Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes

Identifieur interne : 000003 ( PascalFrancis/Curation ); précédent : 000002; suivant : 000004

Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes

Auteurs : D. M. Theisen [Luxembourg (pays), Allemagne] ; F. B. Bouche [Luxembourg (pays), Belgique] ; K. C. El Kasmi [Luxembourg (pays), Allemagne] ; I. Von Der Ahe [Luxembourg (pays), Allemagne] ; W. Ammerlaan [Luxembourg (pays)] ; S. Demotz [Suisse] ; C. P. Muller [Luxembourg (pays), Allemagne]

Source :

RBID : Pascal:01-0262336

Descripteurs français

English descriptors

Abstract

To investigate a strategy for the design of chimeric antigens based on B cell epitopes (BCEs) we have genetically recombined multiple copies of loop- (L) and helix-forming (H) sequential and protective BCEs of the measles virus hemagglutinin protein (MVH) in a number of high-molecular-weight polyepitope constructs (24.5-45.5 kDa). The BCE cassettes were combined semi-randomly together with a promiscuous T cell epitope (TCE; tt830-844) to yield 13 different permutational constructs. When expressed in mammalian cells, all constructs were detectable by Western blot as distinct bands of predicted molecular weight. Flow cytometry with conformation-specific antibodies revealed the Cys-loop in two [(L4T4)2 and (L2T2)4] and the helix conformation in one [(H2T2)4] of the different permutational constructs. The larger constructs, containing 16 epitope cassettes, seemed more likely to express the BCEs in their native conformation than the 8-mers. In the T cell proliferation assay, constructs with a higher copy number of TCEs, such as (L2T2)4 were more antigenic, as long as tandem repeats were separated by spacers. Since the conformation of even sequential BCEs and the processing of TCEs are both sensitive to their molecular environment it is difficult to predict the antigenic properties of polyepitopes. However, with the permutational approach we have developed several polyepitope constructs [(L4T4)2, (L2T2)4, (H2T2)4] based on complex sequential BCEs that are antigenic for both T and B cells. Several constructs induced sera that reacted with reporter peptides, demonstrating that the sequential nature of the viral epitopes was conserved in the polyepitopes. Although several sera contained antibodies directed against amino acids critical for neutralization, only one construct induced antibodies that cross-reacted with the virus. Our results show the difficulty of designing chimeric antigens based on B cell epitopes mimicking their antigenic and immunologic properties even when these are sequential in nature.
pA  
A01 01  1    @0 0022-1759
A02 01      @0 JIMMBG
A03   1    @0 J. immunol. methods
A05       @2 242
A06       @2 1-2
A08 01  1  ENG  @1 Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes
A11 01  1    @1 THEISEN (D. M.)
A11 02  1    @1 BOUCHE (F. B.)
A11 03  1    @1 EL KASMI (K. C.)
A11 04  1    @1 VON DER AHE (I.)
A11 05  1    @1 AMMERLAAN (W.)
A11 06  1    @1 DEMOTZ (S.)
A11 07  1    @1 MULLER (C. P.)
A14 01      @1 Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102 @2 1011 Luxembourg @3 LUX @Z 1 aut. @Z 2 aut. @Z 3 aut. @Z 4 aut. @Z 5 aut. @Z 7 aut.
A14 02      @1 Fakultät für Biologie, University of Tübingen @2 Tübingen @3 DEU @Z 1 aut.
A14 03      @1 Service de Génétique Appliquée, Université Libre de Bruxelles @2 Nivelles @3 BEL @Z 2 aut.
A14 04      @1 Medizinische Fakultät, University of Tübingen @2 Tübingen @3 DEU @Z 3 aut. @Z 4 aut. @Z 7 aut.
A14 05      @1 Institut de Biochemie, University of Lausanne @2 Epalinges @3 CHE @Z 6 aut.
A20       @1 145-157
A21       @1 2000
A23 01      @0 ENG
A43 01      @1 INIST @2 15654 @5 354000090666720140
A44       @0 0000 @1 © 2001 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 01-0262336
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of immunological methods
A66 01      @0 NLD
C01 01    ENG  @0 To investigate a strategy for the design of chimeric antigens based on B cell epitopes (BCEs) we have genetically recombined multiple copies of loop- (L) and helix-forming (H) sequential and protective BCEs of the measles virus hemagglutinin protein (MVH) in a number of high-molecular-weight polyepitope constructs (24.5-45.5 kDa). The BCE cassettes were combined semi-randomly together with a promiscuous T cell epitope (TCE; tt830-844) to yield 13 different permutational constructs. When expressed in mammalian cells, all constructs were detectable by Western blot as distinct bands of predicted molecular weight. Flow cytometry with conformation-specific antibodies revealed the Cys-loop in two [(L4T4)2 and (L2T2)4] and the helix conformation in one [(H2T2)4] of the different permutational constructs. The larger constructs, containing 16 epitope cassettes, seemed more likely to express the BCEs in their native conformation than the 8-mers. In the T cell proliferation assay, constructs with a higher copy number of TCEs, such as (L2T2)4 were more antigenic, as long as tandem repeats were separated by spacers. Since the conformation of even sequential BCEs and the processing of TCEs are both sensitive to their molecular environment it is difficult to predict the antigenic properties of polyepitopes. However, with the permutational approach we have developed several polyepitope constructs [(L4T4)2, (L2T2)4, (H2T2)4] based on complex sequential BCEs that are antigenic for both T and B cells. Several constructs induced sera that reacted with reporter peptides, demonstrating that the sequential nature of the viral epitopes was conserved in the polyepitopes. Although several sera contained antibodies directed against amino acids critical for neutralization, only one construct induced antibodies that cross-reacted with the virus. Our results show the difficulty of designing chimeric antigens based on B cell epitopes mimicking their antigenic and immunologic properties even when these are sequential in nature.
C02 01  X    @0 002A05C10
C03 01  X  FRE  @0 Lymphocyte T @5 01
C03 01  X  ENG  @0 T-Lymphocyte @5 01 @6 «T»-Lymphocyte
C03 01  X  SPA  @0 Linfocito T @5 01
C03 02  X  FRE  @0 Lymphocyte B @5 02
C03 02  X  ENG  @0 B-Lymphocyte @5 02 @6 «B»-Lymphocyte
C03 02  X  SPA  @0 Linfocito B @5 02
C03 03  X  FRE  @0 Déterminant antigénique @5 03
C03 03  X  ENG  @0 Antigenic determinant @5 03
C03 03  X  SPA  @0 Determinante antigénico @5 03
C03 04  X  FRE  @0 Virus rougeole @2 NW @5 04
C03 04  X  ENG  @0 Measles virus @2 NW @5 04
C03 04  X  SPA  @0 Measles virus @2 NW @5 04
C03 05  X  FRE  @0 Antigène @5 05
C03 05  X  ENG  @0 Antigen @5 05
C03 05  X  SPA  @0 Antígeno @5 05
C03 06  X  FRE  @0 Chimère @5 06
C03 06  X  ENG  @0 Chimera @5 06
C03 06  X  SPA  @0 Quimera @5 06
C03 07  X  FRE  @0 Protéine @5 07
C03 07  X  ENG  @0 Protein @5 07
C03 07  X  SPA  @0 Proteína @5 07
C03 08  X  FRE  @0 Hémagglutinine @5 08
C03 08  X  ENG  @0 Hemagglutinin @5 08
C03 08  X  SPA  @0 Hemoaglutinina @5 08
C03 09  X  FRE  @0 Structure hélice @5 09
C03 09  X  ENG  @0 Helical structure @5 09
C03 09  X  SPA  @0 Estructura helicoidal @5 09
C03 10  X  FRE  @0 Antigénicité @5 10
C03 10  X  ENG  @0 Antigenicity @5 10
C03 10  X  SPA  @0 Antigenicidad @5 10
C07 01  X  FRE  @0 Morbillivirus @2 NW
C07 01  X  ENG  @0 Morbillivirus @2 NW
C07 01  X  SPA  @0 Morbillivirus @2 NW
C07 02  X  FRE  @0 Paramyxovirinae @2 NW
C07 02  X  ENG  @0 Paramyxovirinae @2 NW
C07 02  X  SPA  @0 Paramyxovirinae @2 NW
C07 03  X  FRE  @0 Paramyxoviridae @2 NW
C07 03  X  ENG  @0 Paramyxoviridae @2 NW
C07 03  X  SPA  @0 Paramyxoviridae @2 NW
C07 04  X  FRE  @0 Mononegavirales @2 NW
C07 04  X  ENG  @0 Mononegavirales @2 NW
C07 04  X  SPA  @0 Mononegavirales @2 NW
C07 05  X  FRE  @0 Virus @2 NW
C07 05  X  ENG  @0 Virus @2 NW
C07 05  X  SPA  @0 Virus @2 NW
C07 06  X  FRE  @0 Glycoprotéine @5 28
C07 06  X  ENG  @0 Glycoprotein @5 28
C07 06  X  SPA  @0 Glicoproteína @5 28
N21       @1 183

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:01-0262336

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes</title>
<author>
<name sortKey="Theisen, D M" sort="Theisen, D M" uniqKey="Theisen D" first="D. M." last="Theisen">D. M. Theisen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Fakultät für Biologie, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Bouche, F B" sort="Bouche, F B" uniqKey="Bouche F" first="F. B." last="Bouche">F. B. Bouche</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Service de Génétique Appliquée, Université Libre de Bruxelles</s1>
<s2>Nivelles</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="El Kasmi, K C" sort="El Kasmi, K C" uniqKey="El Kasmi K" first="K. C." last="El Kasmi">K. C. El Kasmi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Von Der Ahe, I" sort="Von Der Ahe, I" uniqKey="Von Der Ahe I" first="I." last="Von Der Ahe">I. Von Der Ahe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Ammerlaan, W" sort="Ammerlaan, W" uniqKey="Ammerlaan W" first="W." last="Ammerlaan">W. Ammerlaan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
</author>
<author>
<name sortKey="Demotz, S" sort="Demotz, S" uniqKey="Demotz S" first="S." last="Demotz">S. Demotz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut de Biochemie, University of Lausanne</s1>
<s2>Epalinges</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Muller, C P" sort="Muller, C P" uniqKey="Muller C" first="C. P." last="Muller">C. P. Muller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0262336</idno>
<date when="2000">2000</date>
<idno type="stanalyst">PASCAL 01-0262336 INIST</idno>
<idno type="RBID">Pascal:01-0262336</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000091</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000003</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes</title>
<author>
<name sortKey="Theisen, D M" sort="Theisen, D M" uniqKey="Theisen D" first="D. M." last="Theisen">D. M. Theisen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Fakultät für Biologie, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Bouche, F B" sort="Bouche, F B" uniqKey="Bouche F" first="F. B." last="Bouche">F. B. Bouche</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Service de Génétique Appliquée, Université Libre de Bruxelles</s1>
<s2>Nivelles</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
</affiliation>
</author>
<author>
<name sortKey="El Kasmi, K C" sort="El Kasmi, K C" uniqKey="El Kasmi K" first="K. C." last="El Kasmi">K. C. El Kasmi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Von Der Ahe, I" sort="Von Der Ahe, I" uniqKey="Von Der Ahe I" first="I." last="Von Der Ahe">I. Von Der Ahe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
<author>
<name sortKey="Ammerlaan, W" sort="Ammerlaan, W" uniqKey="Ammerlaan W" first="W." last="Ammerlaan">W. Ammerlaan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
</author>
<author>
<name sortKey="Demotz, S" sort="Demotz, S" uniqKey="Demotz S" first="S." last="Demotz">S. Demotz</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Institut de Biochemie, University of Lausanne</s1>
<s2>Epalinges</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
</affiliation>
</author>
<author>
<name sortKey="Muller, C P" sort="Muller, C P" uniqKey="Muller C" first="C. P." last="Muller">C. P. Muller</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Luxembourg (pays)</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of immunological methods</title>
<title level="j" type="abbreviated">J. immunol. methods</title>
<idno type="ISSN">0022-1759</idno>
<imprint>
<date when="2000">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of immunological methods</title>
<title level="j" type="abbreviated">J. immunol. methods</title>
<idno type="ISSN">0022-1759</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antigen</term>
<term>Antigenic determinant</term>
<term>Antigenicity</term>
<term>B-Lymphocyte</term>
<term>Chimera</term>
<term>Helical structure</term>
<term>Hemagglutinin</term>
<term>Measles virus</term>
<term>Protein</term>
<term>T-Lymphocyte</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Lymphocyte T</term>
<term>Lymphocyte B</term>
<term>Déterminant antigénique</term>
<term>Virus rougeole</term>
<term>Antigène</term>
<term>Chimère</term>
<term>Protéine</term>
<term>Hémagglutinine</term>
<term>Structure hélice</term>
<term>Antigénicité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To investigate a strategy for the design of chimeric antigens based on B cell epitopes (BCEs) we have genetically recombined multiple copies of loop- (L) and helix-forming (H) sequential and protective BCEs of the measles virus hemagglutinin protein (MVH) in a number of high-molecular-weight polyepitope constructs (24.5-45.5 kDa). The BCE cassettes were combined semi-randomly together with a promiscuous T cell epitope (TCE; tt830-844) to yield 13 different permutational constructs. When expressed in mammalian cells, all constructs were detectable by Western blot as distinct bands of predicted molecular weight. Flow cytometry with conformation-specific antibodies revealed the Cys-loop in two [(L
<sub>4</sub>
T
<sub>4</sub>
)
<sub>2</sub>
and (L
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
] and the helix conformation in one [(H
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
] of the different permutational constructs. The larger constructs, containing 16 epitope cassettes, seemed more likely to express the BCEs in their native conformation than the 8-mers. In the T cell proliferation assay, constructs with a higher copy number of TCEs, such as (L
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
were more antigenic, as long as tandem repeats were separated by spacers. Since the conformation of even sequential BCEs and the processing of TCEs are both sensitive to their molecular environment it is difficult to predict the antigenic properties of polyepitopes. However, with the permutational approach we have developed several polyepitope constructs [(L
<sub>4</sub>
T
<sub>4</sub>
)
<sub>2</sub>
, (L
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
, (H
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
] based on complex sequential BCEs that are antigenic for both T and B cells. Several constructs induced sera that reacted with reporter peptides, demonstrating that the sequential nature of the viral epitopes was conserved in the polyepitopes. Although several sera contained antibodies directed against amino acids critical for neutralization, only one construct induced antibodies that cross-reacted with the virus. Our results show the difficulty of designing chimeric antigens based on B cell epitopes mimicking their antigenic and immunologic properties even when these are sequential in nature.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1759</s0>
</fA01>
<fA02 i1="01">
<s0>JIMMBG</s0>
</fA02>
<fA03 i2="1">
<s0>J. immunol. methods</s0>
</fA03>
<fA05>
<s2>242</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>THEISEN (D. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOUCHE (F. B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EL KASMI (K. C.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VON DER AHE (I.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>AMMERLAAN (W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DEMOTZ (S.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MULLER (C. P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, B.P. 1102</s1>
<s2>1011 Luxembourg</s2>
<s3>LUX</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Fakultät für Biologie, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Service de Génétique Appliquée, Université Libre de Bruxelles</s1>
<s2>Nivelles</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Medizinische Fakultät, University of Tübingen</s1>
<s2>Tübingen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Institut de Biochemie, University of Lausanne</s1>
<s2>Epalinges</s2>
<s3>CHE</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>145-157</s1>
</fA20>
<fA21>
<s1>2000</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15654</s2>
<s5>354000090666720140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2001 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0262336</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of immunological methods</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>To investigate a strategy for the design of chimeric antigens based on B cell epitopes (BCEs) we have genetically recombined multiple copies of loop- (L) and helix-forming (H) sequential and protective BCEs of the measles virus hemagglutinin protein (MVH) in a number of high-molecular-weight polyepitope constructs (24.5-45.5 kDa). The BCE cassettes were combined semi-randomly together with a promiscuous T cell epitope (TCE; tt830-844) to yield 13 different permutational constructs. When expressed in mammalian cells, all constructs were detectable by Western blot as distinct bands of predicted molecular weight. Flow cytometry with conformation-specific antibodies revealed the Cys-loop in two [(L
<sub>4</sub>
T
<sub>4</sub>
)
<sub>2</sub>
and (L
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
] and the helix conformation in one [(H
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
] of the different permutational constructs. The larger constructs, containing 16 epitope cassettes, seemed more likely to express the BCEs in their native conformation than the 8-mers. In the T cell proliferation assay, constructs with a higher copy number of TCEs, such as (L
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
were more antigenic, as long as tandem repeats were separated by spacers. Since the conformation of even sequential BCEs and the processing of TCEs are both sensitive to their molecular environment it is difficult to predict the antigenic properties of polyepitopes. However, with the permutational approach we have developed several polyepitope constructs [(L
<sub>4</sub>
T
<sub>4</sub>
)
<sub>2</sub>
, (L
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
, (H
<sub>2</sub>
T
<sub>2</sub>
)
<sub>4</sub>
] based on complex sequential BCEs that are antigenic for both T and B cells. Several constructs induced sera that reacted with reporter peptides, demonstrating that the sequential nature of the viral epitopes was conserved in the polyepitopes. Although several sera contained antibodies directed against amino acids critical for neutralization, only one construct induced antibodies that cross-reacted with the virus. Our results show the difficulty of designing chimeric antigens based on B cell epitopes mimicking their antigenic and immunologic properties even when these are sequential in nature.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Lymphocyte T</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>T-Lymphocyte</s0>
<s5>01</s5>
<s6>«T»-Lymphocyte</s6>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Linfocito T</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Lymphocyte B</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>B-Lymphocyte</s0>
<s5>02</s5>
<s6>«B»-Lymphocyte</s6>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Linfocito B</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Déterminant antigénique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Antigenic determinant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Determinante antigénico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Virus rougeole</s0>
<s2>NW</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Measles virus</s0>
<s2>NW</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Measles virus</s0>
<s2>NW</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Antigène</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Antigen</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Antígeno</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Chimère</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chimera</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Quimera</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Protein</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hémagglutinine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hemagglutinin</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Hemoaglutinina</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Structure hélice</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Helical structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estructura helicoidal</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Antigénicité</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Antigenicity</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Antigenicidad</s0>
<s5>10</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Morbillivirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Morbillivirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Morbillivirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Paramyxovirinae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Paramyxovirinae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Paramyxovirinae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Paramyxoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Paramyxoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Paramyxoviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Mononegavirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Mononegavirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Mononegavirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Glycoprotéine</s0>
<s5>28</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Glycoprotein</s0>
<s5>28</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Glicoproteína</s0>
<s5>28</s5>
</fC07>
<fN21>
<s1>183</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000003 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 000003 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:01-0262336
   |texte=   Differential antigenicity of recombinant polyepitope-antigens based on loop- and helix-forming B and T cell epitopes
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021