Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Supervised learning and prediction of physical interactions between human and HIV proteins

Identifieur interne : 000063 ( PascalFrancis/Corpus ); précédent : 000062; suivant : 000064

Supervised learning and prediction of physical interactions between human and HIV proteins

Auteurs : Matthew D. Dyer ; T. M. Murali ; Bruno W. Sobral

Source :

RBID : Pascal:11-0292014

Descripteurs français

English descriptors

Abstract

Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. Methodology: We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell. Significance: Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 1567-1348
A05       @2 11
A06       @2 5
A08 01  1  ENG  @1 Supervised learning and prediction of physical interactions between human and HIV proteins
A11 01  1    @1 DYER (Matthew D.)
A11 02  1    @1 MURALI (T. M.)
A11 03  1    @1 SOBRAL (Bruno W.)
A14 01      @1 Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St. @2 Blacksburg, VA 24061 @3 USA @Z 1 aut. @Z 3 aut.
A14 02      @1 Department of Computer Science, Virginia Tech, 114 McBryde Hall @2 Blacksburg, VA 24061 @3 USA @Z 2 aut.
A20       @1 917-923
A21       @1 2011
A23 01      @0 ENG
A43 01      @1 INIST @2 28039 @5 354000190369050160
A44       @0 0000 @1 © 2011 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 11-0292014
A60       @1 P @3 PR
A61       @0 A
A64 01  1    @0 Infection, genetics and evolution : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. Methodology: We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell. Significance: Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.
C02 01  X    @0 002B05A02
C02 02  X    @0 002B05C02D
C02 03  X    @0 002B06D01
C03 01  X  FRE  @0 SIDA @5 01
C03 01  X  ENG  @0 AIDS @5 01
C03 01  X  SPA  @0 SIDA @5 01
C03 02  X  FRE  @0 Facteur prédictif @5 07
C03 02  X  ENG  @0 Predictive factor @5 07
C03 02  X  SPA  @0 Factor predictivo @5 07
C03 03  X  FRE  @0 Protéine @5 08
C03 03  X  ENG  @0 Protein @5 08
C03 03  X  SPA  @0 Proteína @5 08
C03 04  X  FRE  @0 Homme @5 10
C03 04  X  ENG  @0 Human @5 10
C03 04  X  SPA  @0 Hombre @5 10
C03 05  X  FRE  @0 Virus immunodéficience humaine @2 NW @5 11
C03 05  X  ENG  @0 Human immunodeficiency virus @2 NW @5 11
C03 05  X  SPA  @0 Human immunodeficiency virus @2 NW @5 11
C03 06  X  FRE  @0 Epidémiologie moléculaire @5 30
C03 06  X  ENG  @0 Molecular epidemiology @5 30
C03 06  X  SPA  @0 Epidemiología molecular @5 30
C07 01  X  FRE  @0 Virose
C07 01  X  ENG  @0 Viral disease
C07 01  X  SPA  @0 Virosis
C07 02  X  FRE  @0 Infection
C07 02  X  ENG  @0 Infection
C07 02  X  SPA  @0 Infección
C07 03  X  FRE  @0 Lentivirus @2 NW
C07 03  X  ENG  @0 Lentivirus @2 NW
C07 03  X  SPA  @0 Lentivirus @2 NW
C07 04  X  FRE  @0 Retroviridae @2 NW
C07 04  X  ENG  @0 Retroviridae @2 NW
C07 04  X  SPA  @0 Retroviridae @2 NW
C07 05  X  FRE  @0 Virus @2 NW
C07 05  X  ENG  @0 Virus @2 NW
C07 05  X  SPA  @0 Virus @2 NW
C07 06  X  FRE  @0 Immunodéficit @5 37
C07 06  X  ENG  @0 Immune deficiency @5 37
C07 06  X  SPA  @0 Inmunodeficiencia @5 37
C07 07  X  FRE  @0 Immunopathologie @5 39
C07 07  X  ENG  @0 Immunopathology @5 39
C07 07  X  SPA  @0 Inmunopatología @5 39
N21       @1 199
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 11-0292014 INIST
ET : Supervised learning and prediction of physical interactions between human and HIV proteins
AU : DYER (Matthew D.); MURALI (T. M.); SOBRAL (Bruno W.)
AF : Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St./Blacksburg, VA 24061/Etats-Unis (1 aut., 3 aut.); Department of Computer Science, Virginia Tech, 114 McBryde Hall/Blacksburg, VA 24061/Etats-Unis (2 aut.)
DT : Publication en série; Papier de recherche; Niveau analytique
SO : Infection, genetics and evolution : (Print); ISSN 1567-1348; Royaume-Uni; Da. 2011; Vol. 11; No. 5; Pp. 917-923; Bibl. 3/4 p.
LA : Anglais
EA : Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. Methodology: We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell. Significance: Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.
CC : 002B05A02; 002B05C02D; 002B06D01
FD : SIDA; Facteur prédictif; Protéine; Homme; Virus immunodéficience humaine; Epidémiologie moléculaire
FG : Virose; Infection; Lentivirus; Retroviridae; Virus; Immunodéficit; Immunopathologie
ED : AIDS; Predictive factor; Protein; Human; Human immunodeficiency virus; Molecular epidemiology
EG : Viral disease; Infection; Lentivirus; Retroviridae; Virus; Immune deficiency; Immunopathology
SD : SIDA; Factor predictivo; Proteína; Hombre; Human immunodeficiency virus; Epidemiología molecular
LO : INIST-28039.354000190369050160
ID : 11-0292014

Links to Exploration step

Pascal:11-0292014

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Supervised learning and prediction of physical interactions between human and HIV proteins</title>
<author>
<name sortKey="Dyer, Matthew D" sort="Dyer, Matthew D" uniqKey="Dyer M" first="Matthew D." last="Dyer">Matthew D. Dyer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St.</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Murali, T M" sort="Murali, T M" uniqKey="Murali T" first="T. M." last="Murali">T. M. Murali</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Computer Science, Virginia Tech, 114 McBryde Hall</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sobral, Bruno W" sort="Sobral, Bruno W" uniqKey="Sobral B" first="Bruno W." last="Sobral">Bruno W. Sobral</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St.</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">11-0292014</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0292014 INIST</idno>
<idno type="RBID">Pascal:11-0292014</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000063</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Supervised learning and prediction of physical interactions between human and HIV proteins</title>
<author>
<name sortKey="Dyer, Matthew D" sort="Dyer, Matthew D" uniqKey="Dyer M" first="Matthew D." last="Dyer">Matthew D. Dyer</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St.</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Murali, T M" sort="Murali, T M" uniqKey="Murali T" first="T. M." last="Murali">T. M. Murali</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Computer Science, Virginia Tech, 114 McBryde Hall</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sobral, Bruno W" sort="Sobral, Bruno W" uniqKey="Sobral B" first="Bruno W." last="Sobral">Bruno W. Sobral</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St.</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Infection, genetics and evolution : (Print)</title>
<idno type="ISSN">1567-1348</idno>
<imprint>
<date when="2011">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Infection, genetics and evolution : (Print)</title>
<idno type="ISSN">1567-1348</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AIDS</term>
<term>Human</term>
<term>Human immunodeficiency virus</term>
<term>Molecular epidemiology</term>
<term>Predictive factor</term>
<term>Protein</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>SIDA</term>
<term>Facteur prédictif</term>
<term>Protéine</term>
<term>Homme</term>
<term>Virus immunodéficience humaine</term>
<term>Epidémiologie moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. Methodology: We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell. Significance: Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1567-1348</s0>
</fA01>
<fA05>
<s2>11</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Supervised learning and prediction of physical interactions between human and HIV proteins</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DYER (Matthew D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MURALI (T. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SOBRAL (Bruno W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St.</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Computer Science, Virginia Tech, 114 McBryde Hall</s1>
<s2>Blacksburg, VA 24061</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>917-923</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28039</s2>
<s5>354000190369050160</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0292014</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Infection, genetics and evolution : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. Methodology: We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell. Significance: Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B05A02</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B05C02D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B06D01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>SIDA</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>AIDS</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>SIDA</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Facteur prédictif</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Predictive factor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Factor predictivo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Protein</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Homme</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Human</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Virus immunodéficience humaine</s0>
<s2>NW</s2>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Human immunodeficiency virus</s0>
<s2>NW</s2>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Human immunodeficiency virus</s0>
<s2>NW</s2>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Epidémiologie moléculaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Molecular epidemiology</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Epidemiología molecular</s0>
<s5>30</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Infection</s0>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Infection</s0>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Infección</s0>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Lentivirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Lentivirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Lentivirus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Retroviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Retroviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Retroviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="06" i2="X" l="FRE">
<s0>Immunodéficit</s0>
<s5>37</s5>
</fC07>
<fC07 i1="06" i2="X" l="ENG">
<s0>Immune deficiency</s0>
<s5>37</s5>
</fC07>
<fC07 i1="06" i2="X" l="SPA">
<s0>Inmunodeficiencia</s0>
<s5>37</s5>
</fC07>
<fC07 i1="07" i2="X" l="FRE">
<s0>Immunopathologie</s0>
<s5>39</s5>
</fC07>
<fC07 i1="07" i2="X" l="ENG">
<s0>Immunopathology</s0>
<s5>39</s5>
</fC07>
<fC07 i1="07" i2="X" l="SPA">
<s0>Inmunopatología</s0>
<s5>39</s5>
</fC07>
<fN21>
<s1>199</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 11-0292014 INIST</NO>
<ET>Supervised learning and prediction of physical interactions between human and HIV proteins</ET>
<AU>DYER (Matthew D.); MURALI (T. M.); SOBRAL (Bruno W.)</AU>
<AF>Virginia Bioinformatics Institute, Virginia Tech, 1 Washington St./Blacksburg, VA 24061/Etats-Unis (1 aut., 3 aut.); Department of Computer Science, Virginia Tech, 114 McBryde Hall/Blacksburg, VA 24061/Etats-Unis (2 aut.)</AF>
<DT>Publication en série; Papier de recherche; Niveau analytique</DT>
<SO>Infection, genetics and evolution : (Print); ISSN 1567-1348; Royaume-Uni; Da. 2011; Vol. 11; No. 5; Pp. 917-923; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>Background: Infectious diseases result in millions of deaths each year. Physical interactions between pathogen and host proteins often form the basis of such infections. While a number of methods have been proposed for predicting protein-protein interactions (PPIs), they have primarily focused on intra-species protein-protein interactions. Methodology: We present an application of a supervised learning method for predicting physical interactions between host and pathogen proteins, using the human-HIV system. Using a Support Vector Machine with a linear kernel, we explore the use of a number of features including domain profiles, protein sequence k-mers, and properties of human proteins in a human PPI network. We achieve the best cross-validation performance when we use a combination of all three of these features. At a precision value of 70% we obtain recall values greater than 40%, depending on the ratio of positive examples to negative examples used during training. We use a classifier trained using these features to predict new PPIs between human and HIV proteins. We focus our discussion on those predicted interactions that involve human proteins known to be critical for HIV replication and propagation. Examples of predicted interactions with support in the literature include those necessary for viral attachment to the host membrane and subsequent invasion of the host cell. Significance: Unlike intra-species PPIs, host-pathogen PPIs have not yet been experimentally detected on a large scale, though they are likely to play important roles in pathogenesis and disease outcomes. Computational methods that can robustly and accurately predict host-pathogen PPIs hold the promise of guiding future experiments and gaining insights into potential mechanisms of pathogenesis.</EA>
<CC>002B05A02; 002B05C02D; 002B06D01</CC>
<FD>SIDA; Facteur prédictif; Protéine; Homme; Virus immunodéficience humaine; Epidémiologie moléculaire</FD>
<FG>Virose; Infection; Lentivirus; Retroviridae; Virus; Immunodéficit; Immunopathologie</FG>
<ED>AIDS; Predictive factor; Protein; Human; Human immunodeficiency virus; Molecular epidemiology</ED>
<EG>Viral disease; Infection; Lentivirus; Retroviridae; Virus; Immune deficiency; Immunopathology</EG>
<SD>SIDA; Factor predictivo; Proteína; Hombre; Human immunodeficiency virus; Epidemiología molecular</SD>
<LO>INIST-28039.354000190369050160</LO>
<ID>11-0292014</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000063 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000063 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:11-0292014
   |texte=   Supervised learning and prediction of physical interactions between human and HIV proteins
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021