Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses.

Identifieur interne : 001A44 ( Ncbi/Merge ); précédent : 001A43; suivant : 001A45

Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses.

Auteurs : Adam S. Cockrell [États-Unis] ; Anne Beall [États-Unis] ; Boyd Yount [États-Unis] ; Ralph Baric [États-Unis]

Source :

RBID : pubmed:28508214

Descripteurs français

English descriptors

Abstract

Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28-32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5-7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.

DOI: 10.1007/978-1-4939-6964-7_5
PubMed: 28508214

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:28508214

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses.</title>
<author>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beall, Anne" sort="Beall, Anne" uniqKey="Beall A" first="Anne" last="Beall">Anne Beall</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA. rbaric@email.unc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28508214</idno>
<idno type="pmid">28508214</idno>
<idno type="doi">10.1007/978-1-4939-6964-7_5</idno>
<idno type="wicri:Area/PubMed/Corpus">000C88</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000C88</idno>
<idno type="wicri:Area/PubMed/Curation">000C88</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000C88</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D25</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000D25</idno>
<idno type="wicri:Area/Ncbi/Merge">001A44</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses.</title>
<author>
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Beall, Anne" sort="Beall, Anne" uniqKey="Beall A" first="Anne" last="Beall">Anne Beall</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA. rbaric@email.unc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Methods in molecular biology (Clifton, N.J.)</title>
<idno type="eISSN">1940-6029</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Communicable Diseases, Emerging (transmission)</term>
<term>Communicable Diseases, Emerging (virology)</term>
<term>Coronavirus (genetics)</term>
<term>Coronavirus Infections (transmission)</term>
<term>Coronavirus Infections (virology)</term>
<term>DNA, Complementary</term>
<term>Gene Expression Regulation, Viral</term>
<term>Genetic Engineering</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Plasmids (genetics)</term>
<term>RNA, Viral</term>
<term>Recombination, Genetic</term>
<term>Reverse Genetics (methods)</term>
<term>Transfection</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN complémentaire</term>
<term>ARN viral</term>
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Coronavirus (génétique)</term>
<term>Génie génétique</term>
<term>Génome viral</term>
<term>Génétique inverse ()</term>
<term>Humains</term>
<term>Infections à coronavirus (transmission)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Maladies transmissibles émergentes (transmission)</term>
<term>Maladies transmissibles émergentes (virologie)</term>
<term>Plasmides (génétique)</term>
<term>Recombinaison génétique</term>
<term>Régulation de l'expression des gènes viraux</term>
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Complementary</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Coronavirus</term>
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coronavirus</term>
<term>Plasmides</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Reverse Genetics</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Communicable Diseases, Emerging</term>
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Maladies transmissibles émergentes</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Communicable Diseases, Emerging</term>
<term>Coronavirus Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Chlorocebus aethiops</term>
<term>Gene Expression Regulation, Viral</term>
<term>Genetic Engineering</term>
<term>Genome, Viral</term>
<term>Humans</term>
<term>Recombination, Genetic</term>
<term>Transfection</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN complémentaire</term>
<term>ARN viral</term>
<term>Animaux</term>
<term>Cellules Vero</term>
<term>Génie génétique</term>
<term>Génome viral</term>
<term>Génétique inverse</term>
<term>Humains</term>
<term>Infections à coronavirus</term>
<term>Maladies transmissibles émergentes</term>
<term>Recombinaison génétique</term>
<term>Régulation de l'expression des gènes viraux</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28-32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5-7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28508214</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-6029</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1602</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Methods in molecular biology (Clifton, N.J.)</Title>
<ISOAbbreviation>Methods Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses.</ArticleTitle>
<Pagination>
<MedlinePgn>59-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-1-4939-6964-7_5</ELocationID>
<Abstract>
<AbstractText>Emergent and preemergent coronaviruses (CoVs) pose a global threat that requires immediate intervention. Rapid intervention necessitates the capacity to generate, grow, and genetically manipulate infectious CoVs in order to rapidly evaluate pathogenic mechanisms, host and tissue permissibility, and candidate antiviral therapeutic efficacy. CoVs encode the largest viral RNA genomes at about 28-32,000 nucleotides in length, and thereby complicate efficient engineering of the genome. Deconstructing the genome into manageable fragments affords the plasticity necessary to rapidly introduce targeted genetic changes in parallel and assort mutated fragments while maximizing genome stability over time. In this protocol we describe a well-developed reverse genetic platform strategy for CoVs that is comprised of partitioning the viral genome into 5-7 independent DNA fragments (depending on the CoV genome), each subcloned into a plasmid for increased stability and ease of genetic manipulation and amplification. Coronavirus genomes are conveniently partitioned by introducing type IIS or IIG restriction enzyme recognition sites that confer directional cloning. Since each restriction site leaves a unique overhang between adjoining fragments, reconstruction of the full-length genome can be achieved through a standard DNA ligation comprised of equal molar ratios of each fragment. Using this method, recombinant CoVs can be rapidly generated and used to investigate host range, gene function, pathogenesis, and candidate therapeutics for emerging and preemergent CoVs both in vitro and in vivo.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cockrell</LastName>
<ForeName>Adam S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Beall</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departments of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yount</LastName>
<ForeName>Boyd</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA. rbaric@email.unc.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Departments of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA. rbaric@email.unc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Mol Biol</MedlineTA>
<NlmUniqueID>9214969</NlmUniqueID>
<ISSNLinking>1064-3745</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018076">DNA, Complementary</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021821" MajorTopicYN="N">Communicable Diseases, Emerging</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000635" MajorTopicYN="N">transmission</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018076" MajorTopicYN="N">DNA, Complementary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015967" MajorTopicYN="N">Gene Expression Regulation, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016679" MajorTopicYN="N">Genome, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011995" MajorTopicYN="N">Recombination, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059386" MajorTopicYN="Y">Reverse Genetics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Bat coronavirus</Keyword>
<Keyword MajorTopicYN="Y">Coronavirus (CoV)</Keyword>
<Keyword MajorTopicYN="Y">Emerging</Keyword>
<Keyword MajorTopicYN="Y">Middle East respiratory syndrome coronavirus (MERS-CoV)</Keyword>
<Keyword MajorTopicYN="Y">Porcine epidemic diarrhea virus (PEDV)</Keyword>
<Keyword MajorTopicYN="Y">Preemergent</Keyword>
<Keyword MajorTopicYN="Y">Reverse genetics</Keyword>
<Keyword MajorTopicYN="Y">Severe acute respiratory syndrome coronavirus (SARS-CoV)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28508214</ArticleId>
<ArticleId IdType="doi">10.1007/978-1-4939-6964-7_5</ArticleId>
<ArticleId IdType="pmc">PMC7120940</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2015 Jan;235(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25294366</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):3048-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26976607</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2000 Nov;74(22):10600-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11044104</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Dec;10(12 Suppl):S88-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15577937</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2014 May;88(9):5195-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24574399</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2007 Sep;81(18):9812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17596301</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Gen Virol. 2001 Jun;82(Pt 6):1273-1281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11369870</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Virus Res. 2014 Aug 30;189:262-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24930446</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Immunol Res. 2014 Aug;59(1-3):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845462</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2015 Apr;89(8):4696-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25653445</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2008 Dec;4(12):e1000240</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19079579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2008 Dec;82(23):11948-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818320</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5516-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805807</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Nov;76(21):11065-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12368349</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2005;287:199-227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15609513</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6212-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15073334</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2015 Oct 09;11(10):e1005504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26452100</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Virol. 2012 Jun;2(3):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22572391</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2015 May 26;6(3):e00638-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26015500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2002 Feb;76(3):1422-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11773416</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Negl Trop Dis. 2012;6(2):e1486</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22389731</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Pathol. 2015 Jan;235(2):185-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270030</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19944-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036930</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Vet Diagn Invest. 2013 Sep;25(5):649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23963154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16891412</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Dec;11(12):836-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217413</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Infect Dis. 2005 Feb 15;191(4):489-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655769</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):523-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27344959</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2004 Apr;10(4):368-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034574</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2005 Jan;79(2):884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15613317</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>PLoS Pathog. 2010 Apr 08;6(4):e1000849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20386712</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2012 Jan;86(2):884-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072787</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Nat Med. 2015 Dec;21(12):1508-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26552008</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>J Prev Med Public Health. 2015 Nov;48(6):274-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26639740</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
<ReferenceList>
<Reference>
<Citation>mBio. 2015 Oct 13;6(5):e01461-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26463165</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Cockrell, Adam S" sort="Cockrell, Adam S" uniqKey="Cockrell A" first="Adam S" last="Cockrell">Adam S. Cockrell</name>
</region>
<name sortKey="Baric, Ralph" sort="Baric, Ralph" uniqKey="Baric R" first="Ralph" last="Baric">Ralph Baric</name>
<name sortKey="Beall, Anne" sort="Beall, Anne" uniqKey="Beall A" first="Anne" last="Beall">Anne Beall</name>
<name sortKey="Yount, Boyd" sort="Yount, Boyd" uniqKey="Yount B" first="Boyd" last="Yount">Boyd Yount</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A44 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001A44 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:28508214
   |texte=   Efficient Reverse Genetic Systems for Rapid Genetic Manipulation of Emergent and Preemergent Infectious Coronaviruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:28508214" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021