Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design

Identifieur interne : 000005 ( PascalFrancis/Corpus ); précédent : 000004; suivant : 000006

Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design

Auteurs : CUIQING MA ; LILI WANG ; XINRONG TAO ; NARU ZHANG ; YANG YANG ; Chien-Te K. Tseng ; FANG LI ; YUSEN ZHOU ; SHIBO JIANG ; LANYING DU

Source :

RBID : Pascal:14-0254916

Descripteurs français

English descriptors

Abstract

The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0264-410X
A02 01      @0 VACCDE
A03   1    @0 Vaccine
A05       @2 32
A06       @2 46
A08 01  1  ENG  @1 Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design
A11 01  1    @1 CUIQING MA
A11 02  1    @1 LILI WANG
A11 03  1    @1 XINRONG TAO
A11 04  1    @1 NARU ZHANG
A11 05  1    @1 YANG YANG
A11 06  1    @1 TSENG (Chien-Te K.)
A11 07  1    @1 FANG LI
A11 08  1    @1 YUSEN ZHOU
A11 09  1    @1 SHIBO JIANG
A11 10  1    @1 LANYING DU
A14 01      @1 Lindsley F. Kimball Research Institute, New York Blood Center @2 New York, NY @3 USA @Z 1 aut. @Z 2 aut. @Z 4 aut. @Z 9 aut. @Z 10 aut.
A14 02      @1 Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch @2 Galveston, TX @3 USA @Z 3 aut. @Z 6 aut.
A14 03      @1 Department of Pharmacology, University of Minnesota Medical School @2 Minneapolis, MN @3 USA @Z 5 aut. @Z 7 aut.
A14 04      @1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology @2 Beijing @3 CHN @Z 8 aut.
A14 05      @1 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University @2 Shanghai @3 CHN @Z 9 aut.
A20       @1 6170-6176
A21       @1 2014
A23 01      @0 ENG
A43 01      @1 INIST @2 20289 @5 354000502659590210
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 55 ref.
A47 01  1    @0 14-0254916
A60       @1 P
A61       @0 A
A64 01  1    @0 Vaccine
A66 01      @0 GBR
C01 01    ENG  @0 The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".
C02 01  X    @0 002A05F04
C02 02  X    @0 002A05C10
C03 01  X  FRE  @0 Coronavirus @2 NW @5 01
C03 01  X  ENG  @0 Coronavirus @2 NW @5 01
C03 01  X  SPA  @0 Coronavirus @2 NW @5 01
C03 02  X  FRE  @0 Vaccin @5 05
C03 02  X  ENG  @0 Vaccine @5 05
C03 02  X  SPA  @0 Vacuna @5 05
C03 03  X  FRE  @0 Sousunité @5 06
C03 03  X  ENG  @0 Subunit @5 06
C03 03  X  SPA  @0 Subunitad @5 06
C03 04  X  FRE  @0 Protéine @5 07
C03 04  X  ENG  @0 Protein @5 07
C03 04  X  SPA  @0 Proteína @5 07
C07 01  X  FRE  @0 Coronaviridae @2 NW
C07 01  X  ENG  @0 Coronaviridae @2 NW
C07 01  X  SPA  @0 Coronaviridae @2 NW
C07 02  X  FRE  @0 Nidovirales @2 NW
C07 02  X  ENG  @0 Nidovirales @2 NW
C07 02  X  SPA  @0 Nidovirales @2 NW
C07 03  X  FRE  @0 Virus @2 NW
C07 03  X  ENG  @0 Virus @2 NW
C07 03  X  SPA  @0 Virus @2 NW
N21       @1 315
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 14-0254916 INIST
ET : Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design
AU : CUIQING MA; LILI WANG; XINRONG TAO; NARU ZHANG; YANG YANG; TSENG (Chien-Te K.); FANG LI; YUSEN ZHOU; SHIBO JIANG; LANYING DU
AF : Lindsley F. Kimball Research Institute, New York Blood Center/New York, NY/Etats-Unis (1 aut., 2 aut., 4 aut., 9 aut., 10 aut.); Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch/Galveston, TX/Etats-Unis (3 aut., 6 aut.); Department of Pharmacology, University of Minnesota Medical School/Minneapolis, MN/Etats-Unis (5 aut., 7 aut.); State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology/Beijing/Chine (8 aut.); Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University/Shanghai/Chine (9 aut.)
DT : Publication en série; Niveau analytique
SO : Vaccine; ISSN 0264-410X; Coden VACCDE; Royaume-Uni; Da. 2014; Vol. 32; No. 46; Pp. 6170-6176; Bibl. 55 ref.
LA : Anglais
EA : The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".
CC : 002A05F04; 002A05C10
FD : Coronavirus; Vaccin; Sousunité; Protéine
FG : Coronaviridae; Nidovirales; Virus
ED : Coronavirus; Vaccine; Subunit; Protein
EG : Coronaviridae; Nidovirales; Virus
SD : Coronavirus; Vacuna; Subunitad; Proteína
LO : INIST-20289.354000502659590210
ID : 14-0254916

Links to Exploration step

Pascal:14-0254916

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design</title>
<author>
<name sortKey="Cuiqing Ma" sort="Cuiqing Ma" uniqKey="Cuiqing Ma" last="Cuiqing Ma">CUIQING MA</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lili Wang" sort="Lili Wang" uniqKey="Lili Wang" last="Lili Wang">LILI WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xinrong Tao" sort="Xinrong Tao" uniqKey="Xinrong Tao" last="Xinrong Tao">XINRONG TAO</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch</s1>
<s2>Galveston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Naru Zhang" sort="Naru Zhang" uniqKey="Naru Zhang" last="Naru Zhang">NARU ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yang Yang" sort="Yang Yang" uniqKey="Yang Yang" last="Yang Yang">YANG YANG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Pharmacology, University of Minnesota Medical School</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Chien Te K" sort="Tseng, Chien Te K" uniqKey="Tseng C" first="Chien-Te K." last="Tseng">Chien-Te K. Tseng</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch</s1>
<s2>Galveston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fang Li" sort="Fang Li" uniqKey="Fang Li" last="Fang Li">FANG LI</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Pharmacology, University of Minnesota Medical School</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yusen Zhou" sort="Yusen Zhou" uniqKey="Yusen Zhou" last="Yusen Zhou">YUSEN ZHOU</name>
<affiliation>
<inist:fA14 i1="04">
<s1>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shibo Jiang" sort="Shibo Jiang" uniqKey="Shibo Jiang" last="Shibo Jiang">SHIBO JIANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lanying Du" sort="Lanying Du" uniqKey="Lanying Du" last="Lanying Du">LANYING DU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0254916</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0254916 INIST</idno>
<idno type="RBID">Pascal:14-0254916</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000005</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design</title>
<author>
<name sortKey="Cuiqing Ma" sort="Cuiqing Ma" uniqKey="Cuiqing Ma" last="Cuiqing Ma">CUIQING MA</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lili Wang" sort="Lili Wang" uniqKey="Lili Wang" last="Lili Wang">LILI WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Xinrong Tao" sort="Xinrong Tao" uniqKey="Xinrong Tao" last="Xinrong Tao">XINRONG TAO</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch</s1>
<s2>Galveston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Naru Zhang" sort="Naru Zhang" uniqKey="Naru Zhang" last="Naru Zhang">NARU ZHANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yang Yang" sort="Yang Yang" uniqKey="Yang Yang" last="Yang Yang">YANG YANG</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Pharmacology, University of Minnesota Medical School</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Chien Te K" sort="Tseng, Chien Te K" uniqKey="Tseng C" first="Chien-Te K." last="Tseng">Chien-Te K. Tseng</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch</s1>
<s2>Galveston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fang Li" sort="Fang Li" uniqKey="Fang Li" last="Fang Li">FANG LI</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Pharmacology, University of Minnesota Medical School</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Yusen Zhou" sort="Yusen Zhou" uniqKey="Yusen Zhou" last="Yusen Zhou">YUSEN ZHOU</name>
<affiliation>
<inist:fA14 i1="04">
<s1>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Shibo Jiang" sort="Shibo Jiang" uniqKey="Shibo Jiang" last="Shibo Jiang">SHIBO JIANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Lanying Du" sort="Lanying Du" uniqKey="Lanying Du" last="Lanying Du">LANYING DU</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Vaccine</title>
<title level="j" type="abbreviated">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Vaccine</title>
<title level="j" type="abbreviated">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coronavirus</term>
<term>Protein</term>
<term>Subunit</term>
<term>Vaccine</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Coronavirus</term>
<term>Vaccin</term>
<term>Sousunité</term>
<term>Protéine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0264-410X</s0>
</fA01>
<fA02 i1="01">
<s0>VACCDE</s0>
</fA02>
<fA03 i2="1">
<s0>Vaccine</s0>
</fA03>
<fA05>
<s2>32</s2>
</fA05>
<fA06>
<s2>46</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CUIQING MA</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LILI WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XINRONG TAO</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NARU ZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YANG YANG</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TSENG (Chien-Te K.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>FANG LI</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>YUSEN ZHOU</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SHIBO JIANG</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>LANYING DU</s1>
</fA11>
<fA14 i1="01">
<s1>Lindsley F. Kimball Research Institute, New York Blood Center</s1>
<s2>New York, NY</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch</s1>
<s2>Galveston, TX</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Pharmacology, University of Minnesota Medical School</s1>
<s2>Minneapolis, MN</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology</s1>
<s2>Beijing</s2>
<s3>CHN</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University</s1>
<s2>Shanghai</s2>
<s3>CHN</s3>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>6170-6176</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20289</s2>
<s5>354000502659590210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>55 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0254916</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Vaccine</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Coronavirus</s0>
<s2>NW</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Vaccin</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Vaccine</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Vacuna</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Sousunité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Subunit</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Subunitad</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Protéine</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Protein</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Proteína</s0>
<s5>07</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Coronaviridae</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Nidovirales</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Virus</s0>
<s2>NW</s2>
</fC07>
<fN21>
<s1>315</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 14-0254916 INIST</NO>
<ET>Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design</ET>
<AU>CUIQING MA; LILI WANG; XINRONG TAO; NARU ZHANG; YANG YANG; TSENG (Chien-Te K.); FANG LI; YUSEN ZHOU; SHIBO JIANG; LANYING DU</AU>
<AF>Lindsley F. Kimball Research Institute, New York Blood Center/New York, NY/Etats-Unis (1 aut., 2 aut., 4 aut., 9 aut., 10 aut.); Department of Microbiology and Immunology and Center for Biodefense and Emerging Disease, University of Texas Medical Branch/Galveston, TX/Etats-Unis (3 aut., 6 aut.); Department of Pharmacology, University of Minnesota Medical School/Minneapolis, MN/Etats-Unis (5 aut., 7 aut.); State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology/Beijing/Chine (8 aut.); Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University/Shanghai/Chine (9 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Vaccine; ISSN 0264-410X; Coden VACCDE; Royaume-Uni; Da. 2014; Vol. 32; No. 46; Pp. 6170-6176; Bibl. 55 ref.</SO>
<LA>Anglais</LA>
<EA>The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is currently spreading among humans, making development of effective MERS vaccines a high priority. A defined receptor-binding domain (RBD) in MERS-CoV spike protein can potentially serve as a subunit vaccine candidate against MERS-CoV infections. To identify an ideal vaccine candidate, we have constructed five different versions of RBD fragments, S350-588-Fc, S358-588-Fc, S367-588-Fc, S367-606-Fc, and S377-588-Fc (their names indicate their residue range in the spike protein and their C-terminal Fc tag), and further investigated their receptor binding affinity, antigenicity, immunogenicity, and neutralizing potential. The results showed that S377-588-Fc is among the RBD fragments that demonstrated the highest DPP4-binding affinity and induced the highest-titer IgG antibodies in mice. In addition, S377-588-Fc elicited higher-titer neutralizing antibodies than all the other RBD fragments in mice, and also induced high-titer neutralizing antibodies in immunized rabbits. Structural analysis suggests that S377-588-Fc contains the stably folded RBD structure, the full receptor-binding site, and major neutralizing epitopes, such that additional structures to this fragment introduce non-neutralizing epitopes and may also alter the tertiary structure of the RBD. Taken together, our data suggest that the RBD fragment encompassing spike residues 377-588 is a critical neutralizing receptor-binding fragment and an ideal candidate for development of effective MERS vaccines, and that adding non-neutralizing structures to this RBD fragment diminishes its neutralizing potential. Therefore, in viral vaccine design, it is important to identify the most stable and neutralizing viral RBD fragment, while eliminating unnecessary and non-neutralizing structures, as a means of "immunofocusing".</EA>
<CC>002A05F04; 002A05C10</CC>
<FD>Coronavirus; Vaccin; Sousunité; Protéine</FD>
<FG>Coronaviridae; Nidovirales; Virus</FG>
<ED>Coronavirus; Vaccine; Subunit; Protein</ED>
<EG>Coronaviridae; Nidovirales; Virus</EG>
<SD>Coronavirus; Vacuna; Subunitad; Proteína</SD>
<LO>INIST-20289.354000502659590210</LO>
<ID>14-0254916</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000005 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000005 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0254916
   |texte=   Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021