Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000054 ( Pmc/Corpus ); précédent : 0000539; suivant : 0000550 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling</title>
<author>
<name sortKey="Hsieh, Ying Hen" sort="Hsieh, Ying Hen" uniqKey="Hsieh Y" first="Ying-Hen" last="Hsieh">Ying-Hen Hsieh</name>
<affiliation>
<nlm:aff id="aff-1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26713252</idno>
<idno type="pmc">4690341</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4690341</idno>
<idno type="RBID">PMC:4690341</idno>
<idno type="doi">10.7717/peerj.1505</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000054</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling</title>
<author>
<name sortKey="Hsieh, Ying Hen" sort="Hsieh, Ying Hen" uniqKey="Hsieh Y" first="Ying-Hen" last="Hsieh">Ying-Hen Hsieh</name>
<affiliation>
<nlm:aff id="aff-1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="eISSN">2167-8359</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<bold>Background</bold>
. Since the emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, more than 1,300 laboratory confirmed cases of MERS-CoV infections have been reported in Asia, North Africa, and Europe by July 2015. The recent MERS-CoV nosocomial outbreak in South Korea quickly became the second largest such outbreak with 186 total cases and 36 deaths in a little more than one month, second only to Saudi Arabia in country-specific number of reported cases.</p>
<p>
<bold>Methods</bold>
. We use a simple mathematical model, the Richards model, to trace the temporal course of the South Korea MERS-CoV outbreak. We pinpoint its outbreak turning point and its transmissibility via basic reproduction number
<italic>R</italic>
<sub>0</sub>
in order to ascertain the occurrence of this nosocomial outbreak and how it was quickly brought under control.</p>
<p>
<bold>Results</bold>
. The estimated outbreak turning point of
<italic>t
<sub>i</sub>
</italic>
= 23.3 days (95% CI [22.6–24.0]), or 23–24 days after the onset date of the index case on May 11, pinpoints June 3–4 as the time of the turning point or the peak incidence for this outbreak by onset date.
<italic>R</italic>
<sub>0</sub>
is estimated to range between 7.0 and 19.3.</p>
<p>
<bold>Discussion and Conclusion</bold>
. The turning point of the South Korea MERS-CoV outbreak occurred around May 27–29, when control measures were quickly implemented after laboratory confirmation of the first cluster of nosocomial infections by the index patient. Furthermore, transmissibility of MERS-CoV in the South Korea outbreak was significantly higher than those reported from past MERS-CoV outbreaks in the Middle East, which is attributable to the nosocomial nature of this outbreak. Our estimate of
<italic>R</italic>
<sub>0</sub>
for the South Korea MERS-CoV nosocomial outbreak further highlights the importance and the risk involved in cluster infections and superspreading events in crowded settings such as hospitals. Similar to the 2003 SARS epidemic, outbreaks of infectious diseases with low community transmissibility like MERS-CoV could still occur initially with large clusters of nosocomial infections, but can be quickly and effectively controlled with timely intervention measures.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Bauch, Ct" uniqKey="Bauch C">CT Bauch</name>
</author>
<author>
<name sortKey="Lloyd Smith, Jo" uniqKey="Lloyd Smith J">JO Lloyd-Smith</name>
</author>
<author>
<name sortKey="Coffee, Mp" uniqKey="Coffee M">MP Coffee</name>
</author>
<author>
<name sortKey="Galvani, Ap" uniqKey="Galvani A">AP Galvani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Breban, R" uniqKey="Breban R">R Breban</name>
</author>
<author>
<name sortKey="Riou, J" uniqKey="Riou J">J Riou</name>
</author>
<author>
<name sortKey="Fontanet, A" uniqKey="Fontanet A">A Fontanet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Caceres, Jlh" uniqKey="Caceres J">JLH Caceres</name>
</author>
<author>
<name sortKey="Kumma, Bd" uniqKey="Kumma B">BD Kumma</name>
</author>
<author>
<name sortKey="Wright, G" uniqKey="Wright G">G Wright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Van Kerkhove, Md" uniqKey="Van Kerkhove M">MD Van Kerkhove</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="Rambaut, A" uniqKey="Rambaut A">A Rambaut</name>
</author>
<author>
<name sortKey="Enouf, V" uniqKey="Enouf V">V Enouf</name>
</author>
<author>
<name sortKey="Van Der Werf, S" uniqKey="Van Der Werf S">S Van der Werf</name>
</author>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chan, Ch" uniqKey="Chan C">CH Chan</name>
</author>
<author>
<name sortKey="Tuite, Ar" uniqKey="Tuite A">AR Tuite</name>
</author>
<author>
<name sortKey="Fisman, Dn" uniqKey="Fisman D">DN Fisman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Blumberg, S" uniqKey="Blumberg S">S Blumberg</name>
</author>
<author>
<name sortKey="Simonsen, L" uniqKey="Simonsen L">L Simonsen</name>
</author>
<author>
<name sortKey="Millera, Ma" uniqKey="Millera M">MA Millera</name>
</author>
<author>
<name sortKey="Viboud, C" uniqKey="Viboud C">C Viboud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, Bj" uniqKey="Cowling B">BJ Cowling</name>
</author>
<author>
<name sortKey="Park, M" uniqKey="Park M">M Park</name>
</author>
<author>
<name sortKey="Fang, Vj" uniqKey="Fang V">VJ Fang</name>
</author>
<author>
<name sortKey="Wu, P" uniqKey="Wu P">P Wu</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
<author>
<name sortKey="Wu, Jt" uniqKey="Wu J">JT Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fisman, Dn" uniqKey="Fisman D">DN Fisman</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hau, B" uniqKey="Hau B">B Hau</name>
</author>
<author>
<name sortKey="Kosman, E" uniqKey="Kosman E">E Kosman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ho, Ms" uniqKey="Ho M">MS Ho</name>
</author>
<author>
<name sortKey="Su, Ij" uniqKey="Su I">IJ Su</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Cheng, Ys" uniqKey="Cheng Y">YS Cheng</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Fisman, D" uniqKey="Fisman D">D Fisman</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Lee, Jy" uniqKey="Lee J">JY Lee</name>
</author>
<author>
<name sortKey="Chang, Hl" uniqKey="Chang H">HL Chang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
<author>
<name sortKey="Tzeng, Yh" uniqKey="Tzeng Y">YH Tzeng</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Ma, S" uniqKey="Ma S">S Ma</name>
</author>
<author>
<name sortKey="Valasco Hernandez, Jx" uniqKey="Valasco Hernandez J">JX Valasco-Hernandez</name>
</author>
<author>
<name sortKey="Lee, Vj" uniqKey="Lee V">VJ Lee</name>
</author>
<author>
<name sortKey="Lim, Wy" uniqKey="Lim W">WY Lim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="King, Aa" uniqKey="King A">AA King</name>
</author>
<author>
<name sortKey="Domenech De Celles, M" uniqKey="Domenech De Celles M">M Domenech de Cellès</name>
</author>
<author>
<name sortKey="Magpantay, Fm" uniqKey="Magpantay F">FM Magpantay</name>
</author>
<author>
<name sortKey="Rohani, P" uniqKey="Rohani P">P Rohani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucharski, Aj" uniqKey="Kucharski A">AJ Kucharski</name>
</author>
<author>
<name sortKey="Althaus, Cl" uniqKey="Althaus C">CL Althaus</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kucharski, Aj" uniqKey="Kucharski A">AJ Kucharski</name>
</author>
<author>
<name sortKey="Edmunds, Wj" uniqKey="Edmunds W">WJ Edmunds</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lalancette, N" uniqKey="Lalancette N">N Lalancette</name>
</author>
<author>
<name sortKey="Madden, Lv" uniqKey="Madden L">LV Madden</name>
</author>
<author>
<name sortKey="Ellis, Ma" uniqKey="Ellis M">MA Ellis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, W" uniqKey="Liu W">W Liu</name>
</author>
<author>
<name sortKey="Tang, S" uniqKey="Tang S">S Tang</name>
</author>
<author>
<name sortKey="Xiao, Y" uniqKey="Xiao Y">Y Xiao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Madden, Lv" uniqKey="Madden L">LV Madden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Majumder, Ms" uniqKey="Majumder M">MS Majumder</name>
</author>
<author>
<name sortKey="Rivers, C" uniqKey="Rivers C">C Rivers</name>
</author>
<author>
<name sortKey="Lofgren, E" uniqKey="Lofgren E">E Lofgren</name>
</author>
<author>
<name sortKey="Fisman, D" uniqKey="Fisman D">D Fisman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mostaco Guidolin, Lc" uniqKey="Mostaco Guidolin L">LC Mostaço-Guidolin</name>
</author>
<author>
<name sortKey="Bowman, Cs" uniqKey="Bowman C">CS Bowman</name>
</author>
<author>
<name sortKey="Greer, Al" uniqKey="Greer A">AL Greer</name>
</author>
<author>
<name sortKey="Fisman, Dn" uniqKey="Fisman D">DN Fisman</name>
</author>
<author>
<name sortKey="Moghadas, Sm" uniqKey="Moghadas S">SM Moghadas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mostaco Guidolin, Lc" uniqKey="Mostaco Guidolin L">LC Mostaço-Guidolin</name>
</author>
<author>
<name sortKey="Greer, A" uniqKey="Greer A">A Greer</name>
</author>
<author>
<name sortKey="Sander, B" uniqKey="Sander B">B Sander</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Moghadas, Sm" uniqKey="Moghadas S">SM Moghadas</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nishiura, H" uniqKey="Nishiura H">H Nishiura</name>
</author>
<author>
<name sortKey="Miyamatsu, Y" uniqKey="Miyamatsu Y">Y Miyamatsu</name>
</author>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Saitoh, M" uniqKey="Saitoh M">M Saitoh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Poletto, C" uniqKey="Poletto C">C Poletto</name>
</author>
<author>
<name sortKey="Pelat, C" uniqKey="Pelat C">C Pelat</name>
</author>
<author>
<name sortKey="Levy Bruhl, D" uniqKey="Levy Bruhl D">D Levy-Bruhl</name>
</author>
<author>
<name sortKey="Yazdanpanah, Y" uniqKey="Yazdanpanah Y">Y Yazdanpanah</name>
</author>
<author>
<name sortKey="Boelle, Py" uniqKey="Boelle P">PY Boelle</name>
</author>
<author>
<name sortKey="Colizza, V" uniqKey="Colizza V">V Colizza</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Razum, O" uniqKey="Razum O">O Razum</name>
</author>
<author>
<name sortKey="Becher, H" uniqKey="Becher H">H Becher</name>
</author>
<author>
<name sortKey="Kapaun, A" uniqKey="Kapaun A">A Kapaun</name>
</author>
<author>
<name sortKey="Junghanss, T" uniqKey="Junghanss T">T Junghanss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richards, Fj" uniqKey="Richards F">FJ Richards</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Donnelly, Ca" uniqKey="Donnelly C">CA Donnelly</name>
</author>
<author>
<name sortKey="Ghani, Ac" uniqKey="Ghani A">AC Ghani</name>
</author>
<author>
<name sortKey="Abu Raddad, Lj" uniqKey="Abu Raddad L">LJ Abu-Raddad</name>
</author>
<author>
<name sortKey="Hedley, Aj" uniqKey="Hedley A">AJ Hedley</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
<author>
<name sortKey="Ho, Lm" uniqKey="Ho L">LM Ho</name>
</author>
<author>
<name sortKey="Lam, Th" uniqKey="Lam T">TH Lam</name>
</author>
<author>
<name sortKey="Thach, Tq" uniqKey="Thach T">TQ Thach</name>
</author>
<author>
<name sortKey="Chau, P" uniqKey="Chau P">P Chau</name>
</author>
<author>
<name sortKey="Chan, Kp" uniqKey="Chan K">KP Chan</name>
</author>
<author>
<name sortKey="Lo, Sv" uniqKey="Lo S">SV Lo</name>
</author>
<author>
<name sortKey="Leung, Py" uniqKey="Leung P">PY Leung</name>
</author>
<author>
<name sortKey="Tsang, T" uniqKey="Tsang T">T Tsang</name>
</author>
<author>
<name sortKey="Ho, W" uniqKey="Ho W">W Ho</name>
</author>
<author>
<name sortKey="Lee, Kh" uniqKey="Lee K">KH Lee</name>
</author>
<author>
<name sortKey="Lau, Emc" uniqKey="Lau E">EMC Lau</name>
</author>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Anderson, Rm" uniqKey="Anderson R">RM Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Segarra, J" uniqKey="Segarra J">J Segarra</name>
</author>
<author>
<name sortKey="Jeger, Mj" uniqKey="Jeger M">MJ Jeger</name>
</author>
<author>
<name sortKey="Van Den Bosch, F" uniqKey="Van Den Bosch F">F Van den Bosch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J Wallinga</name>
</author>
<author>
<name sortKey="Lipsitch, M" uniqKey="Lipsitch M">M Lipsitch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Xs" uniqKey="Wang X">XS Wang</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, It" uniqKey="Yu I">IT Yu</name>
</author>
<author>
<name sortKey="Li, Y" uniqKey="Li Y">Y Li</name>
</author>
<author>
<name sortKey="Wong, Tw" uniqKey="Wong T">TW Wong</name>
</author>
<author>
<name sortKey="Tam, W" uniqKey="Tam W">W Tam</name>
</author>
<author>
<name sortKey="Chan, At" uniqKey="Chan A">AT Chan</name>
</author>
<author>
<name sortKey="Lee, Jh" uniqKey="Lee J">JH Lee</name>
</author>
<author>
<name sortKey="Leung, Dy" uniqKey="Leung D">DY Leung</name>
</author>
<author>
<name sortKey="Ho, T" uniqKey="Ho T">T Ho</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhou, G" uniqKey="Zhou G">G Zhou</name>
</author>
<author>
<name sortKey="Yan, G" uniqKey="Yan G">G Yan</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PeerJ</journal-id>
<journal-id journal-id-type="iso-abbrev">PeerJ</journal-id>
<journal-id journal-id-type="pmc">PeerJ</journal-id>
<journal-id journal-id-type="publisher-id">PeerJ</journal-id>
<journal-title-group>
<journal-title>PeerJ</journal-title>
</journal-title-group>
<issn pub-type="epub">2167-8359</issn>
<publisher>
<publisher-name>PeerJ Inc.</publisher-name>
<publisher-loc>San Francisco, USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26713252</article-id>
<article-id pub-id-type="pmc">4690341</article-id>
<article-id pub-id-type="publisher-id">1505</article-id>
<article-id pub-id-type="doi">10.7717/peerj.1505</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Mathematical Biology</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Epidemiology</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Infectious Diseases</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Public Health</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling</article-title>
</title-group>
<contrib-group>
<contrib id="author-1" contrib-type="author" corresp="yes">
<name>
<surname>Hsieh</surname>
<given-names>Ying-Hen</given-names>
</name>
<xref ref-type="aff" rid="aff-1">1</xref>
<email>hsieh@mail.cmu.edu.tw</email>
</contrib>
<aff id="aff-1">
<institution>Department of Public Health and Center for Infectious Disease Education and Research,China Medical University</institution>
,
<addr-line>Taichung</addr-line>
,
<country>Taiwan</country>
</aff>
</contrib-group>
<contrib-group>
<contrib id="editor-1" contrib-type="editor">
<name>
<surname>Althaus</surname>
<given-names>Christian</given-names>
</name>
</contrib>
</contrib-group>
<pub-date pub-type="epub" date-type="pub" iso-8601-date="2015-12-17">
<day>17</day>
<month>12</month>
<year iso-8601-date="2015">2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>3</volume>
<elocation-id>e1505</elocation-id>
<history>
<date date-type="received" iso-8601-date="2015-08-18">
<day>18</day>
<month>8</month>
<year iso-8601-date="2015">2015</year>
</date>
<date date-type="accepted" iso-8601-date="2015-11-24">
<day>24</day>
<month>11</month>
<year iso-8601-date="2015">2015</year>
</date>
</history>
<permissions>
<copyright-statement>©2015 Hsieh</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Hsieh</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.</license-p>
</license>
</permissions>
<self-uri xlink:href="https://peerj.com/articles/1505"></self-uri>
<abstract>
<p>
<bold>Background</bold>
. Since the emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, more than 1,300 laboratory confirmed cases of MERS-CoV infections have been reported in Asia, North Africa, and Europe by July 2015. The recent MERS-CoV nosocomial outbreak in South Korea quickly became the second largest such outbreak with 186 total cases and 36 deaths in a little more than one month, second only to Saudi Arabia in country-specific number of reported cases.</p>
<p>
<bold>Methods</bold>
. We use a simple mathematical model, the Richards model, to trace the temporal course of the South Korea MERS-CoV outbreak. We pinpoint its outbreak turning point and its transmissibility via basic reproduction number
<italic>R</italic>
<sub>0</sub>
in order to ascertain the occurrence of this nosocomial outbreak and how it was quickly brought under control.</p>
<p>
<bold>Results</bold>
. The estimated outbreak turning point of
<italic>t
<sub>i</sub>
</italic>
= 23.3 days (95% CI [22.6–24.0]), or 23–24 days after the onset date of the index case on May 11, pinpoints June 3–4 as the time of the turning point or the peak incidence for this outbreak by onset date.
<italic>R</italic>
<sub>0</sub>
is estimated to range between 7.0 and 19.3.</p>
<p>
<bold>Discussion and Conclusion</bold>
. The turning point of the South Korea MERS-CoV outbreak occurred around May 27–29, when control measures were quickly implemented after laboratory confirmation of the first cluster of nosocomial infections by the index patient. Furthermore, transmissibility of MERS-CoV in the South Korea outbreak was significantly higher than those reported from past MERS-CoV outbreaks in the Middle East, which is attributable to the nosocomial nature of this outbreak. Our estimate of
<italic>R</italic>
<sub>0</sub>
for the South Korea MERS-CoV nosocomial outbreak further highlights the importance and the risk involved in cluster infections and superspreading events in crowded settings such as hospitals. Similar to the 2003 SARS epidemic, outbreaks of infectious diseases with low community transmissibility like MERS-CoV could still occur initially with large clusters of nosocomial infections, but can be quickly and effectively controlled with timely intervention measures.</p>
</abstract>
<kwd-group kwd-group-type="author">
<kwd>Basic reproduction number</kwd>
<kwd>South Korea</kwd>
<kwd>MERS-CoV</kwd>
<kwd>Nosocomial infection</kwd>
<kwd>Outbreak turning point</kwd>
<kwd>Mathematical model</kwd>
</kwd-group>
<funding-group>
<award-group id="fund-1">
<funding-source>Taiwan Ministry of Science and Technology (MOST)</funding-source>
<award-id>103-2314-B-039-010-MY3</award-id>
<award-id>103-2115-M-039-002-MY2</award-id>
</award-group>
<funding-statement>YHH is funded by Taiwan Ministry of Science and Technology (MOST) grants (103-2314-B-039-010-MY3 and 103-2115-M-039-002-MY2). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>Introduction</title>
<p>From 2012 to June 19 2015, 1,368 laboratory-confirmed human cases of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Asia, Europe, the United States, and North Africa have been reported to the World Health Organization (WHO), including at least 487 deaths (
<xref rid="ref-35" ref-type="bibr">World Health Organization , 2015a</xref>
). Recently, a MERS-CoV outbreak in South Korea emerged when an index case returned home on May 4 after traveling in the Middle East and developed clinical symptoms for MERS-CoV a week later. Subsequent hospitalization in two hospitals respectively between May 15–17 and May 17–20 without sufficient isolation led to numerous nosocomial transmissions in both hospitals.</p>
<p>Although the index case was later tested positive for MERS-CoV on May 20 and subsequently adequately isolated, several secondary clusters of infections in other hospitals caused by patients from this first cluster of infected contacts had already occurred (
<xref rid="ref-36" ref-type="bibr">World Health Organization, 2015b</xref>
;
<xref rid="ref-7" ref-type="bibr">Cowling et al., 2015</xref>
), leading to more tertiary transmissions. By July 6, a total of 186 MERS-CoV cases and 36 deaths have been reported, including one case that was confirmed after arriving in China. However, no new case has been reported since, providing indication that the outbreak might be nearing its end. In this work we will make use of a simple mathematical model, the Richards model, to fit the daily epicurve of this outbreak, in order to trace its temporal course, to pinpoint its turning point, and to estimate its transmissibility for nosocomial infections.</p>
</sec>
<sec sec-type="materials|methods">
<title>Materials & Methods</title>
<sec>
<title>Data</title>
<p>166 South Korean MERS-CoV reported cases by onset date from May 11 to June 14, including one reported in China that we use in this study is obtained from the laboratory confirmed cases in Republic of Korea and China MERS-CoV epicurve, which is publicly accessible from the WHO website (
<xref rid="ref-37" ref-type="bibr">World Health Organization, 2015c</xref>
) and provided in (
<xref ref-type="supplementary-material" rid="supp-2">Table S1</xref>
). The onset date for every laboratory confirmed case is available; including the case that was confirmed in China. Cases reported with onset after June 14 were found to have no impact on our quantitative results and hence is not used in this study.</p>
</sec>
<sec>
<title>Richards model</title>
<p>In the context of infectious disease modeling (
<xref rid="ref-14" ref-type="bibr">Hsieh, Lee & Chang, 2004</xref>
;
<xref rid="ref-12" ref-type="bibr">Hsieh & Cheng, 2006</xref>
), the analytic solution of the Richards model (
<xref rid="ref-29" ref-type="bibr">Richards, 1959</xref>
) is of the form
<disp-formula id="eqn-1">
<alternatives>
<graphic xlink:href="peerj-03-1505-e001.jpg" mimetype="image" mime-subtype="png" position="float" orientation="portrait"></graphic>
<tex-math id="M1">\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}\begin{eqnarray*} C(t)=K[1+{\mathrm{e}}^{-r a(t-{t}_{i}-(\ln a){}r a)}]^{-1{}a}, \end{eqnarray*}\end{document}</tex-math>
<mml:math id="mml-eqn-1">
<mml:mstyle displaystyle="true">
<mml:mi>C</mml:mi>
<mml:mrow>
<mml:mfenced separators="" open="(" close=")">
<mml:mi>t</mml:mi>
</mml:mfenced>
</mml:mrow>
<mml:mo>=</mml:mo>
<mml:mi>K</mml:mi>
<mml:msup>
<mml:mrow>
<mml:mrow>
<mml:mfenced separators="" open="[" close="]">
<mml:mn>1</mml:mn>
<mml:mo>+</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi mathvariant="normal">e</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mi>r</mml:mi>
<mml:mi>a</mml:mi>
<mml:mrow>
<mml:mfenced separators="" open="(" close=")">
<mml:mi>t</mml:mi>
<mml:mo></mml:mo>
<mml:msub>
<mml:mrow>
<mml:mi>t</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mi>i</mml:mi>
</mml:mrow>
</mml:msub>
<mml:mo></mml:mo>
<mml:mrow>
<mml:mfenced separators="" open="(" close=")">
<mml:mo>ln</mml:mo>
<mml:mi>a</mml:mi>
</mml:mfenced>
</mml:mrow>
<mml:mo></mml:mo>
<mml:mi>r</mml:mi>
<mml:mi>a</mml:mi>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
</mml:msup>
</mml:mfenced>
</mml:mrow>
</mml:mrow>
<mml:mrow>
<mml:mo></mml:mo>
<mml:mn>1</mml:mn>
<mml:mo></mml:mo>
<mml:mi>a</mml:mi>
</mml:mrow>
</mml:msup>
<mml:mo>,</mml:mo>
</mml:mstyle>
</mml:math>
</alternatives>
</disp-formula>
where
<italic>C</italic>
(
<italic>t</italic>
) is the cumulative number of laboratory confirmed cases at day
<italic>t</italic>
, where
<italic>t</italic>
= 0 is May 11, the starting date of the MERS-CoV outbreak.
<italic>K</italic>
is the total case number of the outbreak,
<italic>r</italic>
is the per capita growth rate of the cumulative case number,
<italic>a</italic>
is the exponent of deviation of the cumulative case curve, and
<italic>t
<sub>i</sub>
</italic>
is an outbreak turning point (or the peak), which signifies the exact moment of an upturn or downturn in the rate of increase for the cumulative case number of an outbreak, which is obviously important.</p>
<p>There have been ample studies in literature of epidemic modeling using the Richards model, from earlier applications to plant diseases (e.g.,
<xref rid="ref-22" ref-type="bibr">Madden, 1980</xref>
;
<xref rid="ref-20" ref-type="bibr">Lalancette, Madden & Ellis, 1988</xref>
;
<xref rid="ref-31" ref-type="bibr">Segarra, Jeger & Van den Bosch, 2001</xref>
;
<xref rid="ref-10" ref-type="bibr">Hau & Kosman, 2007</xref>
) to more recently modeling various human diseases (
<xref rid="ref-41" ref-type="bibr">Zhou & Yan, 2003</xref>
;
<xref rid="ref-3" ref-type="bibr">Caceres, Kumma & Wright, 2010</xref>
;
<xref rid="ref-25" ref-type="bibr">Mostaço-Guidolin et al., 2012</xref>
;
<xref rid="ref-33" ref-type="bibr">Wang, Wu & Yang, 2012</xref>
;
<xref rid="ref-4" ref-type="bibr">Chan, Tuite & Fisman, 2013</xref>
;
<xref rid="ref-21" ref-type="bibr">Liu, Tang & Xiao, 2015</xref>
, etc.).</p>
<p>The Richards model is a phenomenological model which describes the growth of the outbreak cumulative case number. Three model parameters of epidemiological importance are
<italic>K</italic>
,
<italic>r</italic>
, and the turning point
<italic>t
<sub>i</sub>
</italic>
of the epidemic, which can be estimated by fitting the Richards model to the epicurve of the outbreak, using any standard software with nonlinear least-squares (NLS) approximation subroutine, e.g., SAS (which is used in this work) or MATLAB. Applications of the Richards model on various infectious disease outbreaks such as pandemic influenza and HIV can be found in, e.g.,
<xref rid="ref-16" ref-type="bibr">Hsieh et al. (2011)</xref>
or
<xref rid="ref-11" ref-type="bibr">Hsieh (2013)</xref>
.</p>
</sec>
<sec>
<title>Reproduction number</title>
<p>The formula for the basic reproduction number
<italic>R</italic>
<sub>0</sub>
, the average number of secondary infectious cases produced by an infectious case in a totally susceptible population in the absence of specific control measures, is given by
<italic>R</italic>
<sub>0</sub>
= exp(
<italic>rT</italic>
), where
<italic>r</italic>
is the growth rate we estimate from the Richards model fitting and
<italic>T</italic>
is the serial interval of the disease, or the average interval from onset time of one individual to the onset time of another individual infected by him/her. It has been shown mathematically (
<xref rid="ref-32" ref-type="bibr">Wallinga & Lipsitch, 2007</xref>
) that, given the growth rate
<italic>r</italic>
, the expression
<italic>R</italic>
<sub>0</sub>
= exp(
<italic>rT</italic>
) provides an upper bound for basic reproduction number over estimates obtained from all assumed distributions of the serial interval
<italic>T</italic>
. Note also that the Richards model is sometimes given in its differential equation form (
<xref rid="ref-14" ref-type="bibr">Hsieh, Lee & Chang, 2004</xref>
), which can be fitted to the daily incidence data (i.e., the rate of change of the cumulative data).</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<p>The Richards model provides a good fit to the daily South Korea MERS-CoV case data by onset date from May 11 to June 14 (see
<xref ref-type="fig" rid="fig-1">Fig. 1</xref>
), a total of 166 reported cases. The estimated parameters values of the model fit with 95% confidence intervals (CI) are given in
<xref ref-type="table" rid="table-1">Table 1</xref>
. The parameter estimates and the 95% CIs were obtained using the NLIN subroutine in SAS, a nonlinear least-squared approximation routine. The resulting 95% CI is a measure of uncertainty for the parameter estimation but not for the errors in model fit, which conceivably could be much larger.</p>
<p>The estimated outbreak turning point of
<italic>t
<sub>i</sub>
</italic>
= 23.3 days (95% CI [22.6–24.0]), or 23–24 days after the onset date of the index case on May 11, pinpoints to June 3–4 as the time of the turning point or the peak incidence for this outbreak by onset date.
<fig id="fig-1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7717/peerj.1505/fig-1</object-id>
<label>Figure 1</label>
<caption>
<title>Model fit of the Richards model to cumulative reported MERS case data by onset date in South Korea, May 11–June 16, 2015.ara.</title>
</caption>
<graphic xlink:href="peerj-03-1505-g001"></graphic>
</fig>
<table-wrap id="table-1" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.7717/peerj.1505/table-1</object-id>
<label>Table 1</label>
<caption>
<title>Summary table of estimated parameter values for model fit of cumulative MERS case data by onset date, 5/11–6/14, 2015, for a total of 166 reported cases, to the Richards model.</title>
<p>The 95% CIs of the estimates are given in parenthesis.</p>
</caption>
<alternatives>
<graphic xlink:href="peerj-03-1505-g002"></graphic>
<table frame="hsides" rules="groups">
<colgroup span="1">
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
<col span="1"></col>
</colgroup>
<thead>
<tr>
<th rowspan="1" colspan="1">Time period</th>
<th rowspan="1" colspan="1">Growth rate
<italic>r</italic>
</th>
<th rowspan="1" colspan="1">Case number
<italic>K</italic>
</th>
<th rowspan="1" colspan="1">Turning point
<italic>t
<sub>i</sub>
</italic>
</th>
<th rowspan="1" colspan="1">Basic reproduction‘ number
<italic>R</italic>
<sub>0</sub>
</th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="1" colspan="1">5/11–6/14</td>
<td rowspan="1" colspan="1">0.194 (0.161∼0.226)</td>
<td rowspan="1" colspan="1">167 (160∼175)</td>
<td rowspan="1" colspan="1">23.3 (22.6∼24.0)</td>
<td rowspan="1" colspan="1">11.5 (7.0∼19.3)</td>
</tr>
</tbody>
</table>
</alternatives>
</table-wrap>
For computation of the basic reproduction number
<italic>R</italic>
<sub>0</sub>
, we make use of the point estimate and 95% CI of the serial interval for South Korea MERS-CoV outbreak,
<italic>T</italic>
= 12.6 days (95% CI [12.1–13.1]), reported by
<xref rid="ref-7" ref-type="bibr">Cowling et al. (2015)</xref>
. Subsequently,we estimate
<italic>R</italic>
<sub>0</sub>
to be ranging between 7.0 and 19.3.</p>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<p>To locate the turning point of disease transmission, we note that the incubation period of MERS-CoV for this outbreak has been estimated at 6.7 days (95% CI [6.1–7.3]) (
<xref rid="ref-7" ref-type="bibr">Cowling et al., 2015</xref>
). Therefore, we can deduce that the turning point for
<italic>disease infection</italic>
had in fact occurred seven to eight days prior to onset; that is, around May 27–29. Interestingly, it was during this exact time period that a yet unobserved second and even larger cluster of at least 70 infections had occurred among patients, visitors, and staff at another hospital due to contact with Case 14 of the first cluster of infections, who was receiving treatment at the emergency room of this hospital (
<xref rid="ref-7" ref-type="bibr">Cowling et al., 2015</xref>
). Hence, we believe that May 27–29 is the peaking time when the number of infections occurring at the time reaches a maximum and starts to decrease.</p>
<p>We note further that during May 27–29, the 6th–12th cases from the first cluster were tested positive for MERS-CoV, including two health professionals who cared for the index case, while the remaining cases were either patients or their spouse who shared the room with the index patient during May 15–17 (
<xref rid="ref-38" ref-type="bibr">World Health Organization, 2015d</xref>
;
<xref rid="ref-39" ref-type="bibr">World Health Organization, 2015e</xref>
). The timing of the laboratory confirmation of these additional cases from the first cluster of nosocomial infections was instrumentally important in providing sufficient evidence of an emerging outbreak. Subsequently, the Korean authority implemented intervention measures for disease control in these hospitals and for contact tracing in the community (
<xref rid="ref-38" ref-type="bibr">World Health Organization, 2015d</xref>
) with large-scale quarantine and school closings, which led to a decrease in nosocomial transmissions and further prevented its spread to community. Thus, we are able to observe the subsequent downward turning point in case number by onset date during June 3–4.</p>
<p>Basic reproduction number
<italic>R</italic>
<sub>0</sub>
of an infectious disease differs significantly under different settings and mode of transmissions, which is an important factor to consider when it is used to assess the risk of spread of an infectious disease (
<xref rid="ref-8" ref-type="bibr">Fisman, Leung & Lipsitch, 2014</xref>
). Our estimate of
<italic>R</italic>
<sub>0</sub>
for MERS-CoV outbreak in South Korea is significantly higher than earlier estimates of
<italic>R</italic>
<sub>0</sub>
for MERS-CoV outbreaks in Middle East, (e.g.,
<xref rid="ref-2" ref-type="bibr">Breban, Riou & Fontanet, 2013</xref>
;
<xref rid="ref-5" ref-type="bibr">Cauchemez et al., 2014</xref>
;
<xref rid="ref-8" ref-type="bibr">Fisman, Leung & Lipsitch, 2014</xref>
;
<xref rid="ref-27" ref-type="bibr">Poletto et al. 2014</xref>
;
<xref rid="ref-6" ref-type="bibr">Chowell et al. 2014</xref>
;
<xref rid="ref-19" ref-type="bibr">Kucharski & Edmunds, 2015</xref>
;
<xref rid="ref-18" ref-type="bibr">Kucharski & Althaus, 2015</xref>
;
<xref rid="ref-26" ref-type="bibr">Nishiura et al., 2015</xref>
), but closer to that of
<xref rid="ref-23" ref-type="bibr">Majumder et al. (2014)</xref>
. It is likely due to the nosocomial nature of outbreak that was studied in
<xref rid="ref-23" ref-type="bibr">Majumder et al. (2014)</xref>
which is similar to the focus of this study, i.e., the South Korea nosocomial outbreak. It has been suggested that, due to the nosocomial infections that resulted in several large hospital clusters, estimates of basic reproduction number for nosocomial infections and superspreading events (
<xref rid="ref-30" ref-type="bibr">Riley et al., 2003</xref>
) such as the South Korea MERS-CoV outbreak, where three cases were believed to have infected 24–70 cases, would be misleading and inappropriate (
<xref rid="ref-7" ref-type="bibr">Cowling et al., 2015</xref>
;
<xref rid="ref-8" ref-type="bibr">Fisman, Leung & Lipsitch, 2014</xref>
). However, substantial disparity in estimates of
<italic>R</italic>
<sub>0</sub>
for the same viral disease that we observe for this nosocomial outbreak highlights the importance of settings in quantification of disease transmissibility and the risk involved in cluster infections in crowded settings such as healthcare facilities.</p>
<p>Similar to SARS-CoV virus, MERS-CoV is typically transmitted via direct contact or larger virus-laden droplets that travel only a few meters. Moreover, for nosocomial transmissions such as the South Korea MERS-CoV outbreak, hospital settings tend to promote aerosolization of infectious respiratory droplets or other potentially infectious materials in the hospitals, thereby amplifying transmission (
<xref rid="ref-34" ref-type="bibr">World Health Organization, 2003</xref>
). During the 2003 SARS epidemic, when nosocomial infections was a major cause of outbreaks in Hong Kong, Singapore and Taiwan (see, e.g.,
<xref rid="ref-9" ref-type="bibr">Ho & Su, 2004</xref>
or
<xref rid="ref-15" ref-type="bibr">Hsieh et al., 2014</xref>
), most modeling studies estimated
<italic>R</italic>
<sub>0</sub>
for SARS in the range of 2–4 (
<xref rid="ref-34" ref-type="bibr">World Health Organization, 2003</xref>
;
<xref rid="ref-1" ref-type="bibr">Bauch et al., 2005</xref>
), which is relatively high when compared with other wide-spread respiratory infectious diseases such as influenza. However, with prompt interventions, the 2003 SARS epidemic quickly ended in all affected areas in a matter of a few months and has not emerged again; giving indication that SARS virus also had in fact a very low transmissibility
<italic>in community settings</italic>
with the exception of the superspreading event at the Amoy Gardens in Hong Kong (
<xref rid="ref-40" ref-type="bibr">Yu et al., 2004</xref>
). This hypothesis is further affirmed by the recent MERS-CoV outbreak in South Korea, where community spread was effectively prevented with timely intervention measures.</p>
<p>Finally, we note that while using cumulative data tends to have the advantage of smoothing out some of the stochastic variations which often occurs in epidemic data (
<xref rid="ref-13" ref-type="bibr">Hsieh, Fisman & Wu, 2010</xref>
), cumulative data also has the disadvantage of introducing auto-correlation, potentally leading to biased high estimates of
<italic>R</italic>
<sub>0</sub>
(
<xref rid="ref-28" ref-type="bibr">Razum et al., 2003</xref>
). Moreover, model fitting to cumulative disease data could lead to potentially large errors in parameter estimates and subsequently in the corresponding confidence intervals (
<xref rid="ref-17" ref-type="bibr">King et al., 2015</xref>
), which cannot be overlooked when we attempt to interpret the results of modeling studies. For the purpose of comparison, parameter estimation results of fitting the Richards model to daily incidence data is provided in
<xref ref-type="supplementary-material" rid="supp-2">File S1</xref>
which, as can be expected, are very similar to those parameter estimates obtained from the cumulative data (see
<xref ref-type="table" rid="table-1">Table 1</xref>
), but with larger 95% CI ranges.</p>
</sec>
<sec>
<title>Conclusion</title>
<p>MERS-CoV virus is very similar to SARS-CoV with regard to its potential to spread nosocomially. Therefore timely and effective intervention and control measures in the hospitals, as was implemented in this South Korea outbreak, are essential to quickly contain its spread in hospital settings and to prevent its potential spread to the community, and to other countries in the world.</p>
</sec>
<sec sec-type="supplementary-material" id="supplemental-information">
<title>Supplemental Information</title>
<supplementary-material content-type="local-data" id="supp-1">
<object-id pub-id-type="doi">10.7717/peerj.1505/supp-1</object-id>
<label>Table S1</label>
<caption>
<title>South Korea MERS data</title>
</caption>
<media xlink:href="peerj-03-1505-s001.xlsx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
<supplementary-material content-type="local-data" id="supp-2">
<object-id pub-id-type="doi">10.7717/peerj.1505/supp-2</object-id>
<label>File S1</label>
<caption>
<title>The Richards model fitting for daily incidence data</title>
</caption>
<media xlink:href="peerj-03-1505-s002.docx">
<caption>
<p>Click here for additional data file.</p>
</caption>
</media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<p>The author is grateful to the reviewers and the editor for their constructive comments.</p>
</ack>
<sec sec-type="additional-information">
<title>Additional Information and Declarations</title>
<fn-group content-type="competing-interests">
<title>Competing Interests</title>
<fn id="conflict-1" fn-type="conflict">
<p>The author declares there are no competing interests.</p>
</fn>
</fn-group>
<fn-group content-type="author-contributions">
<title>Author Contributions</title>
<fn id="contribution-1" fn-type="con">
<p>
<xref ref-type="contrib" rid="author-1">Ying-Hen Hsieh</xref>
conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote the paper, prepared figures and/or tables, reviewed drafts of the paper, interpret results.</p>
</fn>
</fn-group>
<fn-group content-type="other">
<title>Data Availability</title>
<fn id="addinfo-1" fn-type="other">
<p>The following information was supplied regarding data availability:</p>
<p>The datset is publically accessible from the WHO website:
<uri xlink:href="http://www.who.int/csr/disease/coronavirus_infections/maps-charts/en/">http://www.who.int/csr/disease/coronavirus_infections/maps-charts/en/</uri>
.</p>
</fn>
</fn-group>
</sec>
<ref-list content-type="authoryear">
<title>References</title>
<ref id="ref-1">
<label>Bauch et al. (2005)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bauch</surname>
<given-names>CT</given-names>
</name>
<name>
<surname>Lloyd-Smith</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Coffee</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Galvani</surname>
<given-names>AP</given-names>
</name>
</person-group>
<article-title>Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future</article-title>
<source>Epidemiology</source>
<issue>6</issue>
<year>2005</year>
<volume>16</volume>
<fpage>791</fpage>
<lpage>801</lpage>
<pub-id pub-id-type="doi">10.1097/01.ede.0000181633.80269.4c</pub-id>
<pub-id pub-id-type="pmid">16222170</pub-id>
</element-citation>
</ref>
<ref id="ref-2">
<label>Breban, Riou & Fontanet (2013)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Breban</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Riou</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fontanet</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk</article-title>
<source>Lancet</source>
<year>2013</year>
<volume>382</volume>
<fpage>694</fpage>
<lpage>699</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)61492-0</pub-id>
<pub-id pub-id-type="pmid">23831141</pub-id>
</element-citation>
</ref>
<ref id="ref-3">
<label>Caceres, Kumma & Wright (2010)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Caceres</surname>
<given-names>JLH</given-names>
</name>
<name>
<surname>Kumma</surname>
<given-names>BD</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>An attempt of early prediction and later assessment of the cholera outbreak in Haiti</article-title>
<source>Electronic Journal of Biomedicine</source>
<year>2010</year>
<volume>1</volume>
<fpage>87</fpage>
<lpage>90</lpage>
</element-citation>
</ref>
<ref id="ref-5">
<label>Cauchemez et al. (2014)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Van Kerkhove</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rambaut</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Enouf</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Van der Werf</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility</article-title>
<source>The Lancet Infectious Diseases</source>
<year>2014</year>
<volume>14</volume>
<fpage>50</fpage>
<lpage>56</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(13)70304-9</pub-id>
<pub-id pub-id-type="pmid">24239323</pub-id>
</element-citation>
</ref>
<ref id="ref-4">
<label>Chan, Tuite & Fisman (2013)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>CH</given-names>
</name>
<name>
<surname>Tuite</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Fisman</surname>
<given-names>DN</given-names>
</name>
</person-group>
<article-title>Historical epidemiology of the second cholera pandemic: relevance to present day disease dynamics</article-title>
<source>PLoS ONE</source>
<issue>8</issue>
<year>2013</year>
<volume>8</volume>
<elocation-id>e1505</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0072498</pub-id>
</element-citation>
</ref>
<ref id="ref-6">
<label>Chowell et al. (2014)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Blumberg</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Simonsen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Millera</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission</article-title>
<source>Epidemics</source>
<year>2014</year>
<volume>9</volume>
<fpage>40</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="doi">10.1016/j.epidem.2014.09.011</pub-id>
<pub-id pub-id-type="pmid">25480133</pub-id>
</element-citation>
</ref>
<ref id="ref-7">
<label>Cowling et al. (2015)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Park</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JT</given-names>
</name>
</person-group>
<article-title>Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015</article-title>
<source>Eurosurveillance</source>
<issue>25</issue>
<year>2015</year>
<volume>20</volume>
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2015.20.25.21163</pub-id>
</element-citation>
</ref>
<ref id="ref-8">
<label>Fisman, Leung & Lipsitch (2014)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fisman</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Nuanced risk assessment for emerging infectious diseases</article-title>
<source>Lancet</source>
<issue>9913</issue>
<year>2014</year>
<volume>383</volume>
<fpage>189</fpage>
<lpage>190</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(13)62123-6</pub-id>
<pub-id pub-id-type="pmid">24439726</pub-id>
</element-citation>
</ref>
<ref id="ref-10">
<label>Hau & Kosman (2007)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hau</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kosman</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Comparative analysis of flexible two-parameter models of plant disease epidemics</article-title>
<source>Phytopathology</source>
<issue>10</issue>
<year>2007</year>
<volume>97</volume>
<fpage>1231</fpage>
<lpage>1244</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO-97-10-1231</pub-id>
<pub-id pub-id-type="pmid">18943681</pub-id>
</element-citation>
</ref>
<ref id="ref-9">
<label>Ho & Su (2004)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ho</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Su</surname>
<given-names>IJ</given-names>
</name>
</person-group>
<article-title>Preparing to prevent severe acute respiratory syndrome and other respiratory infections</article-title>
<source>The Lancet Infectious Diseases</source>
<issue>11</issue>
<year>2004</year>
<volume>4</volume>
<fpage>684</fpage>
<lpage>689</lpage>
<pub-id pub-id-type="doi">10.1016/S1473-3099(04)01174-0</pub-id>
<pub-id pub-id-type="pmid">15522680</pub-id>
</element-citation>
</ref>
<ref id="ref-11">
<label>Hsieh (2013)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
</person-group>
<article-title>Ascertaining the 2004–2006 HIV Type 1 CRF07_BC Outbreak among Injecting Drug Users in Taiwan</article-title>
<source>International Journal of Infectious Diseases</source>
<year>2013</year>
<volume>17</volume>
<fpage>e838</fpage>
<lpage>e844</lpage>
<pub-id pub-id-type="doi">10.1016/j.ijid.2013.01.002</pub-id>
<pub-id pub-id-type="pmid">23414736</pub-id>
</element-citation>
</ref>
<ref id="ref-12">
<label>Hsieh & Cheng (2006)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>YS</given-names>
</name>
</person-group>
<article-title>Real-time forecast of multiphase outbreak</article-title>
<source>Emerging Infectious Disease</source>
<year>2006</year>
<volume>12</volume>
<fpage>122</fpage>
<lpage>127</lpage>
<pub-id pub-id-type="doi">10.3201/eid1201.050396</pub-id>
</element-citation>
</ref>
<ref id="ref-13">
<label>Hsieh, Fisman & Wu (2010)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Fisman</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>On epidemic modeling in real time: an application to the 2009 Novel A (H1N1) influenza outbreak in Canada</article-title>
<source>BMC Research Notes</source>
<year>2010</year>
<volume>3</volume>
<fpage>283</fpage>
<pub-id pub-id-type="doi">10.1186/1756-0500-3-283</pub-id>
<pub-id pub-id-type="pmid">21050494</pub-id>
</element-citation>
</ref>
<ref id="ref-14">
<label>Hsieh, Lee & Chang (2004)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>HL</given-names>
</name>
</person-group>
<article-title>SARS epidemiology modeling</article-title>
<source>Emerging Infectious Diseases</source>
<year>2004</year>
<volume>10</volume>
<fpage>1165</fpage>
<lpage>1167</lpage>
<pub-id pub-id-type="doi">10.3201/eid1006.031023</pub-id>
<pub-id pub-id-type="pmid">15224675</pub-id>
</element-citation>
</ref>
<ref id="ref-15">
<label>Hsieh et al. (2014)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Tzeng</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Impact of visitors and hospital staff on nosocomial transmission and spread to community</article-title>
<source>Journal of Theoretical Biology</source>
<year>2014</year>
<volume>356</volume>
<fpage>20</fpage>
<lpage>29</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtbi.2014.04.003</pub-id>
<pub-id pub-id-type="pmid">24727185</pub-id>
</element-citation>
</ref>
<ref id="ref-16">
<label>Hsieh et al. (2011)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Valasco-Hernandez</surname>
<given-names>JX</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>VJ</given-names>
</name>
<name>
<surname>Lim</surname>
<given-names>WY</given-names>
</name>
</person-group>
<article-title>Early outbreak of 2009 influenza A (H1N1) in Mexico prior to identification of pH1N1 virus</article-title>
<source>PLoS ONE</source>
<year>2011</year>
<volume>6</volume>
<elocation-id>e1505</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pone.0023853</pub-id>
</element-citation>
</ref>
<ref id="ref-17">
<label>King et al. (2015)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>King</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Domenech de Cellès</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Magpantay</surname>
<given-names>FM</given-names>
</name>
<name>
<surname>Rohani</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Avoidable errors in the modelling of outbreaks of emerging pathogens, with special reference to Ebola</article-title>
<source>Proceedings of the Royal Society B: Biological Sciences</source>
<issue>1806</issue>
<year>2015</year>
<volume>282</volume>
<fpage>20150347</fpage>
<pub-id pub-id-type="doi">10.1098/rspb.2015.0347</pub-id>
<pub-id pub-id-type="pmid">25833863</pub-id>
</element-citation>
</ref>
<ref id="ref-18">
<label>Kucharski & Althaus (2015)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucharski</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Althaus</surname>
<given-names>CL</given-names>
</name>
</person-group>
<article-title>The role of superspreading in Middle East respiratory syndrome coronavirus (MERS-CoV) transmission</article-title>
<source>Eurosurveillance</source>
<issue>25</issue>
<year>2015</year>
<volume>20</volume>
<fpage>14</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2015.20.25.21167</pub-id>
<pub-id pub-id-type="pmid">26132768</pub-id>
</element-citation>
</ref>
<ref id="ref-19">
<label>Kucharski & Edmunds (2015)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kucharski</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Edmunds</surname>
<given-names>WJ</given-names>
</name>
</person-group>
<article-title>Characterizing the transmission potential of zoonotic infections from minor outbreaks</article-title>
<source>PLoS Computational Biology</source>
<issue>4</issue>
<year>2015</year>
<volume>11</volume>
<elocation-id>e1505</elocation-id>
<pub-id pub-id-type="doi">10.1371/journal.pcbi.1004154</pub-id>
</element-citation>
</ref>
<ref id="ref-20">
<label>Lalancette, Madden & Ellis (1988)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lalancette</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Madden</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>MA</given-names>
</name>
</person-group>
<article-title>A quantitative model for describing the sporulation of Plasmopara viticola on grape leaves</article-title>
<source>Phytopathology</source>
<issue>10</issue>
<year>1988</year>
<volume>78</volume>
<fpage>1316</fpage>
<lpage>1321</lpage>
<pub-id pub-id-type="doi">10.1094/Phyto-78-1316</pub-id>
</element-citation>
</ref>
<ref id="ref-21">
<label>Liu, Tang & Xiao (2015)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Xiao</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Model selection and evaluation based on emerging infectious disease data sets including A/H1N1 and Ebola</article-title>
<source>Computational and Mathematical Methods in Medicine</source>
<year>2015</year>
<volume>2015</volume>
<comment>Article 207105, 14 pages</comment>
<pub-id pub-id-type="doi">10.1155/2015/207105</pub-id>
</element-citation>
</ref>
<ref id="ref-22">
<label>Madden (1980)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madden</surname>
<given-names>LV</given-names>
</name>
</person-group>
<article-title>Quantification of disease progression</article-title>
<source>Protection Ecology</source>
<year>1980</year>
<volume>2</volume>
<fpage>159</fpage>
<lpage>176</lpage>
<pub-id pub-id-type="doi">10.5414/CP201787</pub-id>
</element-citation>
</ref>
<ref id="ref-23">
<label>Majumder et al. (2014)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Majumder</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Rivers</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lofgren</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Fisman</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Estimation of MERS-coronavirus reproductive number and case fatality rate for the spring 2014 Saudi Arabia outbreak: insights from publicly available data</article-title>
<source>PLoS Currents</source>
<year>2014</year>
<volume>6</volume>
<pub-id pub-id-type="doi">10.1371/currents.outbreaks.98d2f8f3382d84f390736cd5f5fe133c</pub-id>
</element-citation>
</ref>
<ref id="ref-24">
<label>Mostaço-Guidolin et al. (2012)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mostaço-Guidolin</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Greer</surname>
<given-names>AL</given-names>
</name>
<name>
<surname>Fisman</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Moghadas</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Transmissibility of the 2009 H1N1 pandemic in remote and isolated Canadian communities: a modelling study</article-title>
<source>BMJ Open</source>
<issue>5</issue>
<year>2012</year>
<volume>2</volume>
<elocation-id>e1505</elocation-id>
<pub-id pub-id-type="doi">10.1136/bmjopen-2012-001614</pub-id>
</element-citation>
</ref>
<ref id="ref-25">
<label>Mostaço-Guidolin et al. (2011)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mostaço-Guidolin</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Greer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Sander</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Moghadas</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>Variability in transmissibility of the 2009 H1N1 pandemic in Canadian communities</article-title>
<source>BMC Research Notes</source>
<year>2011</year>
<volume>4</volume>
<fpage>537</fpage>
<pub-id pub-id-type="doi">10.1186/1756-0500-4-537</pub-id>
<pub-id pub-id-type="pmid">22166307</pub-id>
</element-citation>
</ref>
<ref id="ref-26">
<label>Nishiura et al. (2015)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nishiura</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Miyamatsu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Saitoh</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Assessing the risk of observing multiple generations of Middle East respiratory syndrome (MERS) cases given an imported case</article-title>
<source>Eurosurveillance</source>
<issue>27</issue>
<year>2015</year>
<volume>20</volume>
<fpage>21181</fpage>
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2015.20.27.21181</pub-id>
<pub-id pub-id-type="pmid">26212063</pub-id>
</element-citation>
</ref>
<ref id="ref-27">
<label>Poletto et al. (2014)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Poletto</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Pelat</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Levy-Bruhl</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Yazdanpanah</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Boelle</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Colizza</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Assessment of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic in the Middle East and risk of international spread using a novel maximum likelihood analysis approach</article-title>
<source>Eurosurveillance</source>
<issue>23</issue>
<year>2014</year>
<volume>19</volume>
<fpage>20824</fpage>
<pub-id pub-id-type="doi">10.2807/1560-7917.ES2014.19.23.20824</pub-id>
<pub-id pub-id-type="pmid">24957746</pub-id>
</element-citation>
</ref>
<ref id="ref-28">
<label>Razum et al. (2003)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Razum</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Becher</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Kapaun</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Junghanss</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>SARS, lay epidemiology, and fear</article-title>
<source>Lancet</source>
<issue>9370</issue>
<year>2003</year>
<volume>361</volume>
<fpage>1739</fpage>
<lpage>1740</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(03)13335-1</pub-id>
<pub-id pub-id-type="pmid">12767754</pub-id>
</element-citation>
</ref>
<ref id="ref-29">
<label>Richards (1959)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Richards</surname>
<given-names>FJ</given-names>
</name>
</person-group>
<article-title>A flexible growth function for empirical use</article-title>
<source>Journal of Experimental Botany</source>
<year>1959</year>
<volume>10</volume>
<fpage>290</fpage>
<lpage>300</lpage>
<pub-id pub-id-type="doi">10.1093/jxb/10.2.290</pub-id>
</element-citation>
</ref>
<ref id="ref-30">
<label>Riley et al. (2003)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Donnelly</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Ghani</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Abu-Raddad</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Hedley</surname>
<given-names>AJ</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>TH</given-names>
</name>
<name>
<surname>Thach</surname>
<given-names>TQ</given-names>
</name>
<name>
<surname>Chau</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Tsang</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>EMC</given-names>
</name>
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions</article-title>
<source>Science</source>
<issue>5627</issue>
<year>2003</year>
<volume>300</volume>
<fpage>1961</fpage>
<lpage>1966</lpage>
<pub-id pub-id-type="doi">10.1126/science.1086478</pub-id>
<pub-id pub-id-type="pmid">12766206</pub-id>
</element-citation>
</ref>
<ref id="ref-31">
<label>Segarra, Jeger & van den Bosch (2001)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Segarra</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jeger</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Van den Bosch</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Epidemic dynamics and patterns of plant diseases</article-title>
<source>Phytopathology</source>
<issue>10</issue>
<year>2001</year>
<volume>91</volume>
<fpage>1001</fpage>
<lpage>1010</lpage>
<pub-id pub-id-type="doi">10.1094/PHYTO.2001.91.10.1001</pub-id>
<pub-id pub-id-type="pmid">18944128</pub-id>
</element-citation>
</ref>
<ref id="ref-32">
<label>Wallinga & Lipsitch (2007)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallinga</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Lipsitch</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>How generation intervals shape the relationship between growth rates and reproductive numbers</article-title>
<source>Proceedings of the Royal Society of London B: Biological Sciences</source>
<year>2007</year>
<volume>274</volume>
<fpage>599</fpage>
<lpage>604</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.2006.3754</pub-id>
</element-citation>
</ref>
<ref id="ref-33">
<label>Wang, Wu & Yang (2012)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>XS</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Richards model revisited: validation by and application to infection dynamics</article-title>
<source>Journal of Theoretical Biology</source>
<year>2012</year>
<volume>313</volume>
<fpage>12</fpage>
<lpage>19</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtbi.2012.07.024</pub-id>
<pub-id pub-id-type="pmid">22889641</pub-id>
</element-citation>
</ref>
<ref id="ref-34">
<label>World Health Organization (2003)</label>
<element-citation publication-type="other">
<person-group>
<collab>
<institution>World Health Organization (WHO)</institution>
</collab>
</person-group>
<article-title>Consensus document on the epidemiology of severe acute respiratory syndrome (SARS)</article-title>
<year>2003</year>
<comment>
<italic>Available at
<uri xlink:href="http://www.who.int/csr/sars/en/WHOconsensus.pdf">http://www.who.int/csr/sars/en/WHOconsensus.pdf</uri>
</italic>
(accessed 23 July 2015)</comment>
</element-citation>
</ref>
<ref id="ref-35">
<label>World Health Organization (2015a)</label>
<element-citation publication-type="other">
<person-group>
<collab>World Health Organization (WHO)</collab>
</person-group>
<article-title>Situation assessment: Middle East respiratory syndrome coronavirus (MERS-CoV): Summary and Risk Assessment of Current Situation in the Republic of Korea and China—7 July 2015</article-title>
<year>2015a</year>
<comment>
<italic>Available at
<uri xlink:href="http://apps.who.int/iris/bitstream/10665/179184/2/WHO_MERS_RA_15.1_eng.pdf?ua=1">http://apps.who.int/iris/bitstream/10665/179184/2/WHO_MERS_RA_15.1_eng.pdf?ua=1</uri>
</italic>
(accessed 3 August 2015)</comment>
</element-citation>
</ref>
<ref id="ref-36">
<label>World Health Organization (2015b)</label>
<element-citation publication-type="other">
<person-group>
<collab>World Health Organization (WHO)</collab>
</person-group>
<article-title>Disease outbreak news: Middle East respiratory syndrome coronavirus (MERS-CoV) in the Republic of Korea, June 9 2015</article-title>
<year>2015b</year>
<comment>
<italic>Available at
<uri xlink:href="http://www.who.int/csr/don/09-june-2015-mers-korea/en/">http://www.who.int/csr/don/09-june-2015-mers-korea/en/</uri>
</italic>
(accessed 13 October 2015)</comment>
</element-citation>
</ref>
<ref id="ref-37">
<label>World Health Organization (2015c)</label>
<element-citation publication-type="other">
<person-group>
<collab>World Health Organization (WHO)</collab>
</person-group>
<article-title>Middle East respiratory syndrome coronavirus (MERS-CoV) maps and epicurves, June 17</article-title>
<year>2015c</year>
<comment>
<italic>Available at
<uri xlink:href="http://www.who.int/csr/disease/coronavirus_infections/maps-charts/en/">http://www.who.int/csr/disease/coronavirus_infections/maps-charts/en/</uri>
</italic>
(accessed 18 June 2015)</comment>
</element-citation>
</ref>
<ref id="ref-38">
<label>World Health Organization (2015d)</label>
<element-citation publication-type="other">
<person-group>
<collab>World Health Organization (WHO)</collab>
</person-group>
<article-title>Disease outbreak news: Middle East respiratory syndrome coronavirus (MERS-CoV) in the Republic of Korea, May 30 2015</article-title>
<year>2015d</year>
<comment>
<italic>Available at
<uri xlink:href="http://www.who.int/csr/don/30-may-2015-mers-korea/en/">http://www.who.int/csr/don/30-may-2015-mers-korea/en/</uri>
</italic>
(accessed 8 October 2015)</comment>
</element-citation>
</ref>
<ref id="ref-39">
<label>World Health Organization (2015e)</label>
<element-citation publication-type="other">
<person-group>
<collab>World Health Organization (WHO)</collab>
</person-group>
<article-title>Disease outbreak news: Middle East respiratory syndrome coronavirus (MERS-CoV) in the Republic of Korea, May 31 2015</article-title>
<year>2015e</year>
<comment>
<italic>Available at
<uri xlink:href="http://www.who.int/csr/don/31-may-2015-mers-korea/en/">http://www.who.int/csr/don/31-may-2015-mers-korea/en/</uri>
</italic>
(accessed 13 October 2015)</comment>
</element-citation>
</ref>
<ref id="ref-40">
<label>Yu et al. (2004)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>IT</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>TW</given-names>
</name>
<name>
<surname>Tam</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>AT</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>DY</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>Evidence of airborne transmission of the severe acute respiratory syndrome virus</article-title>
<source>New England Journal of Medicine</source>
<issue>17</issue>
<year>2004</year>
<volume>350</volume>
<fpage>1731</fpage>
<lpage>1739</lpage>
<pub-id pub-id-type="doi">10.1056/NEJMoa032867</pub-id>
<pub-id pub-id-type="pmid">15102999</pub-id>
</element-citation>
</ref>
<ref id="ref-41">
<label>Zhou & Yan (2003)</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zhou</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome epidemic in Asia</article-title>
<source>Emerging Infectious Diseases</source>
<year>2003</year>
<volume>2003</volume>
<issue>9</issue>
<fpage>1608</fpage>
<lpage>1610</lpage>
<pub-id pub-id-type="pmid">14720403</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000054  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021