Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.

Identifieur interne : 000C86 ( Ncbi/Merge ); précédent : 000C85; suivant : 000C87

Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.

Auteurs : Kam-Leung Siu [Hong Kong] ; Man Lung Yeung ; Kin-Hang Kok ; Kit-San Yuen ; Chun Kew ; Pak-Yin Lui ; Chi-Ping Chan ; Herman Tse ; Patrick C Y. Woo ; Kwok-Yung Yuen ; Dong-Yan Jin

Source :

RBID : pubmed:24522921

Descripteurs français

English descriptors

Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity.

DOI: 10.1128/JVI.03649-13
PubMed: 24522921

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24522921

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.</title>
<author>
<name sortKey="Siu, Kam Leung" sort="Siu, Kam Leung" uniqKey="Siu K" first="Kam-Leung" last="Siu">Kam-Leung Siu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong.</nlm:affiliation>
<country xml:lang="fr">Hong Kong</country>
<wicri:regionArea>Department of Biochemistry, University of Hong Kong, Pokfulam</wicri:regionArea>
<wicri:noRegion>Pokfulam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yeung, Man Lung" sort="Yeung, Man Lung" uniqKey="Yeung M" first="Man Lung" last="Yeung">Man Lung Yeung</name>
</author>
<author>
<name sortKey="Kok, Kin Hang" sort="Kok, Kin Hang" uniqKey="Kok K" first="Kin-Hang" last="Kok">Kin-Hang Kok</name>
</author>
<author>
<name sortKey="Yuen, Kit San" sort="Yuen, Kit San" uniqKey="Yuen K" first="Kit-San" last="Yuen">Kit-San Yuen</name>
</author>
<author>
<name sortKey="Kew, Chun" sort="Kew, Chun" uniqKey="Kew C" first="Chun" last="Kew">Chun Kew</name>
</author>
<author>
<name sortKey="Lui, Pak Yin" sort="Lui, Pak Yin" uniqKey="Lui P" first="Pak-Yin" last="Lui">Pak-Yin Lui</name>
</author>
<author>
<name sortKey="Chan, Chi Ping" sort="Chan, Chi Ping" uniqKey="Chan C" first="Chi-Ping" last="Chan">Chi-Ping Chan</name>
</author>
<author>
<name sortKey="Tse, Herman" sort="Tse, Herman" uniqKey="Tse H" first="Herman" last="Tse">Herman Tse</name>
</author>
<author>
<name sortKey="Woo, Patrick C Y" sort="Woo, Patrick C Y" uniqKey="Woo P" first="Patrick C Y" last="Woo">Patrick C Y. Woo</name>
</author>
<author>
<name sortKey="Yuen, Kwok Yung" sort="Yuen, Kwok Yung" uniqKey="Yuen K" first="Kwok-Yung" last="Yuen">Kwok-Yung Yuen</name>
</author>
<author>
<name sortKey="Jin, Dong Yan" sort="Jin, Dong Yan" uniqKey="Jin D" first="Dong-Yan" last="Jin">Dong-Yan Jin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24522921</idno>
<idno type="pmid">24522921</idno>
<idno type="doi">10.1128/JVI.03649-13</idno>
<idno type="wicri:Area/PubMed/Corpus">001A57</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A57</idno>
<idno type="wicri:Area/PubMed/Curation">001A57</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A57</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001803</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001803</idno>
<idno type="wicri:Area/Ncbi/Merge">000C86</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.</title>
<author>
<name sortKey="Siu, Kam Leung" sort="Siu, Kam Leung" uniqKey="Siu K" first="Kam-Leung" last="Siu">Kam-Leung Siu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong.</nlm:affiliation>
<country xml:lang="fr">Hong Kong</country>
<wicri:regionArea>Department of Biochemistry, University of Hong Kong, Pokfulam</wicri:regionArea>
<wicri:noRegion>Pokfulam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yeung, Man Lung" sort="Yeung, Man Lung" uniqKey="Yeung M" first="Man Lung" last="Yeung">Man Lung Yeung</name>
</author>
<author>
<name sortKey="Kok, Kin Hang" sort="Kok, Kin Hang" uniqKey="Kok K" first="Kin-Hang" last="Kok">Kin-Hang Kok</name>
</author>
<author>
<name sortKey="Yuen, Kit San" sort="Yuen, Kit San" uniqKey="Yuen K" first="Kit-San" last="Yuen">Kit-San Yuen</name>
</author>
<author>
<name sortKey="Kew, Chun" sort="Kew, Chun" uniqKey="Kew C" first="Chun" last="Kew">Chun Kew</name>
</author>
<author>
<name sortKey="Lui, Pak Yin" sort="Lui, Pak Yin" uniqKey="Lui P" first="Pak-Yin" last="Lui">Pak-Yin Lui</name>
</author>
<author>
<name sortKey="Chan, Chi Ping" sort="Chan, Chi Ping" uniqKey="Chan C" first="Chi-Ping" last="Chan">Chi-Ping Chan</name>
</author>
<author>
<name sortKey="Tse, Herman" sort="Tse, Herman" uniqKey="Tse H" first="Herman" last="Tse">Herman Tse</name>
</author>
<author>
<name sortKey="Woo, Patrick C Y" sort="Woo, Patrick C Y" uniqKey="Woo P" first="Patrick C Y" last="Woo">Patrick C Y. Woo</name>
</author>
<author>
<name sortKey="Yuen, Kwok Yung" sort="Yuen, Kwok Yung" uniqKey="Yuen K" first="Kwok-Yung" last="Yuen">Kwok-Yung Yuen</name>
</author>
<author>
<name sortKey="Jin, Dong Yan" sort="Jin, Dong Yan" uniqKey="Jin D" first="Dong-Yan" last="Jin">Dong-Yan Jin</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Line</term>
<term>Coronavirus (immunology)</term>
<term>DEAD Box Protein 58</term>
<term>DEAD-box RNA Helicases (antagonists & inhibitors)</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Interferon-Induced Helicase, IFIH1</term>
<term>Interferons (antagonists & inhibitors)</term>
<term>Protein Binding</term>
<term>Protein Interaction Mapping</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartographie d'interactions entre protéines</term>
<term>Coronavirus (immunologie)</term>
<term>DEAD-box RNA helicases (antagonistes et inhibiteurs)</term>
<term>Humains</term>
<term>Hélicase IFIH1 inductrice de l'interféron</term>
<term>Interactions hôte-pathogène</term>
<term>Interférons (antagonistes et inhibiteurs)</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Protéine-58 à domaine DEAD</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines virales (métabolisme)</term>
<term>Échappement immunitaire</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>DEAD-box RNA Helicases</term>
<term>Interferons</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>RNA-Binding Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DEAD Box Protein 58</term>
<term>Interferon-Induced Helicase, IFIH1</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>DEAD-box RNA helicases</term>
<term>Interférons</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Coronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de liaison à l'ARN</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immune Evasion</term>
<term>Protein Binding</term>
<term>Protein Interaction Mapping</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie d'interactions entre protéines</term>
<term>Humains</term>
<term>Hélicase IFIH1 inductrice de l'interféron</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Protéine-58 à domaine DEAD</term>
<term>Échappement immunitaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24522921</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>88</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2014</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.</ArticleTitle>
<Pagination>
<MedlinePgn>4866-76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.03649-13</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes severe disease in human. MERS-CoV is closely related to bat coronaviruses HKU4 and HKU5. Evasion of the innate antiviral response might contribute significantly to MERS-CoV pathogenesis, but the mechanism is poorly understood. In this study, we characterized MERS-CoV 4a protein as a novel immunosuppressive factor that antagonizes type I interferon production. MERS-CoV 4a protein contains a double-stranded RNA-binding domain capable of interacting with poly(I · C). Expression of MERS-CoV 4a protein suppressed the interferon production induced by poly(I · C) or Sendai virus. RNA binding of MERS-CoV 4a protein was required for IFN antagonism, a property shared by 4a protein of bat coronavirus HKU5 but not by the counterpart in bat coronavirus HKU4. MERS-CoV 4a protein interacted with PACT in an RNA-dependent manner but not with RIG-I or MDA5. It inhibited PACT-induced activation of RIG-I and MDA5 but did not affect the activity of downstream effectors such as RIG-I, MDA5, MAVS, TBK1, and IRF3. Taken together, our findings suggest a new mechanism through which MERS-CoV employs a viral double-stranded RNA-binding protein to circumvent the innate antiviral response by perturbing the function of cellular double-stranded RNA-binding protein PACT. PACT targeting might be a common strategy used by different viruses, including Ebola virus and herpes simplex virus 1, to counteract innate immunity.</AbstractText>
<AbstractText Label="IMPORTANCE" NlmCategory="OBJECTIVE">Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging and highly lethal human pathogen. Why MERS-CoV causes severe disease in human is unclear, and one possibility is that MERS-CoV is particularly efficient in counteracting host immunity, including the sensing of virus invasion. It will therefore be critical to clarify how MERS-CoV cripples the host proteins that sense viruses and to compare MERS-CoV with its ancestral viruses in bats in the counteraction of virus sensing. This work not only provides a new understanding of the abilities of MERS-CoV and closely related bat viruses to subvert virus sensing but also might prove useful in revealing new strategies for the development of vaccines and antivirals.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Siu</LastName>
<ForeName>Kam-Leung</ForeName>
<Initials>KL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yeung</LastName>
<ForeName>Man Lung</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kok</LastName>
<ForeName>Kin-Hang</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuen</LastName>
<ForeName>Kit-San</ForeName>
<Initials>KS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kew</LastName>
<ForeName>Chun</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lui</LastName>
<ForeName>Pak-Yin</ForeName>
<Initials>PY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chan</LastName>
<ForeName>Chi-Ping</ForeName>
<Initials>CP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tse</LastName>
<ForeName>Herman</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Woo</LastName>
<ForeName>Patrick C Y</ForeName>
<Initials>PC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yuen</LastName>
<ForeName>Kwok-Yung</ForeName>
<Initials>KY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Dong-Yan</ForeName>
<Initials>DY</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C104647">PRKRA protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9008-11-1</RegistryNumber>
<NameOfSubstance UI="D007372">Interferons</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C452820">DDX58 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C452815">IFIH1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D000071457">DEAD Box Protein 58</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D053487">DEAD-box RNA Helicases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.4.13</RegistryNumber>
<NameOfSubstance UI="D000072640">Interferon-Induced Helicase, IFIH1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017934" MajorTopicYN="N">Coronavirus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071457" MajorTopicYN="N">DEAD Box Protein 58</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053487" MajorTopicYN="N">DEAD-box RNA Helicases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="Y">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057131" MajorTopicYN="N">Immune Evasion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072640" MajorTopicYN="N">Interferon-Induced Helicase, IFIH1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007372" MajorTopicYN="N">Interferons</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025941" MajorTopicYN="N">Protein Interaction Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24522921</ArticleId>
<ArticleId IdType="pii">JVI.03649-13</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.03649-13</ArticleId>
<ArticleId IdType="pmc">PMC3993821</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Formos Med Assoc. 2013 Jul;112(7):372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23883791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Nov;19(11):1819-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Apr 21;9(4):299-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Aug;87(15):8638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23720729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2013 May 23;38(5):855-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(1):e00611-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23422412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Jul 17;14(1):5-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1996 Jul;120(1):160-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8864859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biosci. 2014 Jan 13;4(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24410900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 12;284(24):16202-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19380580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2014 May 1;209(9):1331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24065148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Jun 1;207(11):1743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23532101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2013 Jun 29;381(9885):2265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013 Oct;19(10):1697-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24050621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2012 Nov 8;367(19):1814-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23075143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Jun 27;368(26):2487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2012;3(6). pii: e00473-12. doi: 10.1128/mBio.00473-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Immunol. 2014 Mar;11(2):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24509444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2009 Sep;90(Pt 9):2107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2013 Nov;5(11):2679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24184965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2013;10:40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2004 Jul;5(7):730-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2013;4(5):e00650-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24023385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2007 Oct;20(4):660-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 Mar;140(1-2):8-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19041915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2013 Oct;21(10):544-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23770275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Dec;94(Pt 12):2679-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24077366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2013 Aug 24;382(9893):694-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23831141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24043791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Jul 17;14(1):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Virol. 2012 Jun;2(3):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22572391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Nov;87(22):12489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Jul;84(13):6472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Dec;79(23):14909-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16282490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):7790-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23678167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2013;18(36):pii=20574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24079378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 Aug 1;369(5):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23782161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zoonoses Public Health. 2013 Feb;60(1):104-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23302292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2013 Oct;13(10):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2011 Jul 12;21(13):R488-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21741580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2013;10:47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 15;282(24):17649-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2006 Jul 20;351(1):180-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16647731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2013 Dec;4(12):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24318862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jun;87(12):6604-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23552422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(4):1574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1989 Apr 15;77(1):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2744487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Dec 15;187(12):6473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22079989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 May;87(9):5300-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23449793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Aug;94(Pt 8):1749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23620378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Oct;19(10):1313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24013700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2006 Sep;87(Pt 9):2639-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(24):13141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24067967</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Hong Kong</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chan, Chi Ping" sort="Chan, Chi Ping" uniqKey="Chan C" first="Chi-Ping" last="Chan">Chi-Ping Chan</name>
<name sortKey="Jin, Dong Yan" sort="Jin, Dong Yan" uniqKey="Jin D" first="Dong-Yan" last="Jin">Dong-Yan Jin</name>
<name sortKey="Kew, Chun" sort="Kew, Chun" uniqKey="Kew C" first="Chun" last="Kew">Chun Kew</name>
<name sortKey="Kok, Kin Hang" sort="Kok, Kin Hang" uniqKey="Kok K" first="Kin-Hang" last="Kok">Kin-Hang Kok</name>
<name sortKey="Lui, Pak Yin" sort="Lui, Pak Yin" uniqKey="Lui P" first="Pak-Yin" last="Lui">Pak-Yin Lui</name>
<name sortKey="Tse, Herman" sort="Tse, Herman" uniqKey="Tse H" first="Herman" last="Tse">Herman Tse</name>
<name sortKey="Woo, Patrick C Y" sort="Woo, Patrick C Y" uniqKey="Woo P" first="Patrick C Y" last="Woo">Patrick C Y. Woo</name>
<name sortKey="Yeung, Man Lung" sort="Yeung, Man Lung" uniqKey="Yeung M" first="Man Lung" last="Yeung">Man Lung Yeung</name>
<name sortKey="Yuen, Kit San" sort="Yuen, Kit San" uniqKey="Yuen K" first="Kit-San" last="Yuen">Kit-San Yuen</name>
<name sortKey="Yuen, Kwok Yung" sort="Yuen, Kwok Yung" uniqKey="Yuen K" first="Kwok-Yung" last="Yuen">Kwok-Yung Yuen</name>
</noCountry>
<country name="Hong Kong">
<noRegion>
<name sortKey="Siu, Kam Leung" sort="Siu, Kam Leung" uniqKey="Siu K" first="Kam-Leung" last="Siu">Kam-Leung Siu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000C86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24522921
   |texte=   Middle east respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses PACT-induced activation of RIG-I and MDA5 in the innate antiviral response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24522921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021