Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease.

Identifieur interne : 001F19 ( Ncbi/Merge ); précédent : 001F18; suivant : 001F20

Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease.

Auteurs : Christopher S. Lozano [Canada] ; Manish Ranjan [Canada] ; Alexandre Boutet ; David S. Xu [Canada] ; Walter Kucharczyk ; Alfonso Fasano [Canada] ; Andres M. Lozano [Canada]

Source :

RBID : pubmed:30074454

Abstract

OBJECTIVEThe clinical results of deep brain stimulation (DBS) of the subthalamic nucleus (STN) are highly dependent on accurate targeting and target implantation. Several targeting tactics are in current use, including image-only and/or electrophysiologically guided approaches using microelectrode recordings (MERs). The purpose of the present study was to make an appraisal of imaging only-based versus imaging with the addition of intraoperative MER-guided STN electrode targeting.METHODSThe authors evaluated 100 consecutive patients undergoing STN DBS. The position of the STN target was estimated from preoperative MR images (direct target) or in relation to the position of the anterior and posterior commissures (indirect target). MERs were obtained for each trajectory. The authors tracked which targets were adjusted intraoperatively as a consequence of MER data. The final placement of 182 total STN electrodes was validated by intraoperative macrostimulation through the implanted DBS electrodes. The authors compared the image-based direct, indirect, MER-guided target adjustments and the final coordinates of the electrodes as seen on postoperative MRI.RESULTSIn approximately 80% of the trajectories, there was a good correspondence between the imaging-based and the MER-guided localization of the STN target. In approximately 20% of image-based targeting trajectories, however, the electrophysiological data revealed that the trajectory was suboptimal, missing the important anatomical structures to a significant extent. The greatest mismatch was in the superior-inferior axis, but this had little impact because it could be corrected without changing trajectories. Of more concern were mismatches of 2 mm or more in the mediolateral (x) or anteroposterior (y) planes, discrepancies that necessitated a new targeting trajectory to correct for the mis-targeting. The incidence of mis-targetting requiring a second MER trajectory on the first and second sides was similar (18% and 22%).CONCLUSIONSAccording to the present analysis, approximately 80% of electrodes were appropriately targeted using imaging alone. In the other 20%, imaging alone led to suboptimal targeting that could be corrected by a trajectory course correction guided by the acquired MER data. The authors' results suggest that preoperative imaging is insufficient to obtain optimal results in all patients undergoing STN DBS.

DOI: 10.3171/2018.2.JNS172186
PubMed: 30074454

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30074454

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease.</title>
<author>
<name sortKey="Lozano, Christopher S" sort="Lozano, Christopher S" uniqKey="Lozano C" first="Christopher S" last="Lozano">Christopher S. Lozano</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ranjan, Manish" sort="Ranjan, Manish" uniqKey="Ranjan M" first="Manish" last="Ranjan">Manish Ranjan</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Boutet, Alexandre" sort="Boutet, Alexandre" uniqKey="Boutet A" first="Alexandre" last="Boutet">Alexandre Boutet</name>
<affiliation>
<nlm:affiliation>2Division of Neuroimaging, Department of Medical Imaging, University of Toronto; and.</nlm:affiliation>
<wicri:noCountry code="subField">University of Toronto; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xu, David S" sort="Xu, David S" uniqKey="Xu D" first="David S" last="Xu">David S. Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kucharczyk, Walter" sort="Kucharczyk, Walter" uniqKey="Kucharczyk W" first="Walter" last="Kucharczyk">Walter Kucharczyk</name>
<affiliation>
<nlm:affiliation>2Division of Neuroimaging, Department of Medical Imaging, University of Toronto; and.</nlm:affiliation>
<wicri:noCountry code="subField">University of Toronto; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fasano, Alfonso" sort="Fasano, Alfonso" uniqKey="Fasano A" first="Alfonso" last="Fasano">Alfonso Fasano</name>
<affiliation wicri:level="1">
<nlm:affiliation>3Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network and Division of Neurology, University of Toronto; Krembil Research Institute, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>3Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network and Division of Neurology, University of Toronto; Krembil Research Institute, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lozano, Andres M" sort="Lozano, Andres M" uniqKey="Lozano A" first="Andres M" last="Lozano">Andres M. Lozano</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30074454</idno>
<idno type="pmid">30074454</idno>
<idno type="doi">10.3171/2018.2.JNS172186</idno>
<idno type="wicri:Area/PubMed/Corpus">000821</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000821</idno>
<idno type="wicri:Area/PubMed/Curation">000821</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000821</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000891</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000891</idno>
<idno type="wicri:Area/Ncbi/Merge">001F19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease.</title>
<author>
<name sortKey="Lozano, Christopher S" sort="Lozano, Christopher S" uniqKey="Lozano C" first="Christopher S" last="Lozano">Christopher S. Lozano</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ranjan, Manish" sort="Ranjan, Manish" uniqKey="Ranjan M" first="Manish" last="Ranjan">Manish Ranjan</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Boutet, Alexandre" sort="Boutet, Alexandre" uniqKey="Boutet A" first="Alexandre" last="Boutet">Alexandre Boutet</name>
<affiliation>
<nlm:affiliation>2Division of Neuroimaging, Department of Medical Imaging, University of Toronto; and.</nlm:affiliation>
<wicri:noCountry code="subField">University of Toronto; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Xu, David S" sort="Xu, David S" uniqKey="Xu D" first="David S" last="Xu">David S. Xu</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
<author>
<name sortKey="Kucharczyk, Walter" sort="Kucharczyk, Walter" uniqKey="Kucharczyk W" first="Walter" last="Kucharczyk">Walter Kucharczyk</name>
<affiliation>
<nlm:affiliation>2Division of Neuroimaging, Department of Medical Imaging, University of Toronto; and.</nlm:affiliation>
<wicri:noCountry code="subField">University of Toronto; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Fasano, Alfonso" sort="Fasano, Alfonso" uniqKey="Fasano A" first="Alfonso" last="Fasano">Alfonso Fasano</name>
<affiliation wicri:level="1">
<nlm:affiliation>3Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network and Division of Neurology, University of Toronto; Krembil Research Institute, Toronto, Ontario, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>3Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network and Division of Neurology, University of Toronto; Krembil Research Institute, Toronto, Ontario</wicri:regionArea>
<wicri:noRegion>Ontario</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lozano, Andres M" sort="Lozano, Andres M" uniqKey="Lozano A" first="Andres M" last="Lozano">Andres M. Lozano</name>
<affiliation wicri:level="4">
<nlm:affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</nlm:affiliation>
<country>Canada</country>
<placeName>
<settlement type="city">Toronto</settlement>
<region type="state">Ontario</region>
</placeName>
<orgName type="university">Université de Toronto</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurosurgery</title>
<idno type="eISSN">1933-0693</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">OBJECTIVEThe clinical results of deep brain stimulation (DBS) of the subthalamic nucleus (STN) are highly dependent on accurate targeting and target implantation. Several targeting tactics are in current use, including image-only and/or electrophysiologically guided approaches using microelectrode recordings (MERs). The purpose of the present study was to make an appraisal of imaging only-based versus imaging with the addition of intraoperative MER-guided STN electrode targeting.METHODSThe authors evaluated 100 consecutive patients undergoing STN DBS. The position of the STN target was estimated from preoperative MR images (direct target) or in relation to the position of the anterior and posterior commissures (indirect target). MERs were obtained for each trajectory. The authors tracked which targets were adjusted intraoperatively as a consequence of MER data. The final placement of 182 total STN electrodes was validated by intraoperative macrostimulation through the implanted DBS electrodes. The authors compared the image-based direct, indirect, MER-guided target adjustments and the final coordinates of the electrodes as seen on postoperative MRI.RESULTSIn approximately 80% of the trajectories, there was a good correspondence between the imaging-based and the MER-guided localization of the STN target. In approximately 20% of image-based targeting trajectories, however, the electrophysiological data revealed that the trajectory was suboptimal, missing the important anatomical structures to a significant extent. The greatest mismatch was in the superior-inferior axis, but this had little impact because it could be corrected without changing trajectories. Of more concern were mismatches of 2 mm or more in the mediolateral (x) or anteroposterior (y) planes, discrepancies that necessitated a new targeting trajectory to correct for the mis-targeting. The incidence of mis-targetting requiring a second MER trajectory on the first and second sides was similar (18% and 22%).CONCLUSIONSAccording to the present analysis, approximately 80% of electrodes were appropriately targeted using imaging alone. In the other 20%, imaging alone led to suboptimal targeting that could be corrected by a trajectory course correction guided by the acquired MER data. The authors' results suggest that preoperative imaging is insufficient to obtain optimal results in all patients undergoing STN DBS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">30074454</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1933-0693</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2018</Year>
<Month>Jul</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurosurgery</Title>
<ISOAbbreviation>J. Neurosurg.</ISOAbbreviation>
</Journal>
<ArticleTitle>Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease.</ArticleTitle>
<Pagination>
<MedlinePgn>1-6</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3171/2018.2.JNS172186</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">2018.2.JNS172186</ELocationID>
<Abstract>
<AbstractText>OBJECTIVEThe clinical results of deep brain stimulation (DBS) of the subthalamic nucleus (STN) are highly dependent on accurate targeting and target implantation. Several targeting tactics are in current use, including image-only and/or electrophysiologically guided approaches using microelectrode recordings (MERs). The purpose of the present study was to make an appraisal of imaging only-based versus imaging with the addition of intraoperative MER-guided STN electrode targeting.METHODSThe authors evaluated 100 consecutive patients undergoing STN DBS. The position of the STN target was estimated from preoperative MR images (direct target) or in relation to the position of the anterior and posterior commissures (indirect target). MERs were obtained for each trajectory. The authors tracked which targets were adjusted intraoperatively as a consequence of MER data. The final placement of 182 total STN electrodes was validated by intraoperative macrostimulation through the implanted DBS electrodes. The authors compared the image-based direct, indirect, MER-guided target adjustments and the final coordinates of the electrodes as seen on postoperative MRI.RESULTSIn approximately 80% of the trajectories, there was a good correspondence between the imaging-based and the MER-guided localization of the STN target. In approximately 20% of image-based targeting trajectories, however, the electrophysiological data revealed that the trajectory was suboptimal, missing the important anatomical structures to a significant extent. The greatest mismatch was in the superior-inferior axis, but this had little impact because it could be corrected without changing trajectories. Of more concern were mismatches of 2 mm or more in the mediolateral (x) or anteroposterior (y) planes, discrepancies that necessitated a new targeting trajectory to correct for the mis-targeting. The incidence of mis-targetting requiring a second MER trajectory on the first and second sides was similar (18% and 22%).CONCLUSIONSAccording to the present analysis, approximately 80% of electrodes were appropriately targeted using imaging alone. In the other 20%, imaging alone led to suboptimal targeting that could be corrected by a trajectory course correction guided by the acquired MER data. The authors' results suggest that preoperative imaging is insufficient to obtain optimal results in all patients undergoing STN DBS.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lozano</LastName>
<ForeName>Christopher S</ForeName>
<Initials>CS</Initials>
<AffiliationInfo>
<Affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ranjan</LastName>
<ForeName>Manish</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boutet</LastName>
<ForeName>Alexandre</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>2Division of Neuroimaging, Department of Medical Imaging, University of Toronto; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>David S</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kucharczyk</LastName>
<ForeName>Walter</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>2Division of Neuroimaging, Department of Medical Imaging, University of Toronto; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fasano</LastName>
<ForeName>Alfonso</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>3Morton and Gloria Shulman Movement Disorders Centre and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network and Division of Neurology, University of Toronto; Krembil Research Institute, Toronto, Ontario, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lozano</LastName>
<ForeName>Andres M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>1Division of Neurosurgery, Department of Surgery, University of Toronto.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurosurg</MedlineTA>
<NlmUniqueID>0253357</NlmUniqueID>
<ISSNLinking>0022-3085</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AC = anterior commissure</Keyword>
<Keyword MajorTopicYN="N">DBS = deep brain stimulation</Keyword>
<Keyword MajorTopicYN="N">MCP = midcommissural point</Keyword>
<Keyword MajorTopicYN="N">MER = microelectrode recording</Keyword>
<Keyword MajorTopicYN="N">MRI</Keyword>
<Keyword MajorTopicYN="N">PC = posterior commissure</Keyword>
<Keyword MajorTopicYN="N">PD = Parkinson’s disease</Keyword>
<Keyword MajorTopicYN="N">Parkinson’s disease</Keyword>
<Keyword MajorTopicYN="N">STN = subthalamic nucleus</Keyword>
<Keyword MajorTopicYN="N">deep brain stimulation</Keyword>
<Keyword MajorTopicYN="N">functional neurosurgery</Keyword>
<Keyword MajorTopicYN="N">microelectrode recording</Keyword>
<Keyword MajorTopicYN="N">subthalamic nucleus</Keyword>
<Keyword MajorTopicYN="N">targeting</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>09</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>02</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30074454</ArticleId>
<ArticleId IdType="pii">2018.2.JNS172186</ArticleId>
<ArticleId IdType="doi">10.3171/2018.2.JNS172186</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Ontario</li>
</region>
<settlement>
<li>Toronto</li>
</settlement>
<orgName>
<li>Université de Toronto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Boutet, Alexandre" sort="Boutet, Alexandre" uniqKey="Boutet A" first="Alexandre" last="Boutet">Alexandre Boutet</name>
<name sortKey="Kucharczyk, Walter" sort="Kucharczyk, Walter" uniqKey="Kucharczyk W" first="Walter" last="Kucharczyk">Walter Kucharczyk</name>
</noCountry>
<country name="Canada">
<region name="Ontario">
<name sortKey="Lozano, Christopher S" sort="Lozano, Christopher S" uniqKey="Lozano C" first="Christopher S" last="Lozano">Christopher S. Lozano</name>
</region>
<name sortKey="Fasano, Alfonso" sort="Fasano, Alfonso" uniqKey="Fasano A" first="Alfonso" last="Fasano">Alfonso Fasano</name>
<name sortKey="Lozano, Andres M" sort="Lozano, Andres M" uniqKey="Lozano A" first="Andres M" last="Lozano">Andres M. Lozano</name>
<name sortKey="Ranjan, Manish" sort="Ranjan, Manish" uniqKey="Ranjan M" first="Manish" last="Ranjan">Manish Ranjan</name>
<name sortKey="Xu, David S" sort="Xu, David S" uniqKey="Xu D" first="David S" last="Xu">David S. Xu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001F19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:30074454
   |texte=   Imaging alone versus microelectrode recording-guided targeting of the STN in patients with Parkinson's disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:30074454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021