Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs suggests shared functions of tandem repeat domains.

Identifieur interne : 002220 ( Ncbi/Merge ); précédent : 002219; suivant : 002221

Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs suggests shared functions of tandem repeat domains.

Auteurs : Daniel Sprague [États-Unis] ; Shafagh A. Waters [Australie] ; Jessime M. Kirk [États-Unis] ; Jeremy R. Wang [États-Unis] ; Paul B. Samollow [États-Unis] ; Paul D. Waters [Australie] ; J Mauro Calabrese [États-Unis]

Source :

RBID : pubmed:31097619

Descripteurs français

English descriptors

Abstract

The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called Rsx that has been proposed to be the functional analog of eutherian Xist Despite the possibility that Xist and Rsx encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In Xist, these repeat domains are known to be critical for function. Using k-mer based comparison, we show that the repeat domains of Xist and Rsx unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity. Xist Repeats B, C, and D were most similar to each other and to Rsx Repeat 1, whereas Xist Repeats A and E were most similar to each other and to Rsx Repeats 2, 3, and 4. Similarities at the level of k-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that Xist and Rsx encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in Xist and Rsx function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.

DOI: 10.1261/rna.069815.118
PubMed: 31097619

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31097619

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nonlinear sequence similarity between the
<i>Xist</i>
and
<i>Rsx</i>
long noncoding RNAs suggests shared functions of tandem repeat domains.</title>
<author>
<name sortKey="Sprague, Daniel" sort="Sprague, Daniel" uniqKey="Sprague D" first="Daniel" last="Sprague">Daniel Sprague</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Waters, Shafagh A" sort="Waters, Shafagh A" uniqKey="Waters S" first="Shafagh A" last="Waters">Shafagh A. Waters</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052</wicri:regionArea>
<wicri:noRegion>New South Wales 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kirk, Jessime M" sort="Kirk, Jessime M" uniqKey="Kirk J" first="Jessime M" last="Kirk">Jessime M. Kirk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jeremy R" sort="Wang, Jeremy R" uniqKey="Wang J" first="Jeremy R" last="Wang">Jeremy R. Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Samollow, Paul B" sort="Samollow, Paul B" uniqKey="Samollow P" first="Paul B" last="Samollow">Paul B. Samollow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843</wicri:regionArea>
<wicri:noRegion>Texas 77843</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Waters, Paul D" sort="Waters, Paul D" uniqKey="Waters P" first="Paul D" last="Waters">Paul D. Waters</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052</wicri:regionArea>
<wicri:noRegion>New South Wales 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Calabrese, J Mauro" sort="Calabrese, J Mauro" uniqKey="Calabrese J" first="J Mauro" last="Calabrese">J Mauro Calabrese</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31097619</idno>
<idno type="pmid">31097619</idno>
<idno type="doi">10.1261/rna.069815.118</idno>
<idno type="wicri:Area/PubMed/Corpus">000537</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000537</idno>
<idno type="wicri:Area/PubMed/Curation">000537</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000537</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000444</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000444</idno>
<idno type="wicri:Area/Ncbi/Merge">002220</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nonlinear sequence similarity between the
<i>Xist</i>
and
<i>Rsx</i>
long noncoding RNAs suggests shared functions of tandem repeat domains.</title>
<author>
<name sortKey="Sprague, Daniel" sort="Sprague, Daniel" uniqKey="Sprague D" first="Daniel" last="Sprague">Daniel Sprague</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Waters, Shafagh A" sort="Waters, Shafagh A" uniqKey="Waters S" first="Shafagh A" last="Waters">Shafagh A. Waters</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052</wicri:regionArea>
<wicri:noRegion>New South Wales 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kirk, Jessime M" sort="Kirk, Jessime M" uniqKey="Kirk J" first="Jessime M" last="Kirk">Jessime M. Kirk</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Jeremy R" sort="Wang, Jeremy R" uniqKey="Wang J" first="Jeremy R" last="Wang">Jeremy R. Wang</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Samollow, Paul B" sort="Samollow, Paul B" uniqKey="Samollow P" first="Paul B" last="Samollow">Paul B. Samollow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843</wicri:regionArea>
<wicri:noRegion>Texas 77843</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Waters, Paul D" sort="Waters, Paul D" uniqKey="Waters P" first="Paul D" last="Waters">Paul D. Waters</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052</wicri:regionArea>
<wicri:noRegion>New South Wales 2052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Calabrese, J Mauro" sort="Calabrese, J Mauro" uniqKey="Calabrese J" first="J Mauro" last="Calabrese">J Mauro Calabrese</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599</wicri:regionArea>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="eISSN">1469-9001</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Cluster Analysis</term>
<term>Humans</term>
<term>Marsupialia (genetics)</term>
<term>Marsupialia (metabolism)</term>
<term>Polycomb-Group Proteins (metabolism)</term>
<term>Protein Domains</term>
<term>RNA, Long Noncoding (chemistry)</term>
<term>RNA, Long Noncoding (genetics)</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Tandem Repeat Sequences</term>
<term>X Chromosome Inactivation</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN long non codant ()</term>
<term>ARN long non codant (génétique)</term>
<term>Analyse de regroupements</term>
<term>Animaux</term>
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Inactivation du chromosome X</term>
<term>Marsupialia (génétique)</term>
<term>Marsupialia (métabolisme)</term>
<term>Protéines du groupe Polycomb (métabolisme)</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Séquences répétées en tandem</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Long Noncoding</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Long Noncoding</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Polycomb-Group Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Marsupialia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN long non codant</term>
<term>Marsupialia</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Marsupialia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Marsupialia</term>
<term>Protéines du groupe Polycomb</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cluster Analysis</term>
<term>Humans</term>
<term>Protein Domains</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Tandem Repeat Sequences</term>
<term>X Chromosome Inactivation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN long non codant</term>
<term>Analyse de regroupements</term>
<term>Animaux</term>
<term>Domaines protéiques</term>
<term>Humains</term>
<term>Inactivation du chromosome X</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Séquences répétées en tandem</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called
<i>Rsx</i>
that has been proposed to be the functional analog of eutherian
<i>Xist</i>
Despite the possibility that
<i>Xist</i>
and
<i>Rsx</i>
encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In
<i>Xist</i>
, these repeat domains are known to be critical for function. Using
<i>k</i>
-mer based comparison, we show that the repeat domains of
<i>Xist</i>
and
<i>Rsx</i>
unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity.
<i>Xist</i>
Repeats B, C, and D were most similar to each other and to
<i>Rsx</i>
Repeat 1, whereas
<i>Xist</i>
Repeats A and E were most similar to each other and to
<i>Rsx</i>
Repeats 2, 3, and 4. Similarities at the level of
<i>k</i>
-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that
<i>Xist</i>
and
<i>Rsx</i>
encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in
<i>Xist</i>
and
<i>Rsx</i>
function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31097619</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-9001</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>Nonlinear sequence similarity between the
<i>Xist</i>
and
<i>Rsx</i>
long noncoding RNAs suggests shared functions of tandem repeat domains.</ArticleTitle>
<Pagination>
<MedlinePgn>1004-1019</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1261/rna.069815.118</ELocationID>
<Abstract>
<AbstractText>The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called
<i>Rsx</i>
that has been proposed to be the functional analog of eutherian
<i>Xist</i>
Despite the possibility that
<i>Xist</i>
and
<i>Rsx</i>
encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In
<i>Xist</i>
, these repeat domains are known to be critical for function. Using
<i>k</i>
-mer based comparison, we show that the repeat domains of
<i>Xist</i>
and
<i>Rsx</i>
unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity.
<i>Xist</i>
Repeats B, C, and D were most similar to each other and to
<i>Rsx</i>
Repeat 1, whereas
<i>Xist</i>
Repeats A and E were most similar to each other and to
<i>Rsx</i>
Repeats 2, 3, and 4. Similarities at the level of
<i>k</i>
-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that
<i>Xist</i>
and
<i>Rsx</i>
encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in
<i>Xist</i>
and
<i>Rsx</i>
function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.</AbstractText>
<CopyrightInformation>© 2019 Sprague et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sprague</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Curriculum in Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Waters</LastName>
<ForeName>Shafagh A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kirk</LastName>
<ForeName>Jessime M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jeremy R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Samollow</LastName>
<ForeName>Paul B</ForeName>
<Initials>PB</Initials>
<AffiliationInfo>
<Affiliation>Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Waters</LastName>
<ForeName>Paul D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales 2052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Calabrese</LastName>
<ForeName>J Mauro</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM121806</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D063146">Polycomb-Group Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062085">RNA, Long Noncoding</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008394" MajorTopicYN="N">Marsupialia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063146" MajorTopicYN="N">Polycomb-Group Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062085" MajorTopicYN="N">RNA, Long Noncoding</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020080" MajorTopicYN="N">Tandem Repeat Sequences</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049951" MajorTopicYN="N">X Chromosome Inactivation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Polycomb</Keyword>
<Keyword MajorTopicYN="Y">Rsx</Keyword>
<Keyword MajorTopicYN="Y">Xist</Keyword>
<Keyword MajorTopicYN="Y">epigenetics</Keyword>
<Keyword MajorTopicYN="Y">lncRNAs</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>12</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>08</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31097619</ArticleId>
<ArticleId IdType="pii">rna.069815.118</ArticleId>
<ArticleId IdType="doi">10.1261/rna.069815.118</ArticleId>
<ArticleId IdType="pmc">PMC6633197</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2000 Jun;16(6):276-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10827456</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2004 Jul;2(7):E171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15252442</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2015 Nov;16(11):643-649</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26420232</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Biol Evol. 2017 Jul 1;34(7):1812-1819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28387841</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2015 Apr 16;58(2):353-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25866246</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10654-10659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28923964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2017 Mar 16;65(6):1056-1067.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306504</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D626-D634</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899642</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genomics. 2007 Oct;90(4):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728098</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2012 Feb 23;1(2):167-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22574288</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2014 Jan;24(1):70-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24065774</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):1237973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23828888</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Development. 2009 Jan;136(1):139-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036803</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioessays. 2004 Jun;26(6):629-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15170860</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10322-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27578869</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2001 May;11(5):833-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337478</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Noncoding RNA. 2018 Oct 19;4(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30347781</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2016 Jun;13(6):508-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27018577</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Epigenetics Chromatin. 2013 Aug 01;6(1):23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23915978</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2017 Jun 9;356(6342):1081-1084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28596365</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2016 Dec 29;14(1):5-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28032625</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Chem Biol. 2017 Mar;13(3):282-289</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28068310</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1992 Oct 30;71(3):527-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1423611</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2015 May 14;521(7551):232-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25915022</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2017 Dec 7;68(5):955-969.e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29220657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2012 Jul 12;487(7406):254-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722828</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2010 Dec 22;40(6):939-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172659</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Trends Cell Biol. 2018 Dec;28(12):999-1013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29910081</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2013 Oct 1;29(19):2487-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842809</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>RNA. 2014 Jul;20(7):959-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24850885</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2015 Jul 28;12(4):562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26190105</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2017 May;27(5):737-746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28100585</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Hum Mol Genet. 2018 Aug 1;27(R2):R242-R249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29701779</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1775-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2015 Jun 4;161(6):1474-e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26046445</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Jul 11;499(7457):172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23846655</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2019 May;37(5):540-546</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30936562</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2015 Jul 28;12(4):554-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26190100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2002 Feb;30(2):167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11780141</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2014 Oct 9;9(1):219-233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25284790</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2015 Feb 5;57(3):552-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25601759</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2016 Mar 24;7:11021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27009974</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2018 Jan 4;46(D1):D762-D769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29106570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2008 Apr 11;9:192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18405375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell Rep. 2015 May 19;11(7):1110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25959816</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2018 Aug;50(8):1102-1111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29967444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2014 Jul 17;55(2):171-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24882207</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2014 Dec 03;15(12):537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25572935</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2015 Apr 9;161(2):404-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25843628</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2018 Sep;50(9):1254-1261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30082786</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Aug;17(8):948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657585</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2010 Aug 6;329(5992):689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20616235</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 Oct 31;322(5902):750-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18974356</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2018 Oct;50(10):1474-1482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30224646</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2015 Jan 22;57(2):361-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25578877</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Methods. 2015 Aug;12(8):733-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26076426</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2018 Mar 1;555(7694):107-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29466324</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2019 Apr 4;74(1):101-117.e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30827740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Mol Cell. 2018 Jun 7;70(5):854-867.e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29883606</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 1992 Oct 30;71(3):515-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1423610</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Cell. 2016 May 19;165(5):1267-1279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27180905</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2019 Jan 28;10(1):460</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30692537</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Genes Dev. 2017 May 1;31(9):876-888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28546514</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Mol Biol. 2017 Mar 3;24(3):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28257137</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2016 Sep 15;537(7620):369-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27602518</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Sprague, Daniel" sort="Sprague, Daniel" uniqKey="Sprague D" first="Daniel" last="Sprague">Daniel Sprague</name>
</region>
<name sortKey="Calabrese, J Mauro" sort="Calabrese, J Mauro" uniqKey="Calabrese J" first="J Mauro" last="Calabrese">J Mauro Calabrese</name>
<name sortKey="Kirk, Jessime M" sort="Kirk, Jessime M" uniqKey="Kirk J" first="Jessime M" last="Kirk">Jessime M. Kirk</name>
<name sortKey="Samollow, Paul B" sort="Samollow, Paul B" uniqKey="Samollow P" first="Paul B" last="Samollow">Paul B. Samollow</name>
<name sortKey="Wang, Jeremy R" sort="Wang, Jeremy R" uniqKey="Wang J" first="Jeremy R" last="Wang">Jeremy R. Wang</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Waters, Shafagh A" sort="Waters, Shafagh A" uniqKey="Waters S" first="Shafagh A" last="Waters">Shafagh A. Waters</name>
</noRegion>
<name sortKey="Waters, Paul D" sort="Waters, Paul D" uniqKey="Waters P" first="Paul D" last="Waters">Paul D. Waters</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002220 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 002220 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:31097619
   |texte=   Nonlinear sequence similarity between the Xist and Rsx long noncoding RNAs suggests shared functions of tandem repeat domains.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:31097619" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021