Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation.

Identifieur interne : 002840 ( Ncbi/Merge ); précédent : 002839; suivant : 002841

Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation.

Auteurs : D. Praseuth [France] ; L. Perrouault ; T. Le Doan ; M. Chassignol ; N. Thuong ; C. Hélène

Source :

RBID : pubmed:3422738

Descripteurs français

English descriptors

Abstract

A photocrosslinking reagent (p-azidophenacyl) was covalently linked to an octathymidylate synthesized with either the natural (beta) anomer of thymidine or the synthetic (alpha) anomer. The oligothymidylate was further substituted by an acridine derivative to stabilize the hybrid formed with a complementary octadeoxyadenylate sequence via intercalation. A single-stranded 27-mer containing a (dA)8 sequence and a 27-mer duplex containing a (dA.dT)8 sequence were used as targets. Upon UV irradiation, photocrosslinking of the octathymidylate to its target sequence was observed, generating bands that migrated more slowly in denaturing gels. In the 27-mer duplex, both strands were photocrosslinked to the octathymidylate. Upon alkaline treatment of the irradiated samples, cleavage of the 27-mers was observed at specific sites. These reactions were analyzed at different salt concentrations. The location of the cleavage sites allowed us to demonstrate the following. (i) Both alpha and beta oligothymidylates can recognize a DNA double helix containing an oligo(dA).oligo(dT) sequence; the oligothymidylate binds to the major groove of DNA in a parallel orientation with respect to the adenine-containing strand of the DNA double helix. (ii) alpha oligothymidylates form helices with a complementary single-stranded oligodeoxyadenylate; the two strands have a parallel orientation independently of whether or not an intercalating agent is attached to the oligothymidylate. (iii) At low salt concentration, beta oligothymidylates form a double helix with an oligodeoxyadenylate in which, as expected, the two strands are antiparallel; at high salt concentration, a triple helix is formed in which the second oligothymidylate is oriented parallel to the adenine-containing strand. These results show that it is possible to recognize an oligopurine.oligopyrimidine sequence in a DNA double helix via local triple-helix formation and to target photochemical reactions to specific sequences in both double-stranded and single-stranded nucleic acids.

DOI: 10.1073/pnas.85.5.1349
PubMed: 3422738

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:3422738

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation.</title>
<author>
<name sortKey="Praseuth, D" sort="Praseuth, D" uniqKey="Praseuth D" first="D" last="Praseuth">D. Praseuth</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perrouault, L" sort="Perrouault, L" uniqKey="Perrouault L" first="L" last="Perrouault">L. Perrouault</name>
</author>
<author>
<name sortKey="Le Doan, T" sort="Le Doan, T" uniqKey="Le Doan T" first="T" last="Le Doan">T. Le Doan</name>
</author>
<author>
<name sortKey="Chassignol, M" sort="Chassignol, M" uniqKey="Chassignol M" first="M" last="Chassignol">M. Chassignol</name>
</author>
<author>
<name sortKey="Thuong, N" sort="Thuong, N" uniqKey="Thuong N" first="N" last="Thuong">N. Thuong</name>
</author>
<author>
<name sortKey="Helene, C" sort="Helene, C" uniqKey="Helene C" first="C" last="Hélène">C. Hélène</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1988">1988</date>
<idno type="RBID">pubmed:3422738</idno>
<idno type="pmid">3422738</idno>
<idno type="doi">10.1073/pnas.85.5.1349</idno>
<idno type="wicri:Area/PubMed/Corpus">002A64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002A64</idno>
<idno type="wicri:Area/PubMed/Curation">002A64</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002A64</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002898</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002898</idno>
<idno type="wicri:Area/Ncbi/Merge">002840</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation.</title>
<author>
<name sortKey="Praseuth, D" sort="Praseuth, D" uniqKey="Praseuth D" first="D" last="Praseuth">D. Praseuth</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Perrouault, L" sort="Perrouault, L" uniqKey="Perrouault L" first="L" last="Perrouault">L. Perrouault</name>
</author>
<author>
<name sortKey="Le Doan, T" sort="Le Doan, T" uniqKey="Le Doan T" first="T" last="Le Doan">T. Le Doan</name>
</author>
<author>
<name sortKey="Chassignol, M" sort="Chassignol, M" uniqKey="Chassignol M" first="M" last="Chassignol">M. Chassignol</name>
</author>
<author>
<name sortKey="Thuong, N" sort="Thuong, N" uniqKey="Thuong N" first="N" last="Thuong">N. Thuong</name>
</author>
<author>
<name sortKey="Helene, C" sort="Helene, C" uniqKey="Helene C" first="C" last="Hélène">C. Hélène</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="1988" type="published">1988</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cross-Linking Reagents</term>
<term>DNA</term>
<term>Nucleic Acid Conformation</term>
<term>Oligodeoxyribonucleotides</term>
<term>Photochemistry</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN</term>
<term>Conformation d'acide nucléique</term>
<term>Oligodésoxyribonucléotides</term>
<term>Photochimie</term>
<term>Relation structure-activité</term>
<term>Réactifs réticulants</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cross-Linking Reagents</term>
<term>DNA</term>
<term>Oligodeoxyribonucleotides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Nucleic Acid Conformation</term>
<term>Photochemistry</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Conformation d'acide nucléique</term>
<term>Oligodésoxyribonucléotides</term>
<term>Photochimie</term>
<term>Relation structure-activité</term>
<term>Réactifs réticulants</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A photocrosslinking reagent (p-azidophenacyl) was covalently linked to an octathymidylate synthesized with either the natural (beta) anomer of thymidine or the synthetic (alpha) anomer. The oligothymidylate was further substituted by an acridine derivative to stabilize the hybrid formed with a complementary octadeoxyadenylate sequence via intercalation. A single-stranded 27-mer containing a (dA)8 sequence and a 27-mer duplex containing a (dA.dT)8 sequence were used as targets. Upon UV irradiation, photocrosslinking of the octathymidylate to its target sequence was observed, generating bands that migrated more slowly in denaturing gels. In the 27-mer duplex, both strands were photocrosslinked to the octathymidylate. Upon alkaline treatment of the irradiated samples, cleavage of the 27-mers was observed at specific sites. These reactions were analyzed at different salt concentrations. The location of the cleavage sites allowed us to demonstrate the following. (i) Both alpha and beta oligothymidylates can recognize a DNA double helix containing an oligo(dA).oligo(dT) sequence; the oligothymidylate binds to the major groove of DNA in a parallel orientation with respect to the adenine-containing strand of the DNA double helix. (ii) alpha oligothymidylates form helices with a complementary single-stranded oligodeoxyadenylate; the two strands have a parallel orientation independently of whether or not an intercalating agent is attached to the oligothymidylate. (iii) At low salt concentration, beta oligothymidylates form a double helix with an oligodeoxyadenylate in which, as expected, the two strands are antiparallel; at high salt concentration, a triple helix is formed in which the second oligothymidylate is oriented parallel to the adenine-containing strand. These results show that it is possible to recognize an oligopurine.oligopyrimidine sequence in a DNA double helix via local triple-helix formation and to target photochemical reactions to specific sequences in both double-stranded and single-stranded nucleic acids.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">3422738</PMID>
<DateCompleted>
<Year>1988</Year>
<Month>04</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>85</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1988</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation.</ArticleTitle>
<Pagination>
<MedlinePgn>1349-53</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A photocrosslinking reagent (p-azidophenacyl) was covalently linked to an octathymidylate synthesized with either the natural (beta) anomer of thymidine or the synthetic (alpha) anomer. The oligothymidylate was further substituted by an acridine derivative to stabilize the hybrid formed with a complementary octadeoxyadenylate sequence via intercalation. A single-stranded 27-mer containing a (dA)8 sequence and a 27-mer duplex containing a (dA.dT)8 sequence were used as targets. Upon UV irradiation, photocrosslinking of the octathymidylate to its target sequence was observed, generating bands that migrated more slowly in denaturing gels. In the 27-mer duplex, both strands were photocrosslinked to the octathymidylate. Upon alkaline treatment of the irradiated samples, cleavage of the 27-mers was observed at specific sites. These reactions were analyzed at different salt concentrations. The location of the cleavage sites allowed us to demonstrate the following. (i) Both alpha and beta oligothymidylates can recognize a DNA double helix containing an oligo(dA).oligo(dT) sequence; the oligothymidylate binds to the major groove of DNA in a parallel orientation with respect to the adenine-containing strand of the DNA double helix. (ii) alpha oligothymidylates form helices with a complementary single-stranded oligodeoxyadenylate; the two strands have a parallel orientation independently of whether or not an intercalating agent is attached to the oligothymidylate. (iii) At low salt concentration, beta oligothymidylates form a double helix with an oligodeoxyadenylate in which, as expected, the two strands are antiparallel; at high salt concentration, a triple helix is formed in which the second oligothymidylate is oriented parallel to the adenine-containing strand. These results show that it is possible to recognize an oligopurine.oligopyrimidine sequence in a DNA double helix via local triple-helix formation and to target photochemical reactions to specific sequences in both double-stranded and single-stranded nucleic acids.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Praseuth</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Perrouault</LastName>
<ForeName>L</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Le Doan</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chassignol</LastName>
<ForeName>M</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thuong</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hélène</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003432">Cross-Linking Reagents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009838">Oligodeoxyribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003432" MajorTopicYN="N">Cross-Linking Reagents</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="Y">DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009838" MajorTopicYN="Y">Oligodeoxyribonucleotides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010777" MajorTopicYN="N">Photochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1988</Year>
<Month>3</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1988</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1988</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">3422738</ArticleId>
<ArticleId IdType="pmc">PMC279768</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.85.5.1349</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1966 Sep;20(2):359-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5339332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 1986 Apr;3(5):913-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3271417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Helv Chim Acta. 1974;57(1):68-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4377267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Jan;75(1):285-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">75546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1979 Jul 11;6(9):3073-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">40208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1982;39(1):1-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6175011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1983 Jul 19;22(15):3546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6351906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Jun;81(11):3297-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6587350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Feb;82(4):963-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3919390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Feb;82(4):968-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3919391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1985 Jul 11;13(13):4991-5004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3875079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Oct 22;24(22):6132-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4084510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Oct 22;24(22):6139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4084511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1985 Jul-Aug;67(7-8):769-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3002493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1985 Jul-Aug;67(7-8):777-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3910111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Nucleic Acid Res Mol Biol. 1985;32:291-320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2418466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Mar;83(5):1227-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3513172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1986;47(1):31-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2422697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1986 Jun 25;14(12):5019-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3725590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Oct;83(19):7147-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3020536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Nov 5;261(31):14771-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3021752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1986 Sep;68(9):1063-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3096384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1986 Oct 7;25(20):5914-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2947623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1986 Nov 4;25(22):6736-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3801390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1987 Feb 13;235(4790):777-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3027895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Apr 24;15(8):3421-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3575096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Jun 25;15(12):4717-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3037483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Aug;84(15):5129-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3474645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Aug 11;15(15):6149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3627982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Oct 12;15(19):7749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3671065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1987 Aug 20;196(4):939-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2824791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1974 Sep 15;88(2):509-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4453005</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Paris</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chassignol, M" sort="Chassignol, M" uniqKey="Chassignol M" first="M" last="Chassignol">M. Chassignol</name>
<name sortKey="Helene, C" sort="Helene, C" uniqKey="Helene C" first="C" last="Hélène">C. Hélène</name>
<name sortKey="Le Doan, T" sort="Le Doan, T" uniqKey="Le Doan T" first="T" last="Le Doan">T. Le Doan</name>
<name sortKey="Perrouault, L" sort="Perrouault, L" uniqKey="Perrouault L" first="L" last="Perrouault">L. Perrouault</name>
<name sortKey="Thuong, N" sort="Thuong, N" uniqKey="Thuong N" first="N" last="Thuong">N. Thuong</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Praseuth, D" sort="Praseuth, D" uniqKey="Praseuth D" first="D" last="Praseuth">D. Praseuth</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002840 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002840 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:3422738
   |texte=   Sequence-specific binding and photocrosslinking of alpha and beta oligodeoxynucleotides to the major groove of DNA via triple-helix formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:3422738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021