Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.

Identifieur interne : 001194 ( Ncbi/Merge ); précédent : 001193; suivant : 001195

Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.

Auteurs : Aleksandra Wawrzycka [Pologne] ; Marta Gross [Pologne] ; Anna Wasaznik [Pologne] ; Igor Konieczny [Pologne]

Source :

RBID : pubmed:26195759

Descripteurs français

English descriptors

Abstract

Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.

DOI: 10.1073/pnas.1504926112
PubMed: 26195759

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26195759

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.</title>
<author>
<name sortKey="Wawrzycka, Aleksandra" sort="Wawrzycka, Aleksandra" uniqKey="Wawrzycka A" first="Aleksandra" last="Wawrzycka">Aleksandra Wawrzycka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gross, Marta" sort="Gross, Marta" uniqKey="Gross M" first="Marta" last="Gross">Marta Gross</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wasaznik, Anna" sort="Wasaznik, Anna" uniqKey="Wasaznik A" first="Anna" last="Wasaznik">Anna Wasaznik</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Konieczny, Igor" sort="Konieczny, Igor" uniqKey="Konieczny I" first="Igor" last="Konieczny">Igor Konieczny</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland igor.konieczny@biotech.ug.edu.pl.</nlm:affiliation>
<country wicri:rule="url">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26195759</idno>
<idno type="pmid">26195759</idno>
<idno type="doi">10.1073/pnas.1504926112</idno>
<idno type="wicri:Area/PubMed/Corpus">001545</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001545</idno>
<idno type="wicri:Area/PubMed/Curation">001545</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001545</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001397</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001397</idno>
<idno type="wicri:Area/Ncbi/Merge">001194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.</title>
<author>
<name sortKey="Wawrzycka, Aleksandra" sort="Wawrzycka, Aleksandra" uniqKey="Wawrzycka A" first="Aleksandra" last="Wawrzycka">Aleksandra Wawrzycka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gross, Marta" sort="Gross, Marta" uniqKey="Gross M" first="Marta" last="Gross">Marta Gross</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wasaznik, Anna" sort="Wasaznik, Anna" uniqKey="Wasaznik A" first="Anna" last="Wasaznik">Anna Wasaznik</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Konieczny, Igor" sort="Konieczny, Igor" uniqKey="Konieczny I" first="Igor" last="Konieczny">Igor Konieczny</name>
<affiliation wicri:level="1">
<nlm:affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland igor.konieczny@biotech.ug.edu.pl.</nlm:affiliation>
<country wicri:rule="url">Pologne</country>
<wicri:regionArea>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk</wicri:regionArea>
<wicri:noRegion>80-822 Gdansk</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphatases (metabolism)</term>
<term>Circular Dichroism</term>
<term>DNA Replication</term>
<term>DNA-Directed DNA Polymerase (metabolism)</term>
<term>DnaB Helicases (metabolism)</term>
<term>Escherichia coli (enzymology)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Multienzyme Complexes (metabolism)</term>
<term>Mutant Proteins (metabolism)</term>
<term>Nucleoproteins (metabolism)</term>
<term>Plasmids (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Subunits (metabolism)</term>
<term>Replication Origin</term>
<term>Templates, Genetic</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adenosine triphosphatases (métabolisme)</term>
<term>Complexes multienzymatiques (métabolisme)</term>
<term>DNA-directed DNA polymerase (métabolisme)</term>
<term>Dichroïsme circulaire</term>
<term>DnaB Helicases (métabolisme)</term>
<term>Escherichia coli (enzymologie)</term>
<term>Liaison aux protéines</term>
<term>Matrices (génétique)</term>
<term>Nucléoprotéines (métabolisme)</term>
<term>Origine de réplication</term>
<term>Plasmides (métabolisme)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Protéines mutantes (métabolisme)</term>
<term>Réplication de l'ADN</term>
<term>Sous-unités de protéines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphatases</term>
<term>DNA-Directed DNA Polymerase</term>
<term>DnaB Helicases</term>
<term>Escherichia coli Proteins</term>
<term>Multienzyme Complexes</term>
<term>Mutant Proteins</term>
<term>Nucleoproteins</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plasmids</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adenosine triphosphatases</term>
<term>Complexes multienzymatiques</term>
<term>DNA-directed DNA polymerase</term>
<term>DnaB Helicases</term>
<term>Nucléoprotéines</term>
<term>Plasmides</term>
<term>Protéines Escherichia coli</term>
<term>Protéines mutantes</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>DNA Replication</term>
<term>Protein Binding</term>
<term>Replication Origin</term>
<term>Templates, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dichroïsme circulaire</term>
<term>Liaison aux protéines</term>
<term>Matrices (génétique)</term>
<term>Origine de réplication</term>
<term>Réplication de l'ADN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26195759</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>112</Volume>
<Issue>31</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.</ArticleTitle>
<Pagination>
<MedlinePgn>E4188-96</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1504926112</ELocationID>
<Abstract>
<AbstractText>Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wawrzycka</LastName>
<ForeName>Aleksandra</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gross</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wasaznik</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Konieczny</LastName>
<ForeName>Igor</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, 80-822 Gdansk, Poland igor.konieczny@biotech.ug.edu.pl.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009097">Multienzyme Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009698">Nucleoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C067405">TrfA protein, E coli</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C107915">DNA synthesome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.7</RegistryNumber>
<NameOfSubstance UI="D004259">DNA-Directed DNA Polymerase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D000251">Adenosine Triphosphatases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.12</RegistryNumber>
<NameOfSubstance UI="D053488">DnaB Helicases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000251" MajorTopicYN="N">Adenosine Triphosphatases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004261" MajorTopicYN="Y">DNA Replication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004259" MajorTopicYN="N">DNA-Directed DNA Polymerase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053488" MajorTopicYN="N">DnaB Helicases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009097" MajorTopicYN="N">Multienzyme Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009698" MajorTopicYN="N">Nucleoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010957" MajorTopicYN="N">Plasmids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018741" MajorTopicYN="Y">Replication Origin</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013698" MajorTopicYN="N">Templates, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DNA replication initiation</Keyword>
<Keyword MajorTopicYN="N">Rep</Keyword>
<Keyword MajorTopicYN="N">plasmid RK2</Keyword>
<Keyword MajorTopicYN="N">polymerase III</Keyword>
<Keyword MajorTopicYN="N">β-clamp</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26195759</ArticleId>
<ArticleId IdType="pii">1504926112</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1504926112</ArticleId>
<ArticleId IdType="pmc">PMC4534257</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 1996 Feb 23;84(4):643-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8598050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2013 May 2;32(9):1322-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jun 29;276(26):23639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11316803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1995 May-Jun;114(3):167-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7662485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Jan 8;96(1):153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9989506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Sep 25;267(27):19334-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1527054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Feb 18;269(7):4883-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8106460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1983 Jun 5;166(4):557-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6345791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Jun 15;20(12):3262-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11406602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2003 Jul;10(7):565-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12766757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Oct 13;478(7368):209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Dec 12;34(49):16097-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8519767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 1991 Mar;25(2):131-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1857753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1984 Dec;81(24):7747-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6393125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Oct;4(4):541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10549286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1996339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1986 Apr 5;261(10):4738-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3007474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Repair (Amst). 2009 May 1;8(5):570-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19213612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(9):2813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17355988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1954 Jul;39(4):440-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17247495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Feb;40(3):1148-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21976729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Sep 9;78(5):877-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8087854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1979 Sep;76(9):4308-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">228295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 Apr;38(4):195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23153958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Oct 7;55(1):113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2458841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1974 Oct 10;249(19):6244-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4608499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jun 16;275(24):18454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10749858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8692-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2004 May 18;43(19):5661-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15134440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(12):7807-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24838560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Feb;40(4):1648-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Aug 24;106(4):417-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Apr 3;273(14):8447-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2002 Sep 16;21(18):4763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7378-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1977 Sep 6;478(1):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">329885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12902-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jan;26(5):533-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12586394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2008 Sep;154(Pt 9):2847-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Sep 20;86(6):877-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8808623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2009 Mar;18(3):637-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19241373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol NMR. 2005 Jul;32(3):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 26;272(52):33312-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9407123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2012 Mar;36(2):408-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14378-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Oct;38(3):889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6091903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 Jan;4(1):37-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Apr 23;41(16):5266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11955076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 23;334(6063):1675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jun;82(11):3562-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2987933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 24;277(21):18483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11889118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jul 5;266(19):12536-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 5;268(16):11785-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8505306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Jul 10;94(1):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9674428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Feb 10;253(3):770-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">340459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2013;82:25-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23746253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Mar 22;271(12):7072-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8636140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jul 25;262(21):10327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3038874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2000 Dec 15;287(2):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jan 15;265(2):1171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2153103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 May 5;189(1):113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3537305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 30;271(35):21398-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plasmid. 2010 Nov;64(3):119-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20600283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Aug 2;271(31):18535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1995 Dec 1;166(1):175-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Feb;15(2):170-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Aug 8;272(32):20173-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Aug 1;20(15):4253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Jul;59(Pt 7):1192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12832762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Aug;38(1):183-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6088063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Aug;188(15):5501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16855240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 5;268(16):11773-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8389364</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Wawrzycka, Aleksandra" sort="Wawrzycka, Aleksandra" uniqKey="Wawrzycka A" first="Aleksandra" last="Wawrzycka">Aleksandra Wawrzycka</name>
</noRegion>
<name sortKey="Gross, Marta" sort="Gross, Marta" uniqKey="Gross M" first="Marta" last="Gross">Marta Gross</name>
<name sortKey="Konieczny, Igor" sort="Konieczny, Igor" uniqKey="Konieczny I" first="Igor" last="Konieczny">Igor Konieczny</name>
<name sortKey="Wasaznik, Anna" sort="Wasaznik, Anna" uniqKey="Wasaznik A" first="Anna" last="Wasaznik">Anna Wasaznik</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:26195759
   |texte=   Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:26195759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021