<name sortKey="Kikuchi, A" uniqKey="Kikuchi A">A. Kikuchi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kimura, K" uniqKey="Kimura K">K. Kimura</name>
</author>
<author>
<name sortKey="Nozaki, N" uniqKey="Nozaki N">N. Nozaki</name>
</author>
<author>
<name sortKey="Saijo, M" uniqKey="Saijo M">M. Saijo</name>
</author>
<author>
<name sortKey="Kikuchi, A" uniqKey="Kikuchi A">A. Kikuchi</name>
</author>
<author>
<name sortKey="Ui, M" uniqKey="Ui M">M. Ui</name>
</author>
<author>
<name sortKey="Enomoto, T" uniqKey="Enomoto T">T. Enomoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kogaki, H" uniqKey="Kogaki H">H. Kogaki</name>
</author>
<author>
<name sortKey="Uchida, Y" uniqKey="Uchida Y">Y. Uchida</name>
</author>
<author>
<name sortKey="Fujii, N" uniqKey="Fujii N">N. Fujii</name>
</author>
<author>
<name sortKey="Kurano, Y" uniqKey="Kurano Y">Y. Kurano</name>
</author>
<author>
<name sortKey="Miyake, K" uniqKey="Miyake K">K. Miyake</name>
</author>
<author>
<name sortKey="Kido, Y" uniqKey="Kido Y">Y. Kido</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lau, S K P" uniqKey="Lau S">S. K. P. Lau</name>
</author>
<author>
<name sortKey="Woo, P C Y" uniqKey="Woo P">P. C. Y. Woo</name>
</author>
<author>
<name sortKey="Wong, B H L" uniqKey="Wong B">B. H. L. Wong</name>
</author>
<author>
<name sortKey="Tsoi, H W" uniqKey="Tsoi H">H.-W. Tsoi</name>
</author>
<author>
<name sortKey="Woo, G K S" uniqKey="Woo G">G. K. S. Woo</name>
</author>
<author>
<name sortKey="Poon, R W S" uniqKey="Poon R">R. W. S. Poon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leenaars, M" uniqKey="Leenaars M">M. Leenaars</name>
</author>
<author>
<name sortKey="Hendriksen, C F M" uniqKey="Hendriksen C">C. F. M. Hendriksen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y. Li</name>
</author>
<author>
<name sortKey="Wan, Y" uniqKey="Wan Y">Y. Wan</name>
</author>
<author>
<name sortKey="Liu, P" uniqKey="Liu P">P. Liu</name>
</author>
<author>
<name sortKey="Zhao, J" uniqKey="Zhao J">J. Zhao</name>
</author>
<author>
<name sortKey="Lu, G" uniqKey="Lu G">G. Lu</name>
</author>
<author>
<name sortKey="Qi, J" uniqKey="Qi J">J. Qi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liang, F Y" uniqKey="Liang F">F.-Y. Liang</name>
</author>
<author>
<name sortKey="Lin, L C" uniqKey="Lin L">L.-C. Lin</name>
</author>
<author>
<name sortKey="Ying, T H" uniqKey="Ying T">T.-H. Ying</name>
</author>
<author>
<name sortKey="Yao, C W" uniqKey="Yao C">C.-W. Yao</name>
</author>
<author>
<name sortKey="Tang, T K" uniqKey="Tang T">T.-K. Tang</name>
</author>
<author>
<name sortKey="Chen, Y W" uniqKey="Chen Y">Y.-W. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mancia, F" uniqKey="Mancia F">F. Mancia</name>
</author>
<author>
<name sortKey="Brenner Morton, S" uniqKey="Brenner Morton S">S. Brenner-Morton</name>
</author>
<author>
<name sortKey="Siegel, R" uniqKey="Siegel R">R. Siegel</name>
</author>
<author>
<name sortKey="Assur, Z" uniqKey="Assur Z">Z. Assur</name>
</author>
<author>
<name sortKey="Sun, Y" uniqKey="Sun Y">Y. Sun</name>
</author>
<author>
<name sortKey="Schieren, I" uniqKey="Schieren I">I. Schieren</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsunaga, S" uniqKey="Matsunaga S">S. Matsunaga</name>
</author>
<author>
<name sortKey="Kawakami, S" uniqKey="Kawakami S">S. Kawakami</name>
</author>
<author>
<name sortKey="Matsuo, I" uniqKey="Matsuo I">I. Matsuo</name>
</author>
<author>
<name sortKey="Okayama, A" uniqKey="Okayama A">A. Okayama</name>
</author>
<author>
<name sortKey="Tsukagoshi, H" uniqKey="Tsukagoshi H">H. Tsukagoshi</name>
</author>
<author>
<name sortKey="Kudoh, A" uniqKey="Kudoh A">A. Kudoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matsunaga, S" uniqKey="Matsunaga S">S. Matsunaga</name>
</author>
<author>
<name sortKey="Masaoka, T" uniqKey="Masaoka T">T. Masaoka</name>
</author>
<author>
<name sortKey="Sawasaki, T" uniqKey="Sawasaki T">T. Sawasaki</name>
</author>
<author>
<name sortKey="Morishita, R" uniqKey="Morishita R">R. Morishita</name>
</author>
<author>
<name sortKey="Iwatani, Y" uniqKey="Iwatani Y">Y. Iwatani</name>
</author>
<author>
<name sortKey="Tatsumi, M" uniqKey="Tatsumi M">M. Tatsumi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcbride, R" uniqKey="Mcbride R">R. McBride</name>
</author>
<author>
<name sortKey="Van Zyl, M" uniqKey="Van Zyl M">M. van Zyl</name>
</author>
<author>
<name sortKey="Fielding, B C" uniqKey="Fielding B">B. C. Fielding</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miyakawa, K" uniqKey="Miyakawa K">K. Miyakawa</name>
</author>
<author>
<name sortKey="Matsunaga, S" uniqKey="Matsunaga S">S. Matsunaga</name>
</author>
<author>
<name sortKey="Watashi, K" uniqKey="Watashi K">K. Watashi</name>
</author>
<author>
<name sortKey="Sugiyama, M" uniqKey="Sugiyama M">M. Sugiyama</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H. Kimura</name>
</author>
<author>
<name sortKey="Yamamoto, N" uniqKey="Yamamoto N">N. Yamamoto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishi, M" uniqKey="Nishi M">M. Nishi</name>
</author>
<author>
<name sortKey="Akutsu, H" uniqKey="Akutsu H">H. Akutsu</name>
</author>
<author>
<name sortKey="Kudoh, A" uniqKey="Kudoh A">A. Kudoh</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H. Kimura</name>
</author>
<author>
<name sortKey="Yamamoto, N" uniqKey="Yamamoto N">N. Yamamoto</name>
</author>
<author>
<name sortKey="Umezawa, A" uniqKey="Umezawa A">A. Umezawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pettersen, E F" uniqKey="Pettersen E">E. F. Pettersen</name>
</author>
<author>
<name sortKey="Goddard, T D" uniqKey="Goddard T">T. D. Goddard</name>
</author>
<author>
<name sortKey="Huang, C C" uniqKey="Huang C">C. C. Huang</name>
</author>
<author>
<name sortKey="Couch, G S" uniqKey="Couch G">G. S. Couch</name>
</author>
<author>
<name sortKey="Greenblatt, D M" uniqKey="Greenblatt D">D. M. Greenblatt</name>
</author>
<author>
<name sortKey="Meng, E C" uniqKey="Meng E">E. C. Meng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V. S. Raj</name>
</author>
<author>
<name sortKey="Mou, H" uniqKey="Mou H">H. Mou</name>
</author>
<author>
<name sortKey="Smits, S L" uniqKey="Smits S">S. L. Smits</name>
</author>
<author>
<name sortKey="Dekkers, D H W" uniqKey="Dekkers D">D. H. W. Dekkers</name>
</author>
<author>
<name sortKey="Muller, M A" uniqKey="Muller M">M. A. Müller</name>
</author>
<author>
<name sortKey="Dijkman, R" uniqKey="Dijkman R">R. Dijkman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schein, C H" uniqKey="Schein C">C. H. Schein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Senchi, K" uniqKey="Senchi K">K. Senchi</name>
</author>
<author>
<name sortKey="Matsunaga, S" uniqKey="Matsunaga S">S. Matsunaga</name>
</author>
<author>
<name sortKey="Hasegawa, H" uniqKey="Hasegawa H">H. Hasegawa</name>
</author>
<author>
<name sortKey="Kimura, H" uniqKey="Kimura H">H. Kimura</name>
</author>
<author>
<name sortKey="Ryo, A" uniqKey="Ryo A">A. Ryo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirato, K" uniqKey="Shirato K">K. Shirato</name>
</author>
<author>
<name sortKey="Kawase, M" uniqKey="Kawase M">M. Kawase</name>
</author>
<author>
<name sortKey="Matsuyama, S" uniqKey="Matsuyama S">S. Matsuyama</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shirato, K" uniqKey="Shirato K">K. Shirato</name>
</author>
<author>
<name sortKey="Yano, T" uniqKey="Yano T">T. Yano</name>
</author>
<author>
<name sortKey="Senba, S" uniqKey="Senba S">S. Senba</name>
</author>
<author>
<name sortKey="Akachi, S" uniqKey="Akachi S">S. Akachi</name>
</author>
<author>
<name sortKey="Kobayashi, T" uniqKey="Kobayashi T">T. Kobayashi</name>
</author>
<author>
<name sortKey="Nishinaka, T" uniqKey="Nishinaka T">T. Nishinaka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, D" uniqKey="Song D">D. Song</name>
</author>
<author>
<name sortKey="Ha, G" uniqKey="Ha G">G. Ha</name>
</author>
<author>
<name sortKey="Serhan, W" uniqKey="Serhan W">W. Serhan</name>
</author>
<author>
<name sortKey="Eltahir, Y" uniqKey="Eltahir Y">Y. Eltahir</name>
</author>
<author>
<name sortKey="Yusof, M" uniqKey="Yusof M">M. Yusof</name>
</author>
<author>
<name sortKey="Hashem, F" uniqKey="Hashem F">F. Hashem</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, F" uniqKey="Song F">F. Song</name>
</author>
<author>
<name sortKey="Fux, R" uniqKey="Fux R">R. Fux</name>
</author>
<author>
<name sortKey="Provacia, L B" uniqKey="Provacia L">L. B. Provacia</name>
</author>
<author>
<name sortKey="Volz, A" uniqKey="Volz A">A. Volz</name>
</author>
<author>
<name sortKey="Eickmann, M" uniqKey="Eickmann M">M. Eickmann</name>
</author>
<author>
<name sortKey="Becker, S" uniqKey="Becker S">S. Becker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stills, H F" uniqKey="Stills H">H. F. Stills</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takai, K" uniqKey="Takai K">K. Takai</name>
</author>
<author>
<name sortKey="Endo, Y" uniqKey="Endo Y">Y. Endo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takai, K" uniqKey="Takai K">K. Takai</name>
</author>
<author>
<name sortKey="Sawasaki, T" uniqKey="Sawasaki T">T. Sawasaki</name>
</author>
<author>
<name sortKey="Endo, Y" uniqKey="Endo Y">Y. Endo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takeda, H" uniqKey="Takeda H">H. Takeda</name>
</author>
<author>
<name sortKey="Ogasawara, T" uniqKey="Ogasawara T">T. Ogasawara</name>
</author>
<author>
<name sortKey="Ozawa, T" uniqKey="Ozawa T">T. Ozawa</name>
</author>
<author>
<name sortKey="Muraguchi, A" uniqKey="Muraguchi A">A. Muraguchi</name>
</author>
<author>
<name sortKey="Jih, P J" uniqKey="Jih P">P.-J. Jih</name>
</author>
<author>
<name sortKey="Morishita, R" uniqKey="Morishita R">R. Morishita</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tamura, K" uniqKey="Tamura K">K. Tamura</name>
</author>
<author>
<name sortKey="Peterson, D" uniqKey="Peterson D">D. Peterson</name>
</author>
<author>
<name sortKey="Peterson, N" uniqKey="Peterson N">N. Peterson</name>
</author>
<author>
<name sortKey="Stecher, G" uniqKey="Stecher G">G. Stecher</name>
</author>
<author>
<name sortKey="Nei, M" uniqKey="Nei M">M. Nei</name>
</author>
<author>
<name sortKey="Kumar, S" uniqKey="Kumar S">S. Kumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, X C" uniqKey="Tang X">X.-C. Tang</name>
</author>
<author>
<name sortKey="Agnihothram, S S" uniqKey="Agnihothram S">S. S. Agnihothram</name>
</author>
<author>
<name sortKey="Jiao, Y" uniqKey="Jiao Y">Y. Jiao</name>
</author>
<author>
<name sortKey="Stanhope, J" uniqKey="Stanhope J">J. Stanhope</name>
</author>
<author>
<name sortKey="Graham, R L" uniqKey="Graham R">R. L. Graham</name>
</author>
<author>
<name sortKey="Peterson, E C" uniqKey="Peterson E">E. C. Peterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="De Graaf, M" uniqKey="De Graaf M">M. de Graaf</name>
</author>
<author>
<name sortKey="Lauber, C" uniqKey="Lauber C">C. Lauber</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T. M. Bestebroer</name>
</author>
<author>
<name sortKey="Raj, V S" uniqKey="Raj V">V. S. Raj</name>
</author>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A. M. Zaki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Webb, B" uniqKey="Webb B">B. Webb</name>
</author>
<author>
<name sortKey="Sali, A" uniqKey="Sali A">A. Sali</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wernery, U" uniqKey="Wernery U">U. Wernery</name>
</author>
<author>
<name sortKey="Ei Rasoul, I H" uniqKey="Ei Rasoul I">I. H. Ei Rasoul</name>
</author>
<author>
<name sortKey="Wong, E Y" uniqKey="Wong E">E. Y. Wong</name>
</author>
<author>
<name sortKey="Joseph, M" uniqKey="Joseph M">M. Joseph</name>
</author>
<author>
<name sortKey="Chen, Y" uniqKey="Chen Y">Y. Chen</name>
</author>
<author>
<name sortKey="Jose, S" uniqKey="Jose S">S. Jose</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D. Xu</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, J" uniqKey="Yang J">J. Yang</name>
</author>
<author>
<name sortKey="Yan, R" uniqKey="Yan R">R. Yan</name>
</author>
<author>
<name sortKey="Roy, A" uniqKey="Roy A">A. Roy</name>
</author>
<author>
<name sortKey="Xu, D" uniqKey="Xu D">D. Xu</name>
</author>
<author>
<name sortKey="Poisson, J" uniqKey="Poisson J">J. Poisson</name>
</author>
<author>
<name sortKey="Zhang, Y" uniqKey="Zhang Y">Y. Zhang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, O O" uniqKey="Yang O">O. O. Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, F" uniqKey="Yu F">F. Yu</name>
</author>
<author>
<name sortKey="Le, M Q" uniqKey="Le M">M. Q. Le</name>
</author>
<author>
<name sortKey="Inoue, S" uniqKey="Inoue S">S. Inoue</name>
</author>
<author>
<name sortKey="Thai, H T C" uniqKey="Thai H">H. T. C. Thai</name>
</author>
<author>
<name sortKey="Hasebe, F" uniqKey="Hasebe F">F. Hasebe</name>
</author>
<author>
<name sortKey="Del Carmen, P M" uniqKey="Del Carmen P">P. M. Del Carmen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaki, A M" uniqKey="Zaki A">A. M. Zaki</name>
</author>
<author>
<name sortKey="Van Boheemen, S" uniqKey="Van Boheemen S">S. van Boheemen</name>
</author>
<author>
<name sortKey="Bestebroer, T M" uniqKey="Bestebroer T">T. M. Bestebroer</name>
</author>
<author>
<name sortKey="Osterhaus, A D M E" uniqKey="Osterhaus A">A. D. M. E. Osterhaus</name>
</author>
<author>
<name sortKey="Fouchier, R A M" uniqKey="Fouchier R">R. A. M. Fouchier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, N" uniqKey="Zhang N">N. Zhang</name>
</author>
<author>
<name sortKey="Jiang, S" uniqKey="Jiang S">S. Jiang</name>
</author>
<author>
<name sortKey="Du, L" uniqKey="Du L">L. Du</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Front Microbiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Front Microbiol</journal-id>
<journal-id journal-id-type="publisher-id">Front. Microbiol.</journal-id>
<journal-title-group>
<journal-title>Frontiers in Microbiology</journal-title>
</journal-title-group>
<issn pub-type="epub">1664-302X</issn>
<publisher>
<publisher-name>Frontiers Media S.A.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27148198</article-id>
<article-id pub-id-type="pmc">4837155</article-id>
<article-id pub-id-type="doi">10.3389/fmicb.2016.00509</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Microbiology</subject>
<subj-group>
<subject>Original Research</subject>
</subj-group>
</subj-group>
</article-categories>
<title-group>
<article-title>Development of Monoclonal Antibody and Diagnostic Test for Middle East Respiratory Syndrome Coronavirus Using Cell-Free Synthesized Nucleocapsid Antigen</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Yamaoka</surname>
<given-names>Yutaro</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matsuyama</surname>
<given-names>Shutoku</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/326409/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Fukushi</surname>
<given-names>Shuetsu</given-names>
</name>
<xref ref-type="aff" rid="aff4">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matsunaga</surname>
<given-names>Satoko</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Matsushima</surname>
<given-names>Yuki</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff5">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kuroyama</surname>
<given-names>Hiroyuki</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/326404/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Kimura</surname>
<given-names>Hirokazu</given-names>
</name>
<xref ref-type="aff" rid="aff6">
<sup>6</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/17329/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Takeda</surname>
<given-names>Makoto</given-names>
</name>
<xref ref-type="aff" rid="aff3">
<sup>3</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/17278/overview"></uri>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Chimuro</surname>
<given-names>Tomoyuki</given-names>
</name>
<xref ref-type="aff" rid="aff2">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Ryo</surname>
<given-names>Akihide</given-names>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<xref ref-type="author-notes" rid="fn001">
<sup>*</sup>
</xref>
<uri xlink:type="simple" xlink:href="http://loop.frontiersin.org/people/14964/overview"></uri>
</contrib>
</contrib-group>
<aff id="aff1">
<sup>1</sup>
<institution>Department of Microbiology, School of Medicine, Yokohama City University</institution>
<country>Yokohama, Japan</country>
</aff>
<aff id="aff2">
<sup>2</sup>
<institution>Isehara Research Laboratory, Technology and Development Division, Kanto Chemical Co., Inc.</institution>
<country>Isehara, Japan</country>
</aff>
<aff id="aff3">
<sup>3</sup>
<institution>Department of Virology III, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</aff>
<aff id="aff4">
<sup>4</sup>
<institution>Department of Virology I, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</aff>
<aff id="aff5">
<sup>5</sup>
<institution>Division of Virology, Kawasaki City Institute for Public Health</institution>
<country>Kawasaki, Japan</country>
</aff>
<aff id="aff6">
<sup>6</sup>
<institution>Infectious Disease Surveillance Center, National Institute of Infectious Diseases</institution>
<country>Musashimurayama, Japan</country>
</aff>
<author-notes>
<fn fn-type="edited-by">
<p>Edited by:
<italic>Akio Adachi, Tokushima University Graduate School, Japan</italic>
</p>
</fn>
<fn fn-type="edited-by">
<p>Reviewed by:
<italic>Tianlei Ying, Fudan University, China; Masatsugu Obuchi, Toyama Institute of Health, Japan; Kazuya Kabayama, Osaka University, Japan</italic>
</p>
</fn>
<corresp id="fn001">*Correspondence:
<italic>Akihide Ryo,
<email xlink:type="simple">aryo@yokohama-cu.ac.jp</email>
</italic>
</corresp>
<fn fn-type="other" id="fn002">
<p>This article was submitted to Virology, a section of the journal Frontiers in Microbiology</p>
</fn>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>4</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="collection">
<year>2016</year>
</pub-date>
<volume>7</volume>
<elocation-id>509</elocation-id>
<history>
<date date-type="received">
<day>09</day>
<month>2</month>
<year>2016</year>
</date>
<date date-type="accepted">
<day>29</day>
<month>3</month>
<year>2016</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2016 Yamaoka, Matsuyama, Fukushi, Matsunaga, Matsushima, Kuroyama, Kimura, Takeda, Chimuro and Ryo.</copyright-statement>
<copyright-year>2016</copyright-year>
<copyright-holder>Yamaoka, Matsuyama, Fukushi, Matsunaga, Matsushima, Kuroyama, Kimura, Takeda, Chimuro and Ryo</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.</license-p>
</license>
</permissions>
<abstract>
<p>Protein nativity is one of the most critical factors for the quality of antigens used as immunogens and the reactivities of the resultant antibodies. The preparation and purification of native viral antigens in conventional cell-based protein expression systems are often accompanied by technical hardships. These challenges are attributable mainly to protein aggregation and insolubility during expression and purification, as well as to very low expression levels associated with the toxicity of some viral proteins. Here, we describe a novel approach for the production of monoclonal antibodies (mAbs) against nucleocapsid protein (NP) of the Middle East respiratory syndrome coronavirus (MERS-CoV). Using a wheat germ cell-free protein synthesis system, we successfully prepared large amounts of MERS-CoV NP antigen in a state that was highly soluble and intact for immunization. Following mouse immunization and hybridoma generation, we selected seven hybridoma clones that produced mAbs with exclusive reactivity against MERS-CoV NP. Epitope mapping and subsequent bioinformatic analysis revealed that these mAbs recognized epitopes located within relatively highly conserved regions of the MERS-CoV amino-acid sequence. Consistently, the mAbs exhibited no obvious cross-reactivity with NPs derived from other related viruses, including SARS coronavirus. After determining the optimal combinations of these mAbs, we developed an enzyme-linked immunosorbent assay and a rapid immunochromatographic antigen detection test that can be reliably used for laboratory diagnosis of MERS-CoV. Thus, this study provides strong evidence that the wheat germ cell-free system is useful for the production of diagnostic mAbs against emerging pathogens.</p>
</abstract>
<kwd-group>
<kwd>MERS-coronavirus</kwd>
<kwd>nucleocapsid</kwd>
<kwd>antigen</kwd>
<kwd>detection</kwd>
<kwd>diagnosis</kwd>
<kwd>monoclonal antibody</kwd>
<kwd>cell-free protein synthesis</kwd>
</kwd-group>
<counts>
<fig-count count="9"></fig-count>
<table-count count="0"></table-count>
<equation-count count="0"></equation-count>
<ref-count count="58"></ref-count>
<page-count count="15"></page-count>
<word-count count="0"></word-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Middle East respiratory syndrome coronavirus (MERS-CoV), a novel human coronavirus, was first isolated in 2012 in the Arabian Peninsula (
<xref rid="B57" ref-type="bibr">Zaki et al., 2012</xref>
). MERS-CoV is a positive-sense, enveloped, single-stranded RNA virus of genus
<italic>Betacoronavirus</italic>
within subfamily
<italic>Coronavirinae</italic>
(
<xref rid="B10" ref-type="bibr">de Groot et al., 2013</xref>
). MERS-CoV infection often causes fever, cough, and severe pneumonia, occasionally accompanied by renal disease (
<xref rid="B1" ref-type="bibr">Banik et al., 2015</xref>
). More than 1600 laboratory-confirmed cases with high fatality rates (∼36% mortality) have been reported (
<xref rid="B52" ref-type="bibr">World Health Organization [WHO], 2016</xref>
). Because there is currently no specific antiviral drug or vaccine approved for clinical use against MERS-CoV, rapid diagnostic tests are urgently required to manage and control this virus. Indeed, rapid and specific diagnosis is essential for preventing the spread of any kind of infectious disease.</p>
<p>At present, laboratory testing for MERS-CoV is performed by quantitative reverse transcription-PCR assay (qRT-PCR) and RT-loop-mediated isothermal amplification (RT-LAMP) (
<xref rid="B7" ref-type="bibr">Corman et al., 2012a</xref>
,
<xref rid="B8" ref-type="bibr">b</xref>
;
<xref rid="B40" ref-type="bibr">Shirato et al., 2014</xref>
). These tests can detect nucleic acids derived from MERS-CoV in clinical respiratory, serum, and stool specimens. These nucleic acid-based tests require molecular techniques and specialized equipment, and are thus not suitable for point-of-care testing (POCT) or bedside diagnosis. Therefore, it is necessary to develop alternative methods that can be adapted to rapid and reliable clinical detection of MERS-CoV antigen, including enzyme-linked immunosorbent assay (ELISA) and immunochromatographic test (ICT).</p>
<p>Middle East respiratory syndrome coronavirus comprises four structural proteins: spike (S), envelope (E), membrane (M), and nucleocapsid (N) (
<xref rid="B49" ref-type="bibr">van Boheemen et al., 2012</xref>
). S protein is a major component of the viral surface that binds dipeptidyl peptidase 4 (DPP4), enabling the virus to enter and infect cells (
<xref rid="B36" ref-type="bibr">Raj et al., 2013</xref>
). Therefore, S protein is considered to be a prospective therapeutic and diagnostic target (
<xref rid="B42" ref-type="bibr">Song et al., 2013</xref>
;
<xref rid="B20" ref-type="bibr">Jiang et al., 2014</xref>
;
<xref rid="B58" ref-type="bibr">Zhang et al., 2014</xref>
;
<xref rid="B27" ref-type="bibr">Li et al., 2015</xref>
). However, because neutralizing antibodies mainly target this antigen, coronaviruses express several mutant forms of S protein in order to escape the immune response and achieve viral persistence (
<xref rid="B48" ref-type="bibr">Tang et al., 2014</xref>
). On the other hand, amino-acid mutations in N protein are much less common (
<xref rid="B51" ref-type="bibr">Wernery et al., 2015</xref>
). N protein is produced at high levels within infected cells, and is thus a promising candidate target for clinical diagnosis (
<xref rid="B25" ref-type="bibr">Lau et al., 2004</xref>
;
<xref rid="B18" ref-type="bibr">He et al., 2005</xref>
;
<xref rid="B24" ref-type="bibr">Kogaki et al., 2005</xref>
;
<xref rid="B28" ref-type="bibr">Liang et al., 2013</xref>
;
<xref rid="B4" ref-type="bibr">Chen et al., 2015</xref>
).</p>
<p>N protein functions in packaging the viral genomic RNA to form the helical nucleocapsid, as well as in viral transcription and assembly (
<xref rid="B32" ref-type="bibr">McBride et al., 2014</xref>
). It has three distinct and conserved domains: the N-terminal domain (NTD), linker region (LKR), and C-terminal domain (CTD) (
<xref rid="B32" ref-type="bibr">McBride et al., 2014</xref>
). The NTD of human coronavirus N protein contains highly conserved motifs (
<xref rid="B56" ref-type="bibr">Yu et al., 2005</xref>
;
<xref rid="B2" ref-type="bibr">Chang et al., 2014</xref>
). To prevent cross-reactivity with other human coronaviruses and specifically detect MERS-CoV, it is necessary to develop antibodies that target non-conserved regions. However, the viral structural protein is generally unstable and insoluble in its monomeric or oligomeric forms, making it difficult to prepare antigen for immunization. Moreover, refolding of solubilized viral proteins by denaturing agents often results in misfolding and functional loss (
<xref rid="B37" ref-type="bibr">Schein, 1991</xref>
). To overcome these problems, we recently developed a cell-free based viral protein production system using wheat germ extract (
<xref rid="B30" ref-type="bibr">Matsunaga et al., 2014</xref>
). Because wheat is a eukaryote, this system can synthesize properly folded and biologically active viral proteins equivalent to those expressed in mammalian cells (
<xref rid="B13" ref-type="bibr">Endo and Sawasaki, 2005</xref>
,
<xref rid="B14" ref-type="bibr">2006</xref>
;
<xref rid="B16" ref-type="bibr">Goshima et al., 2008</xref>
).</p>
<p>In this study, we synthesized recombinant MERS-CoV N protein (MERS-NP) and raised monoclonal antibodies (mAbs) that could specifically detect this protein. We also describe the development and evaluation of a rapid test format including ELISA and ICT that can be used in POCT for MERS-CoV infection.</p>
</sec>
<sec sec-type="materials|methods" id="s1">
<title>Materials and Methods</title>
<sec>
<title>Expression Plasmid</title>
<p>Complementary DNAs encoding nucleocapsid proteins (NPs) of human coronaviruses (MERS-CoV, GenBank No. NC_019843; SARS-CoV, GenBank No. NC_004718; HCoV-HKU1, GenBank No. NC_006577; HCoV-OC43, GenBank No. NC_005147; HCoV-229E, GenBank No. NC_002645; HCoV-NL63, GenBank No. NC_005831) were synthesized by GENEWIZ (South Plainfield, NJ, USA). Synthetic cDNAs were digested with
<italic>Xho</italic>
I and
<italic>Kpn</italic>
I and inserted into pEU-E01-His-TEV-MCS and pcDNA3-HA-MCS. To generate the expression vector for antigen production in the wheat germ cell-free system, the MERS-NP open reading frame encoding amino acids 122–413 was amplified by PCR using the forward primer 5′-GAGAGATATCTGGGTGCATGAGGACGGAG-3′ and the reverse primer 5′-GAGAGATATCTCAGTCTGTGTTCACATCG-3′. The amplified fragment was cloned into the
<italic>Eco</italic>
RV site of vector pEU-E01-His-TEV-MCS (CellFree Sciences, Yokohama, Japan). Deletion mutants of MERS-NP for epitope mapping were generated using the PrimeSTAR Mutagenesis Basal kit (Takara Bio, Otsu, Japan). The R395H mutation was introduced into MERS-NP using the PrimeSTAR Mutagenesis Basal kit (Takara Bio, Otsu, Japan).</p>
</sec>
<sec>
<title>Cell-free Protein Synthesis and Purification</title>
<p>
<italic>In vitro</italic>
transcription and cell-free protein synthesis were performed as previously described (
<xref rid="B44" ref-type="bibr">Takai and Endo, 2010</xref>
;
<xref rid="B45" ref-type="bibr">Takai et al., 2010</xref>
;
<xref rid="B38" ref-type="bibr">Senchi et al., 2013</xref>
;
<xref rid="B30" ref-type="bibr">Matsunaga et al., 2014</xref>
,
<xref rid="B31" ref-type="bibr">2015</xref>
). For cell-free protein synthesis, WEPRO7240H wheat germ extract (CellFree Sciences, Yokohama, Japan) was used in the bilayer translation method as previously described (
<xref rid="B30" ref-type="bibr">Matsunaga et al., 2014</xref>
). Synthesized proteins were confirmed by immunoblotting.</p>
<p>His-MERS-NP (122-413) protein, used for mouse immunization, was synthesized using a Protemist XE robotic protein synthesizer (CellFree Sciences, Yokohama, Japan). The cell-free translation reaction mixture (6 ml) was separated into soluble and insoluble fractions by centrifugation at 15,000 rpm for 15 min. The soluble fraction was mixed with Ni-Sepharose High Performance beads (GE Healthcare, Waukesha, WI, USA) in the presence of 20 mM imidazole. The beads were washed three times with washing buffer [20 mM Tris-HCl (pH 7.5), 500 mM NaCl] containing 40 mM imidazole. His-MERS-NP (122–413) was then eluted in washing buffer containing 500 mM imidazole. Amicon Ultra centrifugal filters (Millipore, Bedford, MA, USA) were used to concentrate purified His-MERS-NP (122–413) by approximately 10–20-fold. Protein concentration was determined using the Bradford method, with bovine serum albumin (BSA) as a protein standard.</p>
</sec>
<sec>
<title>Immunization and Generation of Hybridomas</title>
<p>Immunization of BALB/c mice and generation of hybridomas producing anti-MERS-NP antibody were carried out as previously described (
<xref rid="B23" ref-type="bibr">Kimura et al., 1994</xref>
,
<xref rid="B22" ref-type="bibr">1996</xref>
;
<xref rid="B30" ref-type="bibr">Matsunaga et al., 2014</xref>
). Primary antibodies in hybridoma culture supernatant were tested by immunoblot analysis with non-tagged recombinant N protein. Animal experiments were performed ethically according to the Guidelines for Animal Experiments at Yokohama City University. All of the procedures were approved by the Committee on Experimental Animals at the Yokohama City University.</p>
</sec>
<sec>
<title>Purification of mAbs</title>
<p>Hybridoma cells were grown in CD hybridoma medium AGT medium (Thermo Fisher Scientific, Rockford, IL, USA). Primary antibodies in the culture supernatant of each clone were separated by centrifugation at 8,000 rpm for 15 min and eluted with AcroSep Hyper DF columns (Pall, New York, NY, USA). Samples were then further concentrated 10–20-fold using Amicon Ultra centrifugal filters (Millipore, Bedford, MA, USA). Concentrations of purified IgG were determined by measuring the absorbance at OD
<sub>280</sub>
. Immunoglobulin characterization was carried out using the IsoStrip mouse monoclonal antibody isotyping kit (Roche Diagnostics, Basel, Switzerland).</p>
</sec>
<sec>
<title>Homology Modeling of MERS-NP and Epitope Localization Analysis</title>
<p>The dimer model of MERS-NP was constructed by homology modeling based on the partial structure of SARS-NP (PDB code. 1SSK,
<xref rid="B19" ref-type="bibr">Huang et al., 2004</xref>
; PDB code. 2CJR,
<xref rid="B3" ref-type="bibr">Chen et al., 2007</xref>
) using the MODELLER9.15 software (
<xref rid="B50" ref-type="bibr">Webb and Sali, 2014</xref>
). Protein structures not registered in PDB were estimated by the I-TASSER and QUARK servers and used as templates for homology modeling (
<xref rid="B53" ref-type="bibr">Xu and Zhang, 2012</xref>
;
<xref rid="B54" ref-type="bibr">Yang et al., 2015</xref>
). Energy minimization of the generated model was carried out using Swiss PDB viewer4.1 (
<xref rid="B17" ref-type="bibr">Guex and Peitsch, 1997</xref>
). Surface localization of each epitope was determined using the UCSF Chimera software (
<xref rid="B35" ref-type="bibr">Pettersen et al., 2004</xref>
).</p>
</sec>
<sec>
<title>Immunoprecipitation Analysis</title>
<p>Immunoprecipitation was performed as previously described (
<xref rid="B33" ref-type="bibr">Miyakawa et al., 2015</xref>
). Briefly, HEK293A cells were grown on a 100-mm dish for 24 h, and then transfected with HA-MERS-NP. Cell lysates were immunoprecipitated with EZview Red anti-HA Affinity Gel (Sigma–Aldrich) or 2 μg of each anti-MERS-NP antibody mixed with protein G-Sepharose (GE Healthcare, Little Chalfont, UK). Bound proteins were analyzed by immunoblotting.</p>
</sec>
<sec>
<title>Selection of the Optimal Pair of mAbs for Sandwich ELISA</title>
<p>Each mAb was diluted in 50 mM of carbonate buffer (pH 9.6) to a concentration of 10 μg/mL, and then added to an ELISA plate (AGC TECHNO GLASS, Shizuoka, Japan). To immobilize the antibodies, the plate was incubated overnight at 4°C. Wells were blocked with PBS containing 2% (w/v) skim milk for 1 h at room temperature (RT). After three washes with PBS containing 0.05% (v/v) Tween-20 (PBS-T), 100 μL of antigen protein (1 ng/mL) diluted with PBS-T or blank (PBS-T alone) was added and incubated for 60 min at RT. After three washes with PBS-T, 100 μL of each mAb conjugated with horseradish peroxidase (HRP) was added into each well and incubated for 60 min at RT. Antibody labeling was performed using the Peroxidase Labeling Kit -NH
<sub>2</sub>
(Dojindo Laboratories, Kumamoto, Japan). After three washes with PBS-T, 100 μL of ABTS substrate solution (Kirkegaard & Perry Laboratories, Washington, DC, USA) was added and incubated for 30 min at RT. Absorbance at 415/492 nm was measured on a plate reader, and the signal-to-noise ratio (S/N) was calculated.</p>
</sec>
<sec>
<title>Selection of the Optimal Antibody Pair for ICT</title>
<p>For the test line, anti-MERS-NP antibodies #20, #29, and #46 were diluted in 50 mM of phosphate buffer (pH 8.0) to a concentration of 1 mg/mL and immobilized on a nitrocellulose membrane (Millipore, Bedford, MA, USA). To prepare the control line, an anti-mouse IgG antibody was diluted to 0.125 mg/mL and immobilized onto another area of the same membrane. The membrane was dried and blocked at RT, washed with deionized water, and lyophilized.</p>
<p>To produce conjugate pads, anti-MERS-NP mAbs #5, #13, and #20 were diluted in 50 mM of phosphate buffer (pH 8.0) to a concentration of 0.05 mg/mL and labeled with colloidal gold (Tanaka Kikinzoku Kogyo, Tokyo, Japan). The colloidal gold-conjugated mAbs were blocked with 0.5% casein (Kanto Chemical, Tokyo, Japan). After washing three times with phosphate buffer (pH 7.0), labeled mAbs were diluted to an OD
<sub>525</sub>
4.4 and impregnated into glass fibers (Millipore, Bedford, MA, USA). The glass fibers were lyophilized.</p>
<p>Immunochromatographic strips were generated by assembling a glass fiber (sample pad), conjugate pad, nitrocellulose membrane, and liquid absorbent pad. To compare each combination of antibodies, antigen proteins were diluted to 12.5 ng/0.1 mL in 40 mM phosphate buffer containing 150 mM NaCl and applied to the strips. The color intensity of red lines at the test and control position and the background of the membrane were visually observed and evaluated after a 15 min reaction.</p>
</sec>
<sec>
<title>Bioinformatic Analysis</title>
<p>Homology of NPs among human coronaviruses (MERS-CoV, GenBank No. NC_019843; SARS-CoV, GenBank No. NC_004718; HCoV-HKU1, GenBank No. NC_006577; HCoV-OC43, GenBank No. NC_005147; HCoV-229E, GenBank No. NC_002645; HCoV-NL63, GenBank No. NC_005831) was analyzed by multiple sequence alignment using the MUSCLE software (
<xref rid="B12" ref-type="bibr">Edgar, 2004</xref>
).</p>
<p>To examine amino-acid variability among NPs of each MERS-CoV strain, 113 MERS-NP sequences from the GenBank were aligned using the MUSCLE software. A Shannon entropy score was calculated for each position in the protein alignment as previously described (
<xref rid="B55" ref-type="bibr">Yang, 2009</xref>
). Phylogenetic trees were generated via the maximum-likelihood method with 1000 bootstrap replicates using MEGA5 after removal of 100% identical sequences (
<xref rid="B47" ref-type="bibr">Tamura et al., 2011</xref>
). The dataset was analyzed using the Jones–Taylor–Thornton (JTT) amino-acid substitution model.</p>
</sec>
<sec>
<title>Preparation and Quantitation of MERS-CoV</title>
<p>Prototype strain of MERS-CoV were provided by Drs. Ron A. M. Fouchier and Bart L. Haagmans (Erasmus Medical Center). MERS-CoV were propagated in Vero cells expressing TMPRSS2, as described previously (
<xref rid="B39" ref-type="bibr">Shirato et al., 2013</xref>
). Viral samples were concentrated by centrifugation from culture supernatant of MERS-CoV infected cells. MERS-CoV was inactivated by addition of Nonidet P-40 (NP-40) to a final concentration of 1% (v/v) prior to each immunoassay.</p>
<p>Viral RNA was extracted from the samples using the QIAamp viral RNA mini kit (Qiagen, Valencia, CA, USA). Quantitation of viral copy number was carried out by reverse-transcription droplet digital PCR (RT-ddPCR) using One-Step RT-ddPCR Advanced kit for Probes (Bio-Rad, Hercules, CA, USA). A 20 μL reaction was set up containing 2 μL of RNA (equivalent to 20 ng), 2 μL of a mixture of forward/reverse primers and probe, 1 μL of 300 mM DTT, 2 μL of reverse transcriptase, 8 μL of RNase-free water, and 5 μL of Supermix. Primers and probe sets for
<italic>Orf1a</italic>
were used as previously reported in qRT-PCR assays (
<xref rid="B8" ref-type="bibr">Corman et al., 2012b</xref>
); final concentrations of primers and probe were 900 and 250 nM, respectively. Droplets were formed in a QX200 droplet generator (Bio-Rad, Hercules, CA, USA). Thermal cycling conditions were as follows: 42°C for 60 min for the RT reaction; 95°C for 10 min; 40 cycles of 95°C for 30 s and 56°C for 1 min; and a final 10 min denaturation step at 95°C. After thermal cycling, plates were transferred to the QX200 droplet reader (Bio-Rad, Hercules, CA, USA). Positive droplets containing amplification products were discriminated from negative droplets by applying a fluorescence amplitude threshold in the QuantaSoft software (Bio-Rad, Hercules, CA, USA).</p>
</sec>
<sec>
<title>Immunoblot Analysis</title>
<p>Cell-free synthesized proteins or cell culture supernatants containing inactivated MERS-CoV were mixed with an equal volume of 2X SDS sample buffer [125 mM Tris-HCl (pH 6.8), 4% SDS, 20% glycerol, 10% 2-mercaptoethanol and 0.01% bromophenol blue] and heated at 100°C for 5 min. After separation by 12.5% or 15% SDS-PAGE using Hi-QRAS Gel N (Kanto Chemical, Tokyo, Japan), the proteins were electrotransferred onto an Immobilon-P PVDF Transfer Membrane (Millipore, Bedford, MA, USA) as described previously (
<xref rid="B34" ref-type="bibr">Nishi et al., 2014</xref>
). The membrane was blocked in Tris-buffered saline (TBS) containing 2% (w/v) skim milk for 30 min, and then incubated for 1 h with anti-MERS-NP mAbs or anti-His polyclonal antibody (GTX115045; GeneTex, Irvine, CA, USA) in TBS containing 0.1% (v/v) Tween 20 (TBS-T; 1:1000 dilution) and 0.4% (w/v) skim milk. After three washes with TBS-T, the membrane was incubated for 60 min in PBS containing HRP-conjugated goat-anti mouse or rabbit IgG antibody (1:10000 dilution; GE Healthcare). After an additional three washes in TBS-T, proteins were detected with SuperSignal West Dura Extended Duration Substrate (Thermo Fisher Scientific, Rockford, IL, USA) or Immobilon (Millipore, Bedford, MA, USA) on a Lumi-Imager F1 (Roche Diagnostics, Basel, Switzerland).</p>
</sec>
<sec>
<title>Detection Limit of Antigen-Capture ELISA</title>
<p>Sensitivity analysis of antigen-capture ELISA was carried out as described above with some modifications. Briefly, mAb (#46) was immobilized onto a plate at a concentration of 2.5 μg/mL. After the plate was blocked, inactivated MERS-CoV (1.2 × 10
<sup>6</sup>
copies/0.1 mL) and recombinant antigen protein (1 ng/0.1 mL) were serially twofold diluted with PBS-T and subjected to analysis. After reaction with HRP-conjugated mAb (#20), a chromogenic reaction was conducted by adding 100 μL of TMB Substrate solution (Kirkegaard & Perry Laboratories, Washington, DC, USA) per well, followed by incubation for 5 min; the reaction was halted by the addition of 100 μL of 1 M H
<sub>2</sub>
SO
<sub>4</sub>
. Absorbance at 450/630 nm was measured on a plate reader.</p>
</sec>
<sec>
<title>Detection Limit of ICT</title>
<p>Immunochromatographic detection of MERS-CoV was carried out as described above with some modifications in preparation of the conjugate pad. Conjugation of mAb #20 with colloidal gold was performed at a concentration of 0.2 mg/mL. After blocking and washing, conjugated pads impregnated with labeled antibody solution at an OD
<sub>525</sub>
of 8.0.</p>
<p>Sensitivity of ICT was evaluated by adding serially twofold diluted inactivated MERS-CoV (1.2 × 10
<sup>7</sup>
copies/0.1 mL) and recombinant antigen protein (2 ng/0.1 mL).</p>
</sec>
</sec>
<sec>
<title>Results</title>
<sec>
<title>Production of mAbs to Target Nucleocapsid Protein of MERS-CoV</title>
<p>Previous studies described antigenic cross-reactivity among the NTDs of N proteins of human coronaviruses, including SARS-CoV (
<xref rid="B56" ref-type="bibr">Yu et al., 2005</xref>
). To minimize the cross-reactivity when generating mAbs, we produced N-terminally deleted MERS-NP (amino acids 122–413) as an antigen for antibody production. Complementary DNA encoding MERS-NP (122–413) was sub-cloned into pEU-His, a vector designed for expression of His-tagged proteins in the wheat germ cell-free system. As predicted, His-tagged MERS-NP (122–413) was expressed (
<bold>Figure
<xref ref-type="fig" rid="F1">1A</xref>
</bold>
). The protein was purified from the soluble fraction of the extracts using Ni-Sepharose beads followed by elution with imidazole.</p>
<fig id="F1" position="float">
<label>FIGURE 1</label>
<caption>
<p>
<bold>Production of mAb using wheat germ cell-free synthesized nucleocapsid antigen. (A)</bold>
Schematic representation of antigen protein production. Recombinant Histidine (His)-tagged N-terminally truncated MERS-NP (122–413) was produced in a wheat germ cell-free system, and then purified using nickel-chelated Sepharose beads. Each protein fraction was analyzed by SDS-PAGE and visualized by CBB staining. Red dot and arrow indicate the target protein. NC, negative control; T, total fraction; S, supernatant; P, precipitate; FT, flow-through; E1–5, elution fractions 1–5.
<bold>(B)</bold>
Schematic diagram of hybridoma cells production generating anti-MERS-NP mAb. Purified His-MERS-NP (122–413) was injected into BALB/c mice. After 4 weeks, immunized mouse splenocytes were fused with myeloma cells, and 48 hybridoma cells were established. Of the 48 clones, seven exhibited relatively high reactivity to antigen proteins, as revealed by immunoblotting analysis, and were selected for further investigation.
<bold>(C)</bold>
List of selected hybridoma clones producing mAbs.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g001"></graphic>
</fig>
<p>The purified protein was used to immunize BALB/c mice. After 4 weeks, splenocytes were isolated and hybridomas were generated (
<bold>Figure
<xref ref-type="fig" rid="F1">1B</xref>
</bold>
). Ultimately, 48 stable hybridomas were obtained and designated #1–#48. Among the 48 clones, seven (#5, #13, #20, #25, #29, #45, and #46) were selected for further investigation based on their reactivity to MERS-NP in immunoblot analysis (
<bold>Figure
<xref ref-type="fig" rid="F1">1C</xref>
</bold>
).</p>
</sec>
<sec>
<title>Epitope Analysis of Anti-MERS-NP mAb</title>
<p>We next performed epitope mapping to determine the antibody binding sites. Using cell free-synthesized deletion mutants of MERS-NP, we carried out immunoblot analyses with the generated antibodies. In the first screen, we used six deletion mutants (Mut1-6;
<bold>Figures
<xref ref-type="fig" rid="F2">2A,B</xref>
</bold>
); the results revealed that two mAbs (#13 and #46) recognized the middle region corresponding to LKR, whereas the remaining five mAbs (#5, #20, #25, #29, and #45) bound the C-terminal end of the protein (
<bold>Figures
<xref ref-type="fig" rid="F2">2A,B</xref>
</bold>
). More precise epitope mapping was performed using five additional deletion mutants (Mut7-11;
<bold>Figures
<xref ref-type="fig" rid="F2">2A,B</xref>
</bold>
); the results are summarized in
<bold>Figure
<xref ref-type="fig" rid="F2">2C</xref>
</bold>
.</p>
<fig id="F2" position="float">
<label>FIGURE 2</label>
<caption>
<p>
<bold>Epitope mapping of mAbs. (A)</bold>
Schematic diagram of MERS-NP putative domain architecture and deletion mutants. For epitope mapping, 11 deletion mutants were produced as His-tagged proteins in the wheat germ cell-free system. NTD, N-terminal domain; LKR, flexible linker region; CTD, C-terminal domain.
<bold>(B)</bold>
Confirmation of protein expression. His-tagged NP and deletion mutants were immunoblotted with anti-His-tagged antibody.
<bold>(C)</bold>
Summary of epitope analysis. Reactivity of each mAb to deletion mutants was evaluated by immunoblotting. + and - indicate positive and negative detection, respectively. NT; not tested. Negative detections are highlighted in gray.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g002"></graphic>
</fig>
<p>We next investigated whether the antigenic epitopes were located on the surface of MERS-NP. To this end, we used a previously reported solution structure of SARS-NP (PDB ID; 1SSK, 2CJR) for homology modeling of MERS-NP (
<xref rid="B19" ref-type="bibr">Huang et al., 2004</xref>
;
<xref rid="B3" ref-type="bibr">Chen et al., 2007</xref>
). Molecular modeling of MERS-NP using the UCSF Chimera software revealed that all mAb binding regions were located on the surface of N protein (
<bold>Figure
<xref ref-type="fig" rid="F3">3</xref>
</bold>
).</p>
<fig id="F3" position="float">
<label>FIGURE 3</label>
<caption>
<p>
<bold>Epitope localization in MERS-CoV-NP structural model.</bold>
Positions of epitopes in a structural model of dimer-forming MERS-CoV-NP, constructed by homology modeling using the structure of SARS-NP (PDB ID. 1SSK, 2CJR). Epitope localizations of each mAb are highlighted in different colors.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g003"></graphic>
</fig>
</sec>
<sec>
<title>Immunoprecipitation Assay</title>
<p>Next, because an antibody suitable for immunoprecipitation is likely to be conformation-sensitive, we examined whether our selected antibodies could be used in immunoprecipitation analysis (
<xref rid="B29" ref-type="bibr">Mancia et al., 2007</xref>
;
<xref rid="B46" ref-type="bibr">Takeda et al., 2015</xref>
). Cell lysates from HEK293A cells expressing HA-tagged MERS-NP were subjected to immunoprecipitation analysis with each selected antibody (
<bold>Figure
<xref ref-type="fig" rid="F4">4</xref>
</bold>
). The results revealed that all of the generated mAbs could be used for immunoprecipitation analysis.</p>
<fig id="F4" position="float">
<label>FIGURE 4</label>
<caption>
<p>
<bold>Immunoprecipitation analysis with generated mAbs.</bold>
Immunoprecipitation analysis. HEK293A cells were transfected with plasmid vector encoding HA-tagged MERS-NP, and cell lysates were collected after 48 h. Samples were subjected to for immunoprecipitation with anti-MERS-NP antibodies followed by immunoblotting analysis with anti-HA antibody.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g004"></graphic>
</fig>
</sec>
<sec>
<title>Screening for Appropriate Combinations of mAbs for Antigen-Capture ELISA and ICT</title>
<p>We next determined the optimal pair of mAbs for antigen-capture ELISA by evaluating all possible combinations of immobilized and labeled mAbs (
<bold>Figure
<xref ref-type="fig" rid="F5">5A</xref>
</bold>
). The combinations of #46/#5, #20/#13, #29/13, #46/#45, and #46/#20 exhibited higher S/N ratios than other pairs (
<bold>Figure
<xref ref-type="fig" rid="F5">5B</xref>
</bold>
). Based on these data, we constructed immunochromatographic strips using five pairs of mAbs (
<bold>Figure
<xref ref-type="fig" rid="F6">6A</xref>
</bold>
). We searched for the combinations yielding the highest color intensity at the positive control at the appropriate position with the lowest overall background on the rest of the membrane. We found that immobilization of mAb #46 and colloidal gold conjugation of #20 was the optimal combination for ICT (
<bold>Figures
<xref ref-type="fig" rid="F6">6B,C</xref>
</bold>
). Thus, we selected mAbs #46 and #20 for further investigation.</p>
<fig id="F5" position="float">
<label>FIGURE 5</label>
<caption>
<p>
<bold>Determination of optimal pairs of mAbs for antigen-capture ELISA. (A)</bold>
Schematic representation of sandwich ELISA. Each mAb was labeled with horseradish peroxidase (HRP) and subjected to ELISA analysis. 49 pairs of antibodies were tested.
<bold>(B)</bold>
Determination of the optimal combination of capturing and detection mAbs. S/N ratios for antigen detection by each of the 49 combinations were calculated in the presence of 0.1 ng/0.1 mL antigen V.S. blank. S/N values of selected five pairs were depicted on each bar.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g005"></graphic>
</fig>
<fig id="F6" position="float">
<label>FIGURE 6</label>
<caption>
<p>
<bold>Determination of optimal pairs of mAbs for ICT. (A)</bold>
Schematic diagram of rapid ICT.
<bold>(B)</bold>
Selection of appropriate pairs of mAbs for ICT. Color intensity of test line and background level were evaluated with antigen protein at 12.5 ng/0.1 mL.
<bold>(C)</bold>
Typical positive and negative results of ICT using the optimal antibody pair (#20 and #46).</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g006"></graphic>
</fig>
</sec>
<sec>
<title>No Evidence of Cross-Reactivity of Anti-MERS-CoV-NP Antibody to Other Human Coronaviruses</title>
<p>We next investigated the specificity of our newly developed mAbs. Multiple alignment of NPs derived from various human coronaviruses revealed that the amino-acid sequences targeted by the selected antibodies were specific to MERS-CoV (
<bold>Figure
<xref ref-type="fig" rid="F7">7A</xref>
</bold>
). Consistent with these data, immunoblot analysis revealed that our mAbs did not recognize NPs from other coronaviruses (
<bold>Figure
<xref ref-type="fig" rid="F7">7B</xref>
</bold>
).</p>
<fig id="F7" position="float">
<label>FIGURE 7</label>
<caption>
<p>
<bold>No evidence of cross-reactivity with mAbs of other human coronaviruses. (A)</bold>
Multiple sequence alignments of human coronavirus N proteins. Shaded positions represent conserved residues among the sequences. Dashes indicate gaps in the aligned sequences.
<bold>(B)</bold>
Specificity of selected mAbs. His-tagged NPs derived from several human coronaviruses were produced in the wheat germ extract system. Reactivity of generated mAbs was validated by immunoblot analysis using either anti-His or the indicated antibodies.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g007"></graphic>
</fig>
</sec>
<sec>
<title>Reactivity of Antibodies to Divergent Strains of MERS-CoV</title>
<p>To estimate the reactivity of mAbs with different strains of MERS-CoV, we compared the amino-acid sequences of epitopes between 113 isolated strains. Shannon entropy and phylogenetic analysis revealed that the amino-acid sequence of MERS-NP is highly conserved (
<bold>Figures
<xref ref-type="fig" rid="F8">8A,B</xref>
</bold>
). Notably, no obvious amino-acid mutation was observed in the binding region of #46 (
<bold>Figures
<xref ref-type="fig" rid="F8">8A,C</xref>
</bold>
). However, the C-terminal amino acid sequence targeted by #20 was rather variable, containing a specific mutation (R395H) in two strains (
<bold>Figures
<xref ref-type="fig" rid="F8">8A,C</xref>
</bold>
). Therefore, we performed site-directed mutagenesis to introduce the R395H mutation into MERS-NP and examined the effect on the reactivity of #20 antibody by immunoblot analysis. The results showed that mAb #20 could still detect the R395H mutant (
<bold>Figure
<xref ref-type="fig" rid="F8">8D</xref>
</bold>
).</p>
<fig id="F8" position="float">
<label>FIGURE 8</label>
<caption>
<p>
<bold>Comprehensive detection of MERS-CoV isolates by the generated mAbs. (A)</bold>
Distribution of amino-acid variation of NP in 113 MERS-CoV strains. Shannon entropy, as a quantitative measure of variation, was calculated for each amino-acid residue of MERS-NP. Arrow indicates amino-acid mutation in the epitope of mAb (#20) from two MERS-CoV strains.
<bold>(B)</bold>
Phylogenetic analysis of MERS-CoV based on multiple sequence alignment of NP. The unrooted phylogeny is generated from amino-acid sequence alignments of nucleocapsid proteins based on the maximum-likelihood method. Sequences with identity of 100% are removed from the dataset. Bootstrap values (1,000 replicates) are indicated around the branches. The scale bar represents amino-acid substitutions per site.
<bold>(C)</bold>
Identification of amino-acid substitution in the antigenic epitope in 15 identical strains. Dots indicate sequence identity relative to the prototype strain. The R395H substitution was noted in two strains.
<bold>(D)</bold>
Reactivity of mAb (#20) to MERS-NP (122–413) derived from the prototype and a mutant strain harboring R395H. Reactivity was determined by immunoblot analysis.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g008"></graphic>
</fig>
</sec>
<sec>
<title>Reactivity of mAbs to Virion Nucleocapsid Protein</title>
<p>We next performed immunoblot analysis with virions released into the cell-culture supernatant of MERS-CoV infected cells. Our mAbs detected a 45 kDa protein band consistent with the molecular mass of the MERS-NP (
<bold>Figure
<xref ref-type="fig" rid="F9">9A</xref>
</bold>
). No other bands were detected by the mAbs, demonstrating their specificity for MERS-NP. Thus, our newly developed antibodies could detect NP antigen derived from MERS-CoV virions as well as recombinant NP.</p>
<fig id="F9" position="float">
<label>FIGURE 9</label>
<caption>
<p>
<bold>Establishment of antigen detection assays for MERS-CoV. (A)</bold>
Immunoblot analysis for virus particles of MERS-CoV. Cell culture medium of MERS-CoV-infected Vero-TMPRSS2 cells were collected and analyzed by immunoblotting with the newly developed anti-MERS-NP mAbs.
<bold>(B,C)</bold>
Detection limit of ELISA and ICT. Recombinant antigen protein and MERS-CoV were subjected to either ELISA or ICT analysis. + and - indicate positive and negative detection, respectively; ± means moderately positive. Arrowheads show positive test line.</p>
</caption>
<graphic xlink:href="fmicb-07-00509-g009"></graphic>
</fig>
</sec>
<sec>
<title>Sensitivity of Antigen-Capture ELISA</title>
<p>Using the optimal antibody pair (#46 and #20) identified above, we determined the detection threshold for antigen recognition by antigen-capture ELISA. Our results revealed that our system was highly sensitive to recombinant antigen, capable of detecting the protein at a concentration of 0.0625 ng/0.1 mL (
<bold>Figure
<xref ref-type="fig" rid="F9">9B</xref>
</bold>
). In parallel, we investigated the detection limit of ELISA for MERS-CoV virions permeabilized by addition of NP-40. The detection limit of the system was 1.5 × 10
<sup>5</sup>
copies/0.1 mL (
<bold>Figure
<xref ref-type="fig" rid="F9">9B</xref>
</bold>
).</p>
</sec>
<sec>
<title>Detection Limit of ICT for MERS-CoV</title>
<p>Finally, we evaluated the sensitivity of ICT for MERS-CoV. For this purpose, serial dilutions of purified NPs were subjected to ICT. The results revealed that ICT was highly sensitive, with a detection limit of 0.5 ng/0.1 mL. We next examined the detection limit for virions prepared in phosphate buffer containing 1% NP-40. ICT could detect virions at a concentration of 3.0 × 10
<sup>6</sup>
copies/0.1 mL (
<bold>Figure
<xref ref-type="fig" rid="F9">9C</xref>
</bold>
).</p>
</sec>
</sec>
<sec>
<title>Discussion</title>
<p>We report the development and prospective evaluation of an ELISA and ICT for the quantitative and qualitative detection of MERS-CoV-NP antigen. Our newly developed assays provide rapid detection of a broad range of NP antigens derived from various isolates of MERS-CoV. Because NP is a principal structural protein that is more abundantly expressed than other MERS-CoV antigens, targeting NP for clinical diagnosis is both reasonable and practical (
<xref rid="B4" ref-type="bibr">Chen et al., 2015</xref>
).</p>
<p>The quality of a mAb is determined mostly by the antigen design, adjuvant selection, and antigen quality (
<xref rid="B26" ref-type="bibr">Leenaars and Hendriksen, 2005</xref>
;
<xref rid="B43" ref-type="bibr">Stills, 2005</xref>
). In particular, preparation of high-quality antigen is essential for creation of a specific mAb. There are several methods for preparing immunizing virus antigen, including synthetic peptide, virus-like particle (VLP), and purified recombinant protein. Synthetic peptides containing predicted immunogenic epitope(s) are the most widely used way to create immunogens derived from virus antigens. However, synthetic peptides are commonly linear and therefore often do not represent the native features of antigens that originate from the actual spatial structures of viral components.</p>
<p>On the other hand, cell-based protein expression systems such as
<italic>Escherichia coli</italic>
or baculovirus-insect cell systems are also widely used and popular approaches. Although a number of cellular proteins have been successfully generated using a cell-based approach, it is not feasible to use these strategies to generate viral proteins, because many viral antigens including human coronavirus N proteins are generally insoluble and aggregate in inclusion body fractions (
<xref rid="B9" ref-type="bibr">Das and Suresh, 2006</xref>
). Moreover, viral proteins are often cytotoxic, and expression of these proteins, particularly at high levels, can result in cell death (
<xref rid="B5" ref-type="bibr">Cheng et al., 2006</xref>
). By contrast, the cell-free protein production system permits synthesis of toxic proteins that otherwise cannot be produced in live cells. Wheat germ extract, a commonly used cell-free approach, utilizes a eukaryotic translation system to synthesize properly folded and biologically active proteins similar to those expressed in mammalian cells (
<xref rid="B13" ref-type="bibr">Endo and Sawasaki, 2005</xref>
,
<xref rid="B14" ref-type="bibr">2006</xref>
;
<xref rid="B16" ref-type="bibr">Goshima et al., 2008</xref>
). These advantages highlight the suitability and availability of the wheat germ cell-free system for the generation of antigenic proteins that can be used to immunize animals and generate mAbs (
<xref rid="B30" ref-type="bibr">Matsunaga et al., 2014</xref>
).</p>
<p>The results of this study clearly demonstrate the advantages of using the wheat germ cell-free system for creating mAbs against MERS-CoV-NP. In general, mAbs can be divided into two groups, conformation-sensitive and -insensitive. Antibodies can be suitable for immunoprecipitation, immunoblotting, or both. A conformation-insensitive (immunoblotting-oriented) mAb can detect denatured linear antigen or peptide immobilized on membrane, whereas a conformation-sensitive (immunoprecipitation-oriented) mAb typically recognizes a native tertiary structure of antigen protein (
<xref rid="B29" ref-type="bibr">Mancia et al., 2007</xref>
;
<xref rid="B46" ref-type="bibr">Takeda et al., 2015</xref>
). In this study, we used the wheat germ system to synthesize MERS-NP antigen as a soluble protein, and consequently we were able to produce antibodies that specifically targeted antigenic epitopes located on the surface of MERS-NP. Accordingly, our newly developed antibodies were suitable for immunoprecipitation, indicating that they are sensitive to protein conformation. Because antibodies binding to protein surface epitopes are suitable for antigen detection assays such as ELISA and ICT, our newly create antibodies can be used in various immunological assays.</p>
<p>Other than MERS-CoV, many types of human coronaviruses are related to respiratory diseases. These include coronaviruses such as HCoV-229E, -OC43, -NL63, and -HKU1, which are responsible for common cold and upper respiratory diseases, as well as SARS-CoV, which causes life-threatening pneumonia. Therefore, it is important to create mAbs with high specificity for MERS-CoV in order to rule out other coronavirus infections. Previous reports indicated that the NTD of NP of many human coronaviruses share common sequences (
<xref rid="B56" ref-type="bibr">Yu et al., 2005</xref>
;
<xref rid="B2" ref-type="bibr">Chang et al., 2014</xref>
). Therefore, we used a recombinant MERS-CoV-NP devoid of conserved regions as an immunogen to produce mAbs. Consequently, our newly developed mAbs can recognize species-specific amino-acid sequences in MERS-CoV. Consistent with this, the mAbs did not cross-react with NPs derived from other human coronaviruses. Viral species can be determined by structural characterization of the capsid/nucleocapsid (
<xref rid="B15" ref-type="bibr">Gelderblom, 1996</xref>
). Therefore, we suspect that highly species-specific mAbs were obtained due to the appropriate design and native properties of the antigen.</p>
<p>Development of international trade and worldwide travel brings about significant risk of the spread of emerging infectious diseases, including MERS-CoV. Needless to say, there is no obvious boundary between virus-free countries and those facing endemics. Thus, the establishment of rapid and reliable laboratory diagnostic tests for these pathogens is an urgent matter in all countries. The most widely used current diagnostics for MERS-CoV involve detection of virus nucleic acids by qRT-PCR in the laboratory (
<xref rid="B7" ref-type="bibr">Corman et al., 2012a</xref>
,
<xref rid="B8" ref-type="bibr">b</xref>
). Although qRT-PCR is a sensitive and powerful tool for obtaining evidence of virus infection, it requires specialized lab equipment and expertise with molecular technology; moreover, due to the time required for the enzymatic reaction, it is rather time-consuming. These disadvantages prevent qRT-PCR from being used in POCT. Therefore, case-oriented comprehensive tests should be conducted using multiple diagnostic assays.</p>
<p>Enzyme-linked immunosorbent assay and ICT are two major clinical tests used to detect viral antigens. Both methods employ pairs of mAbs used as capture and detection antibodies. The optimal combination of capture and detection antibodies should be thoroughly investigated before the test kits are assembled. In this study, the utilization of natively folded antigen protein to evaluate each test allowed us to identify the optimal pair of antibodies for the detection of MERS-CoV-NP. Our antibody set is suitable for detecting MERS-CoV-NP by either ELISA or ICT.</p>
<p>At the early stage of illness, high titers of infectious virions and virus antigens are present in the lower respiratory tract (LRT) and sputum of patients. The viral loads in LRT and expectorated sputum of patients during acute infection are more than 10
<sup>6</sup>
copies/mL (
<xref rid="B11" ref-type="bibr">Drosten et al., 2013</xref>
;
<xref rid="B21" ref-type="bibr">Kapoor et al., 2013</xref>
;
<xref rid="B6" ref-type="bibr">Corman et al., 2015</xref>
), making it feasible to detect viral antigens of MERS-CoV for clinical diagnosis at an early stage of infection. The current version of our assay can detect 0.0625 (ELISA) or 0.5 ng (ICT) of recombinant N protein and 1.5 × 10
<sup>5</sup>
(ELISA) or 3.0 × 10
<sup>6</sup>
viral copies (ICT), ensuring its feasibility in practical clinical tests.</p>
<p>Other groups have also developed antigen-capture ELISA and ICT for detection of MERS-NP antigen (
<xref rid="B4" ref-type="bibr">Chen et al., 2015</xref>
;
<xref rid="B41" ref-type="bibr">Song et al., 2015</xref>
). Song et al. used synthetic peptides as immunogens to raise an NP-specific mAb. The other group used recombinant N proteins as antigens, but did not perform precise epitope mapping (
<xref rid="B4" ref-type="bibr">Chen et al., 2015</xref>
). On the other hand, we developed structure-sensitive mAbs against MERS-NP and thoroughly investigated their targeting epitopes. Bioinformatic analysis based on a phylogenetic approach further revealed that our newly developed mAbs can detect NP antigens derived from existing isolates of MERS-CoV.</p>
<p>In summary, we developed a novel antigen-detection assay using newly created mAbs for the rapid and reliable assessment of NP antigen of MERS-CoV. Further evaluations using actual patient samples warrants the usability and benefit of this assay for the clinical diagnosis of MERS-CoV infection.</p>
</sec>
<sec>
<title>Author Contributions</title>
<p>YY designed and performed the research, analyzed the data, and wrote the manuscript. SM and SF performed the research, contributed the virus preparation, analyzed the data. SM performed the research, analyzed the data. YM performed the bioinformatics analysis. HK, HK, MT, and TC edited the manuscript. AR directed the research, analyzed the data, and wrote the manuscript.</p>
</sec>
<sec>
<title>Conflict of Interest Statement</title>
<p>The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.</p>
</sec>
</body>
<back>
<ack>
<p>We thank Drs. Ron A. M. Fouchier and Bart L. Haagmans for providing MERS-CoV, and Dr. Naohito Nozaki for technical assistance. This work was supported in part by the Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program and grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development, AMED.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="B1">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Banik</surname>
<given-names>G. R.</given-names>
</name>
<name>
<surname>Khandaker</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Rashid</surname>
<given-names>H.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>Middle East respiratory syndrome coronavirus “MERS-CoV”: current knowledge gaps.</article-title>
<source>
<italic>Paediatr. Respir. Rev.</italic>
</source>
<volume>16</volume>
<fpage>197</fpage>
<lpage>202</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.prrv.2015.04.002</pub-id>
<pub-id pub-id-type="pmid">26002405</pub-id>
</mixed-citation>
</ref>
<ref id="B2">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Hou</surname>
<given-names>M.-H.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.-F.</given-names>
</name>
<name>
<surname>Hsiao</surname>
<given-names>C.-D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>The SARS coronavirus nucleocapsid protein–forms and functions.</article-title>
<source>
<italic>Antiviral Res.</italic>
</source>
<volume>103</volume>
<fpage>39</fpage>
<lpage>50</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.antiviral.2013.12.009</pub-id>
<pub-id pub-id-type="pmid">24418573</pub-id>
</mixed-citation>
</ref>
<ref id="B3">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C.-Y.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>C.-K.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>Y.-W.</given-names>
</name>
<name>
<surname>Sue</surname>
<given-names>S.-C.</given-names>
</name>
<name>
<surname>Bai</surname>
<given-names>H.-I.</given-names>
</name>
<name>
<surname>Riang</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Structure of the SARS coronavirus nucleocapsid protein RNA-binding dimerization domain suggests a mechanism for helical packaging of viral RNA.</article-title>
<source>
<italic>J. Mol. Biol.</italic>
</source>
<volume>368</volume>
<fpage>1075</fpage>
<lpage>1086</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jmb.2007.02.069</pub-id>
<pub-id pub-id-type="pmid">17379242</pub-id>
</mixed-citation>
</ref>
<ref id="B4">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>K.-H.</given-names>
</name>
<name>
<surname>Kang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Luk</surname>
<given-names>H. K.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>R. W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>A sensitive and specific antigen detection assay for middle east respiratory syndrome coronavirus.</article-title>
<source>
<italic>Emerg. Microbes Infect.</italic>
</source>
<volume>4</volume>
:
<issue>e26</issue>
<pub-id pub-id-type="doi">10.1038/emi.2015.26</pub-id>
</mixed-citation>
</ref>
<ref id="B5">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cheng</surname>
<given-names>Y.-S. E.</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>K.-H.</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>H.-H.</given-names>
</name>
<name>
<surname>Shao</surname>
<given-names>Y.-M.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>W.-B.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>C.-H.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2006</year>
).
<article-title>Screening for HIV protease inhibitors by protection against activity-mediated cytotoxicity in
<italic>Escherichia coli</italic>
.</article-title>
<source>
<italic>J. Virol. Methods</italic>
</source>
<volume>137</volume>
<fpage>82</fpage>
<lpage>87</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jviromet.2006.06.003</pub-id>
<pub-id pub-id-type="pmid">16849028</pub-id>
</mixed-citation>
</ref>
<ref id="B6">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Albarrak</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Omrani</surname>
<given-names>A. S.</given-names>
</name>
<name>
<surname>Albarrak</surname>
<given-names>M. M.</given-names>
</name>
<name>
<surname>Farah</surname>
<given-names>M. E.</given-names>
</name>
<name>
<surname>Almasri</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Viral shedding and antibody response in 37 patients with middle east respiratory syndrome coronavirus infection.</article-title>
<source>
<italic>Clin. Infect. Dis.</italic>
</source>
<volume>62</volume>
<fpage>477</fpage>
<lpage>483</lpage>
.
<pub-id pub-id-type="doi">10.1093/cid/civ951</pub-id>
<pub-id pub-id-type="pmid">26565003</pub-id>
</mixed-citation>
</ref>
<ref id="B7">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Eckerle</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Bleicker</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Landt</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Eschbach-Bludau</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012a</year>
).
<article-title>Detection of a novel human coronavirus by real-time reverse-transcription polymerase chain reaction.</article-title>
<source>
<italic>Euro. Surveill.</italic>
</source>
<volume>17</volume>
:
<issue>20285</issue>
.</mixed-citation>
</ref>
<ref id="B8">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Corman</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Costabel</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Timm</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Binger</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Meyer</surname>
<given-names>B.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012b</year>
).
<article-title>Assays for laboratory confirmation of novel human coronavirus (hCoV-EMC) infections.</article-title>
<source>
<italic>Euro. Surveill.</italic>
</source>
<volume>17</volume>
:
<issue>20334</issue>
.</mixed-citation>
</ref>
<ref id="B9">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Das</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Suresh</surname>
<given-names>M. R.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Copious production of SARS-CoV nucleocapsid protein employing codon optimized synthetic gene.</article-title>
<source>
<italic>J. Virol. Methods</italic>
</source>
<volume>137</volume>
<fpage>343</fpage>
<lpage>346</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jviromet.2006.06.029</pub-id>
<pub-id pub-id-type="pmid">16904198</pub-id>
</mixed-citation>
</ref>
<ref id="B10">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Groot</surname>
<given-names>R. J.</given-names>
</name>
<name>
<surname>Baker</surname>
<given-names>S. C.</given-names>
</name>
<name>
<surname>Baric</surname>
<given-names>R. S.</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>C. S.</given-names>
</name>
<name>
<surname>Drosten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Enjuanes</surname>
<given-names>L.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus study group.</article-title>
<source>
<italic>J. Virol.</italic>
</source>
<volume>87</volume>
<fpage>7790</fpage>
<lpage>7792</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.01244-13</pub-id>
<pub-id pub-id-type="pmid">23678167</pub-id>
</mixed-citation>
</ref>
<ref id="B11">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Drosten</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Seilmaier</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Corman</surname>
<given-names>V. M.</given-names>
</name>
<name>
<surname>Hartmann</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Scheible</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Sack</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Clinical features and virological analysis of a case of middle east respiratory syndrome coronavirus infection.</article-title>
<source>
<italic>Lancet Infect. Dis.</italic>
</source>
<volume>13</volume>
<fpage>745</fpage>
<lpage>751</lpage>
.
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70154-3</pub-id>
<pub-id pub-id-type="pmid">23782859</pub-id>
</mixed-citation>
</ref>
<ref id="B12">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Edgar</surname>
<given-names>R. C.</given-names>
</name>
</person-group>
(
<year>2004</year>
).
<article-title>MUSCLE: multiple sequence alignment with high accuracy and high throughput.</article-title>
<source>
<italic>Nucleic Acids Res.</italic>
</source>
<volume>32</volume>
<fpage>1792</fpage>
<lpage>1797</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkh340</pub-id>
<pub-id pub-id-type="pmid">15034147</pub-id>
</mixed-citation>
</ref>
<ref id="B13">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Endo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sawasaki</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Advances in genome-wide protein expression using the wheat germ cell-free system.</article-title>
<source>
<italic>Methods Mol. Biol.</italic>
</source>
<volume>310</volume>
<fpage>145</fpage>
<lpage>167</lpage>
.
<pub-id pub-id-type="doi">10.1007/978-1-59259-948-6_11</pub-id>
<pub-id pub-id-type="pmid">16350953</pub-id>
</mixed-citation>
</ref>
<ref id="B14">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Endo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Sawasaki</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>2006</year>
).
<article-title>Cell-free expression systems for eukaryotic protein production.</article-title>
<source>
<italic>Curr. Opin. Biotechnol.</italic>
</source>
<volume>17</volume>
<fpage>373</fpage>
<lpage>380</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.copbio.2006.06.009</pub-id>
<pub-id pub-id-type="pmid">16828277</pub-id>
</mixed-citation>
</ref>
<ref id="B15">
<mixed-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Gelderblom</surname>
<given-names>H. R.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>“Chapter 41: Structure and classification of viruses,” in</article-title>
<source>
<italic>Medical Microbiology</italic>
</source>
<edition>4th Edn</edition>
<role>ed.</role>
<person-group person-group-type="editor">
<name>
<surname>Baron</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<publisher-loc>Galveston, TX</publisher-loc>
:
<publisher-name>University of Texas Medical Branch</publisher-name>
).</mixed-citation>
</ref>
<ref id="B16">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Goshima</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kawamura</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fukumoto</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Miura</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Honma</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Satoh</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2008</year>
).
<article-title>Human protein factory for converting the transcriptome into an in vitro-expressed proteome.</article-title>
<source>
<italic>Nat. Methods</italic>
</source>
<volume>5</volume>
<fpage>1011</fpage>
<lpage>1017</lpage>
.
<pub-id pub-id-type="doi">10.1038/nmeth.1273</pub-id>
<pub-id pub-id-type="pmid">19054851</pub-id>
</mixed-citation>
</ref>
<ref id="B17">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guex</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Peitsch</surname>
<given-names>M. C.</given-names>
</name>
</person-group>
(
<year>1997</year>
).
<article-title>SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling.</article-title>
<source>
<italic>Electrophoresis</italic>
</source>
<volume>18</volume>
<fpage>2714</fpage>
<lpage>2723</lpage>
.
<pub-id pub-id-type="doi">10.1002/elps.1150181505</pub-id>
<pub-id pub-id-type="pmid">9504803</pub-id>
</mixed-citation>
</ref>
<ref id="B18">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>He</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Manopo</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>S.-W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Characterization of monoclonal antibody against SARS coronavirus nucleocapsid antigen and development of an antigen capture ELISA.</article-title>
<source>
<italic>J. Virol. Methods</italic>
</source>
<volume>127</volume>
<fpage>46</fpage>
<lpage>53</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jviromet.2005.03.004</pub-id>
<pub-id pub-id-type="pmid">15893565</pub-id>
</mixed-citation>
</ref>
<ref id="B19">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huang</surname>
<given-names>Q.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Petros</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>Gunasekera</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein.</article-title>
<source>
<italic>Biochemistry</italic>
</source>
<volume>43</volume>
<fpage>6059</fpage>
<lpage>6063</lpage>
.
<pub-id pub-id-type="doi">10.1021/bi036155b</pub-id>
<pub-id pub-id-type="pmid">15147189</pub-id>
</mixed-citation>
</ref>
<ref id="B20">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Zuo</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Shi</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>K.-M. V.</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein.</article-title>
<source>
<italic>Sci. Transl. Med.</italic>
</source>
<volume>6</volume>
<issue>234ra59</issue>
<pub-id pub-id-type="doi">10.1126/scitranslmed.3008140</pub-id>
</mixed-citation>
</ref>
<ref id="B21">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kapoor</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pringle</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Dearth</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lovchik</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Clinical and laboratory findings of the first imported case of middle east respiratory syndrome coronavirus (MERS-CoV) into the United States.</article-title>
<source>
<italic>Clin. Infect. Dis.</italic>
</source>
<volume>59</volume>
<fpage>1511</fpage>
<lpage>1518</lpage>
.
<pub-id pub-id-type="doi">10.1093/cid/ciu635</pub-id>
<pub-id pub-id-type="pmid">25100864</pub-id>
</mixed-citation>
</ref>
<ref id="B22">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nozaki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Enomoto</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tanaka</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>1996</year>
).
<article-title>Analysis of M phase-specific phosphorylation of DNA topoisomerase II.</article-title>
<source>
<italic>J. Biol. Chem.</italic>
</source>
<volume>271</volume>
<fpage>21439</fpage>
<lpage>21445</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.271.35.21439</pub-id>
<pub-id pub-id-type="pmid">8702926</pub-id>
</mixed-citation>
</ref>
<ref id="B23">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kimura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Nozaki</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Saijo</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kikuchi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ui</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Enomoto</surname>
<given-names>T.</given-names>
</name>
</person-group>
(
<year>1994</year>
).
<article-title>Identification of the nature of modification that causes the shift of DNA topoisomerase II beta to apparent higher molecular weight forms in the M phase.</article-title>
<source>
<italic>J. Biol. Chem.</italic>
</source>
<volume>269</volume>
<fpage>24523</fpage>
<lpage>24526</lpage>
.
<pub-id pub-id-type="pmid">7929118</pub-id>
</mixed-citation>
</ref>
<ref id="B24">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kogaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Uchida</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fujii</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kurano</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Miyake</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kido</surname>
<given-names>Y.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Novel rapid immunochromatographic test based on an enzyme immunoassay for detecting nucleocapsid antigen in SARS-associated coronavirus.</article-title>
<source>
<italic>J. Clin. Lab. Anal.</italic>
</source>
<volume>19</volume>
<fpage>150</fpage>
<lpage>159</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcla.20070</pub-id>
<pub-id pub-id-type="pmid">16025480</pub-id>
</mixed-citation>
</ref>
<ref id="B25">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lau</surname>
<given-names>S. K. P.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>P. C. Y.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>B. H. L.</given-names>
</name>
<name>
<surname>Tsoi</surname>
<given-names>H.-W.</given-names>
</name>
<name>
<surname>Woo</surname>
<given-names>G. K. S.</given-names>
</name>
<name>
<surname>Poon</surname>
<given-names>R. W. S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in sars patients by enzyme-linked immunosorbent assay.</article-title>
<source>
<italic>J. Clin. Microbiol.</italic>
</source>
<volume>42</volume>
<fpage>2884</fpage>
<lpage>2889</lpage>
.
<pub-id pub-id-type="doi">10.1128/JCM.42.7.2884-2889.2004</pub-id>
<pub-id pub-id-type="pmid">15243033</pub-id>
</mixed-citation>
</ref>
<ref id="B26">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leenaars</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hendriksen</surname>
<given-names>C. F. M.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations.</article-title>
<source>
<italic>ILAR J.</italic>
</source>
<volume>46</volume>
<fpage>269</fpage>
<lpage>279</lpage>
.
<pub-id pub-id-type="doi">10.1093/ilar.46.3.269</pub-id>
<pub-id pub-id-type="pmid">15953834</pub-id>
</mixed-citation>
</ref>
<ref id="B27">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wan</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Qi</surname>
<given-names>J.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein.</article-title>
<source>
<italic>Cell Res.</italic>
</source>
<volume>25</volume>
<fpage>1237</fpage>
<lpage>1249</lpage>
.
<pub-id pub-id-type="doi">10.1038/cr.2015.113</pub-id>
<pub-id pub-id-type="pmid">26391698</pub-id>
</mixed-citation>
</ref>
<ref id="B28">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liang</surname>
<given-names>F.-Y.</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>L.-C.</given-names>
</name>
<name>
<surname>Ying</surname>
<given-names>T.-H.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>C.-W.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>T.-K.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.-W.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Immunoreactivity characterisation of the three structural regions of the human coronavirus OC43 nucleocapsid protein by Western blot: implications for the diagnosis of coronavirus infection.</article-title>
<source>
<italic>J. Virol. Methods</italic>
</source>
<volume>187</volume>
<fpage>413</fpage>
<lpage>420</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jviromet.2012.11.009</pub-id>
<pub-id pub-id-type="pmid">23174159</pub-id>
</mixed-citation>
</ref>
<ref id="B29">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mancia</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Brenner-Morton</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Siegel</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Assur</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Schieren</surname>
<given-names>I.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2007</year>
).
<article-title>Production and characterization of monoclonal antibodies sensitive to conformation in the 5HT2c serotonin receptor.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>104</volume>
<fpage>4303</fpage>
<lpage>4308</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.0700301104</pub-id>
<pub-id pub-id-type="pmid">17360519</pub-id>
</mixed-citation>
</ref>
<ref id="B30">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsunaga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kawakami</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Matsuo</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Okayama</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tsukagoshi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kudoh</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Wheat germ cell-free system-based production of hemagglutinin-neuraminidase glycoprotein of human parainfluenza virus type 3 for generation and characterization of monoclonal antibody.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>5</volume>
:
<issue>208</issue>
<pub-id pub-id-type="doi">10.3389/fmicb.2014.00208</pub-id>
</mixed-citation>
</ref>
<ref id="B31">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsunaga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Masaoka</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Sawasaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Morishita</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Iwatani</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Tatsumi</surname>
<given-names>M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>A cell-free enzymatic activity assay for the evaluation of HIV-1 drug resistance to protease inhibitors.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>6</volume>
:
<issue>1220</issue>
<pub-id pub-id-type="doi">10.3389/fmicb.2015.01220</pub-id>
</mixed-citation>
</ref>
<ref id="B32">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McBride</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>van Zyl</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fielding</surname>
<given-names>B. C.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>The coronavirus nucleocapsid is a multifunctional protein.</article-title>
<source>
<italic>Viruses</italic>
</source>
<volume>6</volume>
<fpage>2991</fpage>
<lpage>3018</lpage>
.
<pub-id pub-id-type="doi">10.3390/v6082991</pub-id>
<pub-id pub-id-type="pmid">25105276</pub-id>
</mixed-citation>
</ref>
<ref id="B33">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miyakawa</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Matsunaga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Watashi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sugiyama</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>N.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Molecular dissection of HBV evasion from restriction factor tetherin: a new perspective for antiviral cell therapy.</article-title>
<source>
<italic>Oncotarget</italic>
</source>
<volume>6</volume>
<fpage>21840</fpage>
<lpage>21852</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.4808</pub-id>
<pub-id pub-id-type="pmid">26334101</pub-id>
</mixed-citation>
</ref>
<ref id="B34">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Akutsu</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kudoh</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Umezawa</surname>
<given-names>A.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell.</article-title>
<source>
<italic>Oncotarget</italic>
</source>
<volume>5</volume>
<fpage>8665</fpage>
<lpage>8680</lpage>
.
<pub-id pub-id-type="doi">10.18632/oncotarget.2356</pub-id>
<pub-id pub-id-type="pmid">25228591</pub-id>
</mixed-citation>
</ref>
<ref id="B35">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pettersen</surname>
<given-names>E. F.</given-names>
</name>
<name>
<surname>Goddard</surname>
<given-names>T. D.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>C. C.</given-names>
</name>
<name>
<surname>Couch</surname>
<given-names>G. S.</given-names>
</name>
<name>
<surname>Greenblatt</surname>
<given-names>D. M.</given-names>
</name>
<name>
<surname>Meng</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2004</year>
).
<article-title>UCSF Chimera–a visualization system for exploratory research and analysis.</article-title>
<source>
<italic>J. Comput. Chem.</italic>
</source>
<volume>25</volume>
<fpage>1605</fpage>
<lpage>1612</lpage>
.
<pub-id pub-id-type="doi">10.1002/jcc.20084</pub-id>
<pub-id pub-id-type="pmid">15264254</pub-id>
</mixed-citation>
</ref>
<ref id="B36">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Raj</surname>
<given-names>V. S.</given-names>
</name>
<name>
<surname>Mou</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Smits</surname>
<given-names>S. L.</given-names>
</name>
<name>
<surname>Dekkers</surname>
<given-names>D. H. W.</given-names>
</name>
<name>
<surname>Müller</surname>
<given-names>M. A.</given-names>
</name>
<name>
<surname>Dijkman</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC.</article-title>
<source>
<italic>Nature</italic>
</source>
<volume>495</volume>
<fpage>251</fpage>
<lpage>254</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature12005</pub-id>
<pub-id pub-id-type="pmid">23486063</pub-id>
</mixed-citation>
</ref>
<ref id="B37">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schein</surname>
<given-names>C. H.</given-names>
</name>
</person-group>
(
<year>1991</year>
).
<article-title>Optimizing protein folding to the native state in bacteria.</article-title>
<source>
<italic>Curr. Opin. Biotechnol.</italic>
</source>
<volume>2</volume>
<fpage>746</fpage>
<lpage>750</lpage>
.
<pub-id pub-id-type="doi">10.1016/0958-1669(91)90046-8</pub-id>
<pub-id pub-id-type="pmid">1367729</pub-id>
</mixed-citation>
</ref>
<ref id="B38">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Senchi</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Matsunaga</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hasegawa</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Kimura</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ryo</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Development of oligomannose-coated liposome-based nasal vaccine against human parainfluenza virus type 3.</article-title>
<source>
<italic>Front. Microbiol.</italic>
</source>
<volume>4</volume>
:
<issue>346</issue>
<pub-id pub-id-type="doi">10.3389/fmicb.2013.00346</pub-id>
</mixed-citation>
</ref>
<ref id="B39">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shirato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Kawase</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Matsuyama</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2013</year>
).
<article-title>Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2.</article-title>
<source>
<italic>J. Virol.</italic>
</source>
<volume>87</volume>
<fpage>12552</fpage>
<lpage>12561</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.01890-13</pub-id>
<pub-id pub-id-type="pmid">24027332</pub-id>
</mixed-citation>
</ref>
<ref id="B40">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shirato</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Yano</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Senba</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Akachi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Kobayashi</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Nishinaka</surname>
<given-names>T.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Detection of middle east respiratory syndrome coronavirus using reverse transcription loop-mediated isothermal amplification (RT-LAMP).</article-title>
<source>
<italic>Virol. J.</italic>
</source>
<volume>11</volume>
<issue>139</issue>
<pub-id pub-id-type="doi">10.1186/1743-422X-11-139</pub-id>
</mixed-citation>
</ref>
<ref id="B41">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ha</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Serhan</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Eltahir</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Yusof</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hashem</surname>
<given-names>F.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Development and validation of a rapid immunochromatographic assay for detection of Middle East respiratory syndrome coronavirus antigen in dromedary camels.</article-title>
<source>
<italic>J. Clin. Microbiol.</italic>
</source>
<volume>53</volume>
<fpage>1178</fpage>
<lpage>1182</lpage>
.
<pub-id pub-id-type="doi">10.1128/JCM.03096-14</pub-id>
<pub-id pub-id-type="pmid">25631809</pub-id>
</mixed-citation>
</ref>
<ref id="B42">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Fux</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Provacia</surname>
<given-names>L. B.</given-names>
</name>
<name>
<surname>Volz</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Eickmann</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Becker</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2013</year>
).
<article-title>Middle East respiratory syndrome coronavirus spike protein delivered by modified vaccinia virus Ankara efficiently induces virus-neutralizing antibodies.</article-title>
<source>
<italic>J. Virol.</italic>
</source>
<volume>87</volume>
<fpage>11950</fpage>
<lpage>11954</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.01672-13</pub-id>
<pub-id pub-id-type="pmid">23986586</pub-id>
</mixed-citation>
</ref>
<ref id="B43">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stills</surname>
<given-names>H. F.</given-names>
</name>
</person-group>
(
<year>2005</year>
).
<article-title>Adjuvants and antibody production: dispelling the myths associated with Freund’s complete and other adjuvants.</article-title>
<source>
<italic>ILAR J.</italic>
</source>
<volume>46</volume>
<fpage>280</fpage>
<lpage>293</lpage>
.
<pub-id pub-id-type="doi">10.1093/ilar.46.3.280</pub-id>
<pub-id pub-id-type="pmid">15953835</pub-id>
</mixed-citation>
</ref>
<ref id="B44">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takai</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>The cell-free protein synthesis system from wheat germ.</article-title>
<source>
<italic>Methods Mol. Biol.</italic>
</source>
<volume>607</volume>
<fpage>23</fpage>
<lpage>30</lpage>
.
<pub-id pub-id-type="doi">10.1007/978-1-60327-331-2_3</pub-id>
<pub-id pub-id-type="pmid">20204845</pub-id>
</mixed-citation>
</ref>
<ref id="B45">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takai</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sawasaki</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Endo</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2010</year>
).
<article-title>The wheat-germ cell-free expression system.</article-title>
<source>
<italic>Curr. Pharm. Biotechnol.</italic>
</source>
<volume>11</volume>
<fpage>272</fpage>
<lpage>278</lpage>
.
<pub-id pub-id-type="doi">10.2174/138920110791111933</pub-id>
<pub-id pub-id-type="pmid">20210744</pub-id>
</mixed-citation>
</ref>
<ref id="B46">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takeda</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Ogasawara</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Ozawa</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Muraguchi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jih</surname>
<given-names>P.-J.</given-names>
</name>
<name>
<surname>Morishita</surname>
<given-names>R.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay.</article-title>
<source>
<italic>Sci. Rep.</italic>
</source>
<volume>5</volume>
:
<issue>11333</issue>
<pub-id pub-id-type="doi">10.1038/srep11333</pub-id>
</mixed-citation>
</ref>
<ref id="B47">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tamura</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Stecher</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Nei</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kumar</surname>
<given-names>S.</given-names>
</name>
</person-group>
(
<year>2011</year>
).
<article-title>MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.</article-title>
<source>
<italic>Mol. Biol. Evol.</italic>
</source>
<volume>28</volume>
<fpage>2731</fpage>
<lpage>2739</lpage>
.
<pub-id pub-id-type="doi">10.1093/molbev/msr121</pub-id>
<pub-id pub-id-type="pmid">21546353</pub-id>
</mixed-citation>
</ref>
<ref id="B48">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>X.-C.</given-names>
</name>
<name>
<surname>Agnihothram</surname>
<given-names>S. S.</given-names>
</name>
<name>
<surname>Jiao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Stanhope</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Graham</surname>
<given-names>R. L.</given-names>
</name>
<name>
<surname>Peterson</surname>
<given-names>E. C.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2014</year>
).
<article-title>Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution.</article-title>
<source>
<italic>Proc. Natl. Acad. Sci. U.S.A.</italic>
</source>
<volume>111</volume>
<fpage>E2018</fpage>
<lpage>E2026</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1402074111</pub-id>
<pub-id pub-id-type="pmid">24778221</pub-id>
</mixed-citation>
</ref>
<ref id="B49">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>de Graaf</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lauber</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Raj</surname>
<given-names>V. S.</given-names>
</name>
<name>
<surname>Zaki</surname>
<given-names>A. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2012</year>
).
<article-title>Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans.</article-title>
<source>
<italic>MBio</italic>
</source>
<volume>3</volume>
:
<issue>e00473</issue>
-12.
<pub-id pub-id-type="doi">10.1128/mBio.00473-12</pub-id>
</mixed-citation>
</ref>
<ref id="B50">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Webb</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Sali</surname>
<given-names>A.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Protein structure modeling with MODELLER.</article-title>
<source>
<italic>Methods Mol. Biol.</italic>
</source>
<volume>1137</volume>
<fpage>1</fpage>
<lpage>15</lpage>
.
<pub-id pub-id-type="doi">10.1007/978-1-4939-0366-5_1</pub-id>
<pub-id pub-id-type="pmid">24573470</pub-id>
</mixed-citation>
</ref>
<ref id="B51">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wernery</surname>
<given-names>U.</given-names>
</name>
<name>
<surname>Ei Rasoul</surname>
<given-names>I. H.</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>E. Y.</given-names>
</name>
<name>
<surname>Joseph</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Jose</surname>
<given-names>S.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2015</year>
).
<article-title>A phylogenetically distinct Middle East respiratory syndrome coronavirus detected in a dromedary calf from a closed dairy herd in Dubai with rising seroprevalence with age.</article-title>
<source>
<italic>Emerg. Microbes Infect.</italic>
</source>
<volume>4</volume>
:
<issue>e74</issue>
<pub-id pub-id-type="doi">10.1038/emi.2015.74</pub-id>
</mixed-citation>
</ref>
<ref id="B52">
<mixed-citation publication-type="journal">
<collab>World Health Organization [WHO]</collab>
(
<year>2016</year>
).
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV).</article-title>
Available at:
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/emergencies/mers-cov/en/">http://www.who.int/emergencies/mers-cov/en/</ext-link>
[
<comment>accessed January 28, 2016</comment>
].</mixed-citation>
</ref>
<ref id="B53">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.</article-title>
<source>
<italic>Proteins</italic>
</source>
<volume>80</volume>
<fpage>1715</fpage>
<lpage>1735</lpage>
.
<pub-id pub-id-type="doi">10.1002/prot.24065</pub-id>
<pub-id pub-id-type="pmid">22411565</pub-id>
</mixed-citation>
</ref>
<ref id="B54">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Roy</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Poisson</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
</person-group>
(
<year>2015</year>
).
<article-title>The I-TASSER Suite: protein structure and function prediction.</article-title>
<source>
<italic>Nat. Methods</italic>
</source>
<volume>12</volume>
<fpage>7</fpage>
<lpage>8</lpage>
.
<pub-id pub-id-type="doi">10.1038/nmeth.3213</pub-id>
<pub-id pub-id-type="pmid">25549265</pub-id>
</mixed-citation>
</ref>
<ref id="B55">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>O. O.</given-names>
</name>
</person-group>
(
<year>2009</year>
).
<article-title>Candidate vaccine sequences to represent intra- and inter-clade HIV-1 variation.</article-title>
<source>
<italic>PLoS ONE</italic>
</source>
<volume>4</volume>
:
<issue>e7388</issue>
<pub-id pub-id-type="doi">10.1371/journal.pone.0007388</pub-id>
</mixed-citation>
</ref>
<ref id="B56">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Le</surname>
<given-names>M. Q.</given-names>
</name>
<name>
<surname>Inoue</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Thai</surname>
<given-names>H. T. C.</given-names>
</name>
<name>
<surname>Hasebe</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Del Carmen</surname>
<given-names>P. M.</given-names>
</name>
<etal></etal>
</person-group>
(
<year>2005</year>
).
<article-title>Evaluation of inapparent nosocomial severe acute respiratory syndrome coronavirus infection in Vietnam by use of highly specific recombinant truncated nucleocapsid protein-based enzyme-linked immunosorbent assay.</article-title>
<source>
<italic>Clin. Diagn. Lab. Immunol.</italic>
</source>
<volume>12</volume>
<fpage>848</fpage>
<lpage>854</lpage>
.
<pub-id pub-id-type="doi">10.1128/CDLI.12.7.848-854.2005</pub-id>
<pub-id pub-id-type="pmid">16002634</pub-id>
</mixed-citation>
</ref>
<ref id="B57">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaki</surname>
<given-names>A. M.</given-names>
</name>
<name>
<surname>van Boheemen</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bestebroer</surname>
<given-names>T. M.</given-names>
</name>
<name>
<surname>Osterhaus</surname>
<given-names>A. D. M. E.</given-names>
</name>
<name>
<surname>Fouchier</surname>
<given-names>R. A. M.</given-names>
</name>
</person-group>
(
<year>2012</year>
).
<article-title>Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia.</article-title>
<source>
<italic>N. Engl. J. Med.</italic>
</source>
<volume>367</volume>
<fpage>1814</fpage>
<lpage>1820</lpage>
.
<pub-id pub-id-type="doi">10.1056/NEJMoa1211721</pub-id>
<pub-id pub-id-type="pmid">23075143</pub-id>
</mixed-citation>
</ref>
<ref id="B58">
<mixed-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Jiang</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>L.</given-names>
</name>
</person-group>
(
<year>2014</year>
).
<article-title>Current advancements and potential strategies in the development of MERS-CoV vaccines.</article-title>
<source>
<italic>Expert Rev. Vaccines</italic>
</source>
<volume>13</volume>
<fpage>761</fpage>
<lpage>774</lpage>
.
<pub-id pub-id-type="doi">10.1586/14760584.2014.912134</pub-id>
<pub-id pub-id-type="pmid">24766432</pub-id>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0000910 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0000910 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021