Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity

Identifieur interne : 000065 ( PascalFrancis/Checkpoint ); précédent : 000064; suivant : 000066

Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity

Auteurs : Karina Yusim [États-Unis] ; William Fischer [États-Unis] ; Hyejin Yoon [États-Unis] ; James Thurmond [États-Unis] ; Paul W. Fenimore [États-Unis] ; Georg Lauer [États-Unis] ; Bette Korber [États-Unis] ; Carla Kuiken [États-Unis]

Source :

RBID : Pascal:10-0421927

Descripteurs français

English descriptors

Abstract

Immunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Δ). Mosaic proteins resemble natural proteins, but are assembled from fragments of natural sequences via a genetic algorithm and optimized to maximize the coverage of potential T-cell epitopes (all 9-mers) found in natural sequences and to minimize the inclusion of rare 9-mers to avoid vaccine-specific responses. Genotype 1-specific and global vaccine cocktails were evaluated. Among vaccine candidates considered, polyvalent mosaic sequences provided the best coverage of both known and potential epitopes and had the fewest rare epitopes. A global vaccine based on conserved proteins across genotypes may be feasible, as a five-antigen mosaic cocktail provided 90, 77 and 70 % coverage of the Core, NS3 and NS4 proteins, respectively; protein coverage diminished with increased protein variability, dropping to 38% for NS2. For the genotype 1-specific vaccine, the H77 prototype vaccine sequence matched only 50 % of the potential epitopes in the population, whilst a polyprotein three-antigen mosaic cocktail increased potential epitope coverage to 83 %. More than 75 % coverage of all HCV proteins was achieved with a three-antigen mosaic cocktail, suggesting that genotype-specific vaccines could also include the more variable proteins.


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0421927

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity</title>
<author>
<name sortKey="Yusim, Karina" sort="Yusim, Karina" uniqKey="Yusim K" first="Karina" last="Yusim">Karina Yusim</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fischer, William" sort="Fischer, William" uniqKey="Fischer W" first="William" last="Fischer">William Fischer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Hyejin" sort="Yoon, Hyejin" uniqKey="Yoon H" first="Hyejin" last="Yoon">Hyejin Yoon</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thurmond, James" sort="Thurmond, James" uniqKey="Thurmond J" first="James" last="Thurmond">James Thurmond</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fenimore, Paul W" sort="Fenimore, Paul W" uniqKey="Fenimore P" first="Paul W." last="Fenimore">Paul W. Fenimore</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lauer, Georg" sort="Lauer, Georg" uniqKey="Lauer G" first="Georg" last="Lauer">Georg Lauer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School</s1>
<s2>Boston, MA 02114</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korber, Bette" sort="Korber, Bette" uniqKey="Korber B" first="Bette" last="Korber">Bette Korber</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuiken, Carla" sort="Kuiken, Carla" uniqKey="Kuiken C" first="Carla" last="Kuiken">Carla Kuiken</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">10-0421927</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0421927 INIST</idno>
<idno type="RBID">Pascal:10-0421927</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000064</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000030</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000065</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000065</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity</title>
<author>
<name sortKey="Yusim, Karina" sort="Yusim, Karina" uniqKey="Yusim K" first="Karina" last="Yusim">Karina Yusim</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fischer, William" sort="Fischer, William" uniqKey="Fischer W" first="William" last="Fischer">William Fischer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Hyejin" sort="Yoon, Hyejin" uniqKey="Yoon H" first="Hyejin" last="Yoon">Hyejin Yoon</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thurmond, James" sort="Thurmond, James" uniqKey="Thurmond J" first="James" last="Thurmond">James Thurmond</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fenimore, Paul W" sort="Fenimore, Paul W" uniqKey="Fenimore P" first="Paul W." last="Fenimore">Paul W. Fenimore</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lauer, Georg" sort="Lauer, Georg" uniqKey="Lauer G" first="Georg" last="Lauer">Georg Lauer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School</s1>
<s2>Boston, MA 02114</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Korber, Bette" sort="Korber, Bette" uniqKey="Korber B" first="Bette" last="Korber">Bette Korber</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuiken, Carla" sort="Kuiken, Carla" uniqKey="Kuiken C" first="Carla" last="Kuiken">Carla Kuiken</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of general virology</title>
<title level="j" type="abbreviated">J. gen. virol.</title>
<idno type="ISSN">0022-1317</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of general virology</title>
<title level="j" type="abbreviated">J. gen. virol.</title>
<idno type="ISSN">0022-1317</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genetic diversity</term>
<term>Genotype</term>
<term>T-Lymphocyte</term>
<term>Vaccine</term>
<term>Viral hepatitis C</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Génotype</term>
<term>Lymphocyte T</term>
<term>Vaccin</term>
<term>Diversité génétique</term>
<term>Hépatite virale C</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Vaccin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Immunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Δ). Mosaic proteins resemble natural proteins, but are assembled from fragments of natural sequences via a genetic algorithm and optimized to maximize the coverage of potential T-cell epitopes (all 9-mers) found in natural sequences and to minimize the inclusion of rare 9-mers to avoid vaccine-specific responses. Genotype 1-specific and global vaccine cocktails were evaluated. Among vaccine candidates considered, polyvalent mosaic sequences provided the best coverage of both known and potential epitopes and had the fewest rare epitopes. A global vaccine based on conserved proteins across genotypes may be feasible, as a five-antigen mosaic cocktail provided 90, 77 and 70 % coverage of the Core, NS3 and NS4 proteins, respectively; protein coverage diminished with increased protein variability, dropping to 38% for NS2. For the genotype 1-specific vaccine, the H77 prototype vaccine sequence matched only 50 % of the potential epitopes in the population, whilst a polyprotein three-antigen mosaic cocktail increased potential epitope coverage to 83 %. More than 75 % coverage of all HCV proteins was achieved with a three-antigen mosaic cocktail, suggesting that genotype-specific vaccines could also include the more variable proteins.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-1317</s0>
</fA01>
<fA02 i1="01">
<s0>JGVIAY</s0>
</fA02>
<fA03 i2="1">
<s0>J. gen. virol.</s0>
</fA03>
<fA05>
<s2>91</s2>
</fA05>
<fA06>
<s3>p. 5</s3>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUSIM (Karina)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FISCHER (William)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YOON (Hyejin)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>THURMOND (James)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FENIMORE (Paul W.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LAUER (Georg)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KORBER (Bette)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KUIKEN (Carla)</s1>
</fA11>
<fA14 i1="01">
<s1>Los Alamos National Laboratory, Theory Division</s1>
<s2>Los Alamos, NM 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School</s1>
<s2>Boston, MA 02114</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1194-1206</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13533</s2>
<s5>354000181111700120</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.3/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0421927</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of general virology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Immunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Δ). Mosaic proteins resemble natural proteins, but are assembled from fragments of natural sequences via a genetic algorithm and optimized to maximize the coverage of potential T-cell epitopes (all 9-mers) found in natural sequences and to minimize the inclusion of rare 9-mers to avoid vaccine-specific responses. Genotype 1-specific and global vaccine cocktails were evaluated. Among vaccine candidates considered, polyvalent mosaic sequences provided the best coverage of both known and potential epitopes and had the fewest rare epitopes. A global vaccine based on conserved proteins across genotypes may be feasible, as a five-antigen mosaic cocktail provided 90, 77 and 70 % coverage of the Core, NS3 and NS4 proteins, respectively; protein coverage diminished with increased protein variability, dropping to 38% for NS2. For the genotype 1-specific vaccine, the H77 prototype vaccine sequence matched only 50 % of the potential epitopes in the population, whilst a polyprotein three-antigen mosaic cocktail increased potential epitope coverage to 83 %. More than 75 % coverage of all HCV proteins was achieved with a three-antigen mosaic cocktail, suggesting that genotype-specific vaccines could also include the more variable proteins.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A05C10</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002A05C07</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Génotype</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Genotype</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Genotipo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Lymphocyte T</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>T-Lymphocyte</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Linfocito T</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Vaccin</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Vaccine</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Vacuna</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diversité génétique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Genetic diversity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Diversidad genética</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Hépatite virale C</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Viral hepatitis C</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Hepatítis virica C</s0>
<s5>14</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Pathologie de l'appareil digestif</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Digestive diseases</s0>
<s5>13</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Aparato digestivo patología</s0>
<s5>13</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Infection</s0>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Infection</s0>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Infección</s0>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Pathologie du foie</s0>
<s5>16</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Hepatic disease</s0>
<s5>16</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Hígado patología</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>277</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
<li>Nouveau-Mexique</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Nouveau-Mexique">
<name sortKey="Yusim, Karina" sort="Yusim, Karina" uniqKey="Yusim K" first="Karina" last="Yusim">Karina Yusim</name>
</region>
<name sortKey="Fenimore, Paul W" sort="Fenimore, Paul W" uniqKey="Fenimore P" first="Paul W." last="Fenimore">Paul W. Fenimore</name>
<name sortKey="Fischer, William" sort="Fischer, William" uniqKey="Fischer W" first="William" last="Fischer">William Fischer</name>
<name sortKey="Korber, Bette" sort="Korber, Bette" uniqKey="Korber B" first="Bette" last="Korber">Bette Korber</name>
<name sortKey="Kuiken, Carla" sort="Kuiken, Carla" uniqKey="Kuiken C" first="Carla" last="Kuiken">Carla Kuiken</name>
<name sortKey="Lauer, Georg" sort="Lauer, Georg" uniqKey="Lauer G" first="Georg" last="Lauer">Georg Lauer</name>
<name sortKey="Thurmond, James" sort="Thurmond, James" uniqKey="Thurmond J" first="James" last="Thurmond">James Thurmond</name>
<name sortKey="Yoon, Hyejin" sort="Yoon, Hyejin" uniqKey="Yoon H" first="Hyejin" last="Yoon">Hyejin Yoon</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PascalFrancis/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000065 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Checkpoint/biblio.hfd -nk 000065 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PascalFrancis
   |étape=   Checkpoint
   |type=    RBID
   |clé=     Pascal:10-0421927
   |texte=   Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021