Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.

Identifieur interne : 000F02 ( Ncbi/Merge ); précédent : 000F01; suivant : 000F03

Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.

Auteurs : Jianhua Sui [États-Unis] ; Meagan Deming [États-Unis] ; Barry Rockx [États-Unis] ; Robert C. Liddington [États-Unis] ; Quan Karen Zhu [États-Unis] ; Ralph S. Baric [États-Unis] ; Wayne A. Marasco [États-Unis]

Source :

RBID : pubmed:25231316

Descripteurs français

English descriptors

Abstract

The receptor binding domain (RBD) of the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major target of protective immunity in vivo. Although a large number of neutralizing antibodies (nAbs) have been developed, it remains unclear if a single RBD-targeting nAb or two in combination can prevent neutralization escape and, if not, attenuate viral virulence in vivo. In this study, we used a large panel of human nAbs against an epitope that overlaps the interface between the RBD and its receptor, angiotensin-converting enzyme 2 (ACE2), to assess their cross-neutralization activities against a panel of human and zoonotic SARS-CoVs and neutralization escape mutants. We also investigated the neutralization escape profiles of these nAbs and evaluated their effects on receptor binding and virus fitness in vitro and in mice. We found that some nAbs had great potency and breadth in neutralizing multiple viral strains, including neutralization escape viruses derived from other nAbs; however, no single nAb or combination of two blocked neutralization escape. Interestingly, in mice the neutralization escape mutant viruses showed either attenuation (Urbani background) or increased virulence (GD03 background) consistent with the different binding affinities between their RBDs and the mouse ACE2. We conclude that using either single nAbs or dual nAb combinations to target a SARS-CoV RBD epitope that shows plasticity may have limitations for preventing neutralization escape during in vivo immunotherapy. However, RBD-directed nAbs may be useful for providing broad neutralization and prevention of escape variants when combined with other nAbs that target a second conserved epitope with less plasticity and more structural constraint.

DOI: 10.1128/JVI.02232-14
PubMed: 25231316

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25231316

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.</title>
<author>
<name sortKey="Sui, Jianhua" sort="Sui, Jianhua" uniqKey="Sui J" first="Jianhua" last="Sui">Jianhua Sui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts</wicri:regionArea>
<wicri:noRegion>Boston Massachusetts</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deming, Meagan" sort="Deming, Meagan" uniqKey="Deming M" first="Meagan" last="Deming">Meagan Deming</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liddington, Robert C" sort="Liddington, Robert C" uniqKey="Liddington R" first="Robert C" last="Liddington">Robert C. Liddington</name>
<affiliation wicri:level="2">
<nlm:affiliation>Infectious and Inflammatory Disease Center, Stanford-Burnham Medical Research Institute, La Jolla, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Infectious and Inflammatory Disease Center, Stanford-Burnham Medical Research Institute, La Jolla, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Quan Karen" sort="Zhu, Quan Karen" uniqKey="Zhu Q" first="Quan Karen" last="Zhu">Quan Karen Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts</wicri:regionArea>
<wicri:noRegion>Boston Massachusetts</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA rbaric@email.unc.edu wayne_marasco@dfci.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marasco, Wayne A" sort="Marasco, Wayne A" uniqKey="Marasco W" first="Wayne A" last="Marasco">Wayne A. Marasco</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA rbaric@email.unc.edu wayne_marasco@dfci.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts</wicri:regionArea>
<wicri:noRegion>Boston Massachusetts</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25231316</idno>
<idno type="pmid">25231316</idno>
<idno type="doi">10.1128/JVI.02232-14</idno>
<idno type="wicri:Area/PubMed/Corpus">001847</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001847</idno>
<idno type="wicri:Area/PubMed/Curation">001847</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001847</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001928</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001928</idno>
<idno type="wicri:Area/Ncbi/Merge">000F02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.</title>
<author>
<name sortKey="Sui, Jianhua" sort="Sui, Jianhua" uniqKey="Sui J" first="Jianhua" last="Sui">Jianhua Sui</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts</wicri:regionArea>
<wicri:noRegion>Boston Massachusetts</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deming, Meagan" sort="Deming, Meagan" uniqKey="Deming M" first="Meagan" last="Deming">Meagan Deming</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liddington, Robert C" sort="Liddington, Robert C" uniqKey="Liddington R" first="Robert C" last="Liddington">Robert C. Liddington</name>
<affiliation wicri:level="2">
<nlm:affiliation>Infectious and Inflammatory Disease Center, Stanford-Burnham Medical Research Institute, La Jolla, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Infectious and Inflammatory Disease Center, Stanford-Burnham Medical Research Institute, La Jolla, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Quan Karen" sort="Zhu, Quan Karen" uniqKey="Zhu Q" first="Quan Karen" last="Zhu">Quan Karen Zhu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts</wicri:regionArea>
<wicri:noRegion>Boston Massachusetts</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA rbaric@email.unc.edu wayne_marasco@dfci.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marasco, Wayne A" sort="Marasco, Wayne A" uniqKey="Marasco W" first="Wayne A" last="Marasco">Wayne A. Marasco</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA rbaric@email.unc.edu wayne_marasco@dfci.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts</wicri:regionArea>
<wicri:noRegion>Boston Massachusetts</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Antibodies, Viral (immunology)</term>
<term>Female</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mutation</term>
<term>Neutralization Tests</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Receptors, Virus (metabolism)</term>
<term>SARS Virus (immunology)</term>
<term>SARS Virus (pathogenicity)</term>
<term>SARS Virus (physiology)</term>
<term>Spike Glycoprotein, Coronavirus (immunology)</term>
<term>Virulence</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Anticorps antiviraux (immunologie)</term>
<term>Femelle</term>
<term>Glycoprotéine de spicule des coronavirus (immunologie)</term>
<term>Humains</term>
<term>Mutation</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Récepteurs viraux (métabolisme)</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Tests de neutralisation</term>
<term>Virulence</term>
<term>Virus du SRAS (immunologie)</term>
<term>Virus du SRAS (pathogénicité)</term>
<term>Virus du SRAS (physiologie)</term>
<term>Échappement immunitaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies, Viral</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
<term>Receptors, Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps antiviraux</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Peptidyl-Dipeptidase A</term>
<term>Récepteurs viraux</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Virus du SRAS</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Mice</term>
<term>Mice, Inbred BALB C</term>
<term>Mutation</term>
<term>Neutralization Tests</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Humains</term>
<term>Mutation</term>
<term>Souris</term>
<term>Souris de lignée BALB C</term>
<term>Tests de neutralisation</term>
<term>Virulence</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The receptor binding domain (RBD) of the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major target of protective immunity in vivo. Although a large number of neutralizing antibodies (nAbs) have been developed, it remains unclear if a single RBD-targeting nAb or two in combination can prevent neutralization escape and, if not, attenuate viral virulence in vivo. In this study, we used a large panel of human nAbs against an epitope that overlaps the interface between the RBD and its receptor, angiotensin-converting enzyme 2 (ACE2), to assess their cross-neutralization activities against a panel of human and zoonotic SARS-CoVs and neutralization escape mutants. We also investigated the neutralization escape profiles of these nAbs and evaluated their effects on receptor binding and virus fitness in vitro and in mice. We found that some nAbs had great potency and breadth in neutralizing multiple viral strains, including neutralization escape viruses derived from other nAbs; however, no single nAb or combination of two blocked neutralization escape. Interestingly, in mice the neutralization escape mutant viruses showed either attenuation (Urbani background) or increased virulence (GD03 background) consistent with the different binding affinities between their RBDs and the mouse ACE2. We conclude that using either single nAbs or dual nAb combinations to target a SARS-CoV RBD epitope that shows plasticity may have limitations for preventing neutralization escape during in vivo immunotherapy. However, RBD-directed nAbs may be useful for providing broad neutralization and prevention of escape variants when combined with other nAbs that target a second conserved epitope with less plasticity and more structural constraint.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25231316</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>23</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.</ArticleTitle>
<Pagination>
<MedlinePgn>13769-80</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.02232-14</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">The receptor binding domain (RBD) of the spike (S) glycoprotein of severe acute respiratory syndrome coronavirus (SARS-CoV) is a major target of protective immunity in vivo. Although a large number of neutralizing antibodies (nAbs) have been developed, it remains unclear if a single RBD-targeting nAb or two in combination can prevent neutralization escape and, if not, attenuate viral virulence in vivo. In this study, we used a large panel of human nAbs against an epitope that overlaps the interface between the RBD and its receptor, angiotensin-converting enzyme 2 (ACE2), to assess their cross-neutralization activities against a panel of human and zoonotic SARS-CoVs and neutralization escape mutants. We also investigated the neutralization escape profiles of these nAbs and evaluated their effects on receptor binding and virus fitness in vitro and in mice. We found that some nAbs had great potency and breadth in neutralizing multiple viral strains, including neutralization escape viruses derived from other nAbs; however, no single nAb or combination of two blocked neutralization escape. Interestingly, in mice the neutralization escape mutant viruses showed either attenuation (Urbani background) or increased virulence (GD03 background) consistent with the different binding affinities between their RBDs and the mouse ACE2. We conclude that using either single nAbs or dual nAb combinations to target a SARS-CoV RBD epitope that shows plasticity may have limitations for preventing neutralization escape during in vivo immunotherapy. However, RBD-directed nAbs may be useful for providing broad neutralization and prevention of escape variants when combined with other nAbs that target a second conserved epitope with less plasticity and more structural constraint.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has resulted in severe human respiratory disease with high death rates. Their zoonotic origins highlight the likelihood of reemergence or further evolution into novel human coronavirus pathogens. Broadly neutralizing antibodies (nAbs) that prevent infection of related viruses represent an important immunostrategy for combating coronavirus infections; however, for this strategy to succeed, it is essential to uncover nAb-mediated escape pathways and to pioneer strategies that prevent escape. Here, we used SARS-CoV as a research model and examined the escape pathways of broad nAbs that target the receptor binding domain (RBD) of the virus. We found that neither single nAbs nor two nAbs in combination blocked escape. Our results suggest that targeting conserved regions with less plasticity and more structural constraint rather than the SARS-CoV RBD-like region(s) should have broader utility for antibody-based immunotherapy.</AbstractText>
<CopyrightInformation>Copyright © 2014, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sui</LastName>
<ForeName>Jianhua</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Deming</LastName>
<ForeName>Meagan</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rockx</LastName>
<ForeName>Barry</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liddington</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
<AffiliationInfo>
<Affiliation>Infectious and Inflammatory Disease Center, Stanford-Burnham Medical Research Institute, La Jolla, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Quan Karen</ForeName>
<Initials>QK</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baric</LastName>
<ForeName>Ralph S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Departments of Epidemiology and Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA rbaric@email.unc.edu wayne_marasco@dfci.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marasco</LastName>
<ForeName>Wayne A</ForeName>
<Initials>WA</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute; Department of Medicine, Harvard Medical School, Boston Massachusetts, USA rbaric@email.unc.edu wayne_marasco@dfci.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI085524</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 AI061318</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01-AI061318</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01AI085524</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008719</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000914">Antibodies, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011991">Receptors, Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000914" MajorTopicYN="N">Antibodies, Viral</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008807" MajorTopicYN="N">Mice, Inbred BALB C</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009500" MajorTopicYN="Y">Neutralization Tests</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011991" MajorTopicYN="N">Receptors, Virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045473" MajorTopicYN="N">SARS Virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25231316</ArticleId>
<ArticleId IdType="pii">JVI.02232-14</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.02232-14</ArticleId>
<ArticleId IdType="pmc">PMC4248992</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>N Engl J Med. 2003 May 15;348(20):1953-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12690092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 10;281(45):34610-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1399-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12995-3000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14569023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Nov 27;426(6965):450-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 30;279(5):3197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14670965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17620608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Apr;82(7):3220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Nov;4(11):e1000197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2009 Mar;7(3):226-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19198616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Mar;16(3):265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2009 Nov 10;394(1):39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2010 Mar 15;201(6):946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MAbs. 2010 Jan-Feb;2(1):53-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20168090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2010 Nov;36 Suppl 1:S21-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virol J. 2010;7:299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21047436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2011 Jan;85(1):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(2):884-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22072787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22696652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Dec;86(23):12816-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22993147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2013;31:705-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23330954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Nov 28;503(7477):535-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Sci. 2005 Oct;12(5):711-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 2004 Apr;42(4):1570-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jun;78(11):5642-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15140961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6938-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2004 Jun 26;363(9427):2139-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15220038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Aug;10(8):871-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Oct;78(20):11429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15452268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2004 Oct;10(10):1774-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15504263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1994 Jan 15;83(2):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7506951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1996;267:83-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8743311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Virus Res. 1997;48:1-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9233431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(3):1906-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2005 Feb 15;191(4):507-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Feb;79(4):2001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15681402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2005 Mar 30;334(1):74-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 May;79(10):5900-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 20;24(8):1634-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15791205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 16;309(5742):1864-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jan 2;25(1):136-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16919855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Apr;81(8):4012-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2007 Apr 25;361(1):93-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17161858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2007 Jan;3(1):e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17222058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jul;81(14):7410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17507479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):14040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16169905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Oct 28;310(5748):676-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16195424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 9;281(23):15829-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 May 30;300(5624):1394-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730500</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Sui, Jianhua" sort="Sui, Jianhua" uniqKey="Sui J" first="Jianhua" last="Sui">Jianhua Sui</name>
</noRegion>
<name sortKey="Baric, Ralph S" sort="Baric, Ralph S" uniqKey="Baric R" first="Ralph S" last="Baric">Ralph S. Baric</name>
<name sortKey="Deming, Meagan" sort="Deming, Meagan" uniqKey="Deming M" first="Meagan" last="Deming">Meagan Deming</name>
<name sortKey="Liddington, Robert C" sort="Liddington, Robert C" uniqKey="Liddington R" first="Robert C" last="Liddington">Robert C. Liddington</name>
<name sortKey="Marasco, Wayne A" sort="Marasco, Wayne A" uniqKey="Marasco W" first="Wayne A" last="Marasco">Wayne A. Marasco</name>
<name sortKey="Rockx, Barry" sort="Rockx, Barry" uniqKey="Rockx B" first="Barry" last="Rockx">Barry Rockx</name>
<name sortKey="Zhu, Quan Karen" sort="Zhu, Quan Karen" uniqKey="Zhu Q" first="Quan Karen" last="Zhu">Quan Karen Zhu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000F02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:25231316
   |texte=   Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:25231316" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021