Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences.

Identifieur interne : 000C66 ( Ncbi/Merge ); précédent : 000C65; suivant : 000C67

Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences.

Auteurs : Olga Y. Burenina ; Philipp G. Hoch ; Katrin Damm ; Margarita Salas ; Timofei S. Zatsepin ; Marcus Lechner ; Tatiana S. Oretskaya ; Elena A. Kubareva ; Roland K. Hartmann

Source :

RBID : pubmed:24464747

Descripteurs français

English descriptors

Abstract

Bacterial 6S RNAs bind to the housekeeping RNA polymerase (σ(A)-RNAP in Bacillus subtilis) to regulate transcription in a growth phase-dependent manner. B. subtilis expresses two 6S RNAs, 6S-1 and 6S-2 RNA, with different expression profiles. We show in vitro that 6S-2 RNA shares hallmark features with 6S-1 RNA: Both (1) are able to serve as templates for pRNA transcription; (2) bind with comparable affinity to σ(A)-RNAP; (3) are able to specifically inhibit transcription from DNA promoters, and (4) can form stable 6S RNA:pRNA hybrid structures that (5) abolish binding to σ(A)-RNAP. However, pRNAs of equal length dissociate faster from 6S-2 than 6S-1 RNA, owing to the higher A,U-content of 6S-2 pRNAs. This could have two mechanistic implications: (1) Short 6S-2 pRNAs (<10 nt) dissociate faster instead of being elongated to longer pRNAs, which could make it more difficult for 6S-2 RNA-stalled RNAP molecules to escape from the sequestration; and (2) relative to 6S-1 RNA, 6S-2 pRNAs of equal length will dissociate more rapidly from 6S-2 RNA after RNAP release, which could affect pRNA turnover or the kinetics of 6S-2 RNA binding to a new RNAP molecule. As 6S-2 pRNAs have not yet been detected in vivo, we considered that cellular RNAP release from 6S-2 RNA might occur via 6S-1 RNA displacing 6S-2 RNA from the enzyme, either in the absence of pRNA transcription or upon synthesis of very short 6S-2 pRNAs (∼ 5-mers, which would escape detection by deep sequencing). However, binding competition experiments argued against these possibilities.

DOI: 10.1261/rna.042077.113
PubMed: 24464747

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24464747

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences.</title>
<author>
<name sortKey="Burenina, Olga Y" sort="Burenina, Olga Y" uniqKey="Burenina O" first="Olga Y" last="Burenina">Olga Y. Burenina</name>
</author>
<author>
<name sortKey="Hoch, Philipp G" sort="Hoch, Philipp G" uniqKey="Hoch P" first="Philipp G" last="Hoch">Philipp G. Hoch</name>
</author>
<author>
<name sortKey="Damm, Katrin" sort="Damm, Katrin" uniqKey="Damm K" first="Katrin" last="Damm">Katrin Damm</name>
</author>
<author>
<name sortKey="Salas, Margarita" sort="Salas, Margarita" uniqKey="Salas M" first="Margarita" last="Salas">Margarita Salas</name>
</author>
<author>
<name sortKey="Zatsepin, Timofei S" sort="Zatsepin, Timofei S" uniqKey="Zatsepin T" first="Timofei S" last="Zatsepin">Timofei S. Zatsepin</name>
</author>
<author>
<name sortKey="Lechner, Marcus" sort="Lechner, Marcus" uniqKey="Lechner M" first="Marcus" last="Lechner">Marcus Lechner</name>
</author>
<author>
<name sortKey="Oretskaya, Tatiana S" sort="Oretskaya, Tatiana S" uniqKey="Oretskaya T" first="Tatiana S" last="Oretskaya">Tatiana S. Oretskaya</name>
</author>
<author>
<name sortKey="Kubareva, Elena A" sort="Kubareva, Elena A" uniqKey="Kubareva E" first="Elena A" last="Kubareva">Elena A. Kubareva</name>
</author>
<author>
<name sortKey="Hartmann, Roland K" sort="Hartmann, Roland K" uniqKey="Hartmann R" first="Roland K" last="Hartmann">Roland K. Hartmann</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24464747</idno>
<idno type="pmid">24464747</idno>
<idno type="doi">10.1261/rna.042077.113</idno>
<idno type="wicri:Area/PubMed/Corpus">001A77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001A77</idno>
<idno type="wicri:Area/PubMed/Curation">001A77</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001A77</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001831</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001831</idno>
<idno type="wicri:Area/Ncbi/Merge">000C66</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences.</title>
<author>
<name sortKey="Burenina, Olga Y" sort="Burenina, Olga Y" uniqKey="Burenina O" first="Olga Y" last="Burenina">Olga Y. Burenina</name>
</author>
<author>
<name sortKey="Hoch, Philipp G" sort="Hoch, Philipp G" uniqKey="Hoch P" first="Philipp G" last="Hoch">Philipp G. Hoch</name>
</author>
<author>
<name sortKey="Damm, Katrin" sort="Damm, Katrin" uniqKey="Damm K" first="Katrin" last="Damm">Katrin Damm</name>
</author>
<author>
<name sortKey="Salas, Margarita" sort="Salas, Margarita" uniqKey="Salas M" first="Margarita" last="Salas">Margarita Salas</name>
</author>
<author>
<name sortKey="Zatsepin, Timofei S" sort="Zatsepin, Timofei S" uniqKey="Zatsepin T" first="Timofei S" last="Zatsepin">Timofei S. Zatsepin</name>
</author>
<author>
<name sortKey="Lechner, Marcus" sort="Lechner, Marcus" uniqKey="Lechner M" first="Marcus" last="Lechner">Marcus Lechner</name>
</author>
<author>
<name sortKey="Oretskaya, Tatiana S" sort="Oretskaya, Tatiana S" uniqKey="Oretskaya T" first="Tatiana S" last="Oretskaya">Tatiana S. Oretskaya</name>
</author>
<author>
<name sortKey="Kubareva, Elena A" sort="Kubareva, Elena A" uniqKey="Kubareva E" first="Elena A" last="Kubareva">Elena A. Kubareva</name>
</author>
<author>
<name sortKey="Hartmann, Roland K" sort="Hartmann, Roland K" uniqKey="Hartmann R" first="Roland K" last="Hartmann">Roland K. Hartmann</name>
</author>
</analytic>
<series>
<title level="j">RNA (New York, N.Y.)</title>
<idno type="eISSN">1469-9001</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus subtilis (genetics)</term>
<term>Bacillus subtilis (metabolism)</term>
<term>DNA-Directed RNA Polymerases (metabolism)</term>
<term>Electrophoretic Mobility Shift Assay</term>
<term>Nucleic Acid Conformation</term>
<term>Polymerase Chain Reaction</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>RNA, Bacterial (chemistry)</term>
<term>RNA, Bacterial (genetics)</term>
<term>RNA, Bacterial (metabolism)</term>
<term>RNA, Untranslated</term>
<term>Transcription, Genetic</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien ()</term>
<term>ARN bactérien (génétique)</term>
<term>ARN bactérien (métabolisme)</term>
<term>ARN non traduit</term>
<term>Bacillus subtilis (génétique)</term>
<term>Bacillus subtilis (métabolisme)</term>
<term>Conformation d'acide nucléique</term>
<term>DNA-directed RNA polymerases (métabolisme)</term>
<term>Protéines virales (métabolisme)</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Test de retard de migration électrophorétique</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>RNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Bacterial</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA-Directed RNA Polymerases</term>
<term>RNA, Bacterial</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN bactérien</term>
<term>Bacillus subtilis</term>
<term>Régions promotrices (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN bactérien</term>
<term>Bacillus subtilis</term>
<term>DNA-directed RNA polymerases</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrophoretic Mobility Shift Assay</term>
<term>Nucleic Acid Conformation</term>
<term>Polymerase Chain Reaction</term>
<term>RNA, Untranslated</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN bactérien</term>
<term>ARN non traduit</term>
<term>Conformation d'acide nucléique</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Test de retard de migration électrophorétique</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bacterial 6S RNAs bind to the housekeeping RNA polymerase (σ(A)-RNAP in Bacillus subtilis) to regulate transcription in a growth phase-dependent manner. B. subtilis expresses two 6S RNAs, 6S-1 and 6S-2 RNA, with different expression profiles. We show in vitro that 6S-2 RNA shares hallmark features with 6S-1 RNA: Both (1) are able to serve as templates for pRNA transcription; (2) bind with comparable affinity to σ(A)-RNAP; (3) are able to specifically inhibit transcription from DNA promoters, and (4) can form stable 6S RNA:pRNA hybrid structures that (5) abolish binding to σ(A)-RNAP. However, pRNAs of equal length dissociate faster from 6S-2 than 6S-1 RNA, owing to the higher A,U-content of 6S-2 pRNAs. This could have two mechanistic implications: (1) Short 6S-2 pRNAs (<10 nt) dissociate faster instead of being elongated to longer pRNAs, which could make it more difficult for 6S-2 RNA-stalled RNAP molecules to escape from the sequestration; and (2) relative to 6S-1 RNA, 6S-2 pRNAs of equal length will dissociate more rapidly from 6S-2 RNA after RNAP release, which could affect pRNA turnover or the kinetics of 6S-2 RNA binding to a new RNAP molecule. As 6S-2 pRNAs have not yet been detected in vivo, we considered that cellular RNAP release from 6S-2 RNA might occur via 6S-1 RNA displacing 6S-2 RNA from the enzyme, either in the absence of pRNA transcription or upon synthesis of very short 6S-2 pRNAs (∼ 5-mers, which would escape detection by deep sequencing). However, binding competition experiments argued against these possibilities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24464747</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-9001</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>RNA (New York, N.Y.)</Title>
<ISOAbbreviation>RNA</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences.</ArticleTitle>
<Pagination>
<MedlinePgn>348-59</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1261/rna.042077.113</ELocationID>
<Abstract>
<AbstractText>Bacterial 6S RNAs bind to the housekeeping RNA polymerase (σ(A)-RNAP in Bacillus subtilis) to regulate transcription in a growth phase-dependent manner. B. subtilis expresses two 6S RNAs, 6S-1 and 6S-2 RNA, with different expression profiles. We show in vitro that 6S-2 RNA shares hallmark features with 6S-1 RNA: Both (1) are able to serve as templates for pRNA transcription; (2) bind with comparable affinity to σ(A)-RNAP; (3) are able to specifically inhibit transcription from DNA promoters, and (4) can form stable 6S RNA:pRNA hybrid structures that (5) abolish binding to σ(A)-RNAP. However, pRNAs of equal length dissociate faster from 6S-2 than 6S-1 RNA, owing to the higher A,U-content of 6S-2 pRNAs. This could have two mechanistic implications: (1) Short 6S-2 pRNAs (<10 nt) dissociate faster instead of being elongated to longer pRNAs, which could make it more difficult for 6S-2 RNA-stalled RNAP molecules to escape from the sequestration; and (2) relative to 6S-1 RNA, 6S-2 pRNAs of equal length will dissociate more rapidly from 6S-2 RNA after RNAP release, which could affect pRNA turnover or the kinetics of 6S-2 RNA binding to a new RNAP molecule. As 6S-2 pRNAs have not yet been detected in vivo, we considered that cellular RNAP release from 6S-2 RNA might occur via 6S-1 RNA displacing 6S-2 RNA from the enzyme, either in the absence of pRNA transcription or upon synthesis of very short 6S-2 pRNAs (∼ 5-mers, which would escape detection by deep sequencing). However, binding competition experiments argued against these possibilities.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Burenina</LastName>
<ForeName>Olga Y</ForeName>
<Initials>OY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoch</LastName>
<ForeName>Philipp G</ForeName>
<Initials>PG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Damm</LastName>
<ForeName>Katrin</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salas</LastName>
<ForeName>Margarita</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zatsepin</LastName>
<ForeName>Timofei S</ForeName>
<Initials>TS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lechner</LastName>
<ForeName>Marcus</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oretskaya</LastName>
<ForeName>Tatiana S</ForeName>
<Initials>TS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kubareva</LastName>
<ForeName>Elena A</ForeName>
<Initials>EA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hartmann</LastName>
<ForeName>Roland K</ForeName>
<Initials>RK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>RNA</MedlineTA>
<NlmUniqueID>9509184</NlmUniqueID>
<ISSNLinking>1355-8382</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C411065">6S RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022661">RNA, Untranslated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="C062210">bacteriophage T7 RNA polymerase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.6</RegistryNumber>
<NameOfSubstance UI="D012321">DNA-Directed RNA Polymerases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012321" MajorTopicYN="N">DNA-Directed RNA Polymerases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022661" MajorTopicYN="N">RNA, Untranslated</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">6S RNA:pRNA hybrid stability</Keyword>
<Keyword MajorTopicYN="N">6S-1 RNA</Keyword>
<Keyword MajorTopicYN="N">6S-2 RNA</Keyword>
<Keyword MajorTopicYN="N">6S-2 RNA release from RNAP</Keyword>
<Keyword MajorTopicYN="N">affinity for σA-RNAP</Keyword>
<Keyword MajorTopicYN="N">bsrA</Keyword>
<Keyword MajorTopicYN="N">bsrB</Keyword>
<Keyword MajorTopicYN="N">pRNA transcripts</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24464747</ArticleId>
<ArticleId IdType="pii">rna.042077.113</ArticleId>
<ArticleId IdType="doi">10.1261/rna.042077.113</ArticleId>
<ArticleId IdType="pmc">PMC3923129</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Bioinformatics. 2008;9:474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2002 Jan 22;207(1):29-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11886746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2007 Apr 13;3(4):e65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17432929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2003 Apr;133(4):475-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12761295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(6):1885-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2000 Aug;19(3):350-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10910724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2002 Jun 21;319(5):1059-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12079347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 May;11(5):774-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15811922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Oct;38(19):6637-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Mar;40(5):2234-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22102588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 Sep-Oct;8(5):839-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21881410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2005 Dec;386(12):1273-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16336121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 May 1;15(9):1093-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11331605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Aug;148(Pt 8):2591-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12177353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2007 Apr;10(2):164-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17383220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Aug;41(15):7501-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20222947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Apr 4;31(7):1727-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22333917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2005 Apr;12(4):313-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15793584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Aug;5(8):593-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Jun 9;101(6):613-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10892648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Algorithms Mol Biol. 2006 Mar 16;1(1):3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16722605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Dec;193(24):6939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22001508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Mar;67(6):1242-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18208528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1979 Oct 4;587(2):238-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">114234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 8;314(5805):1601-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1979 Feb 5;127(4):411-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">107317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Burenina, Olga Y" sort="Burenina, Olga Y" uniqKey="Burenina O" first="Olga Y" last="Burenina">Olga Y. Burenina</name>
<name sortKey="Damm, Katrin" sort="Damm, Katrin" uniqKey="Damm K" first="Katrin" last="Damm">Katrin Damm</name>
<name sortKey="Hartmann, Roland K" sort="Hartmann, Roland K" uniqKey="Hartmann R" first="Roland K" last="Hartmann">Roland K. Hartmann</name>
<name sortKey="Hoch, Philipp G" sort="Hoch, Philipp G" uniqKey="Hoch P" first="Philipp G" last="Hoch">Philipp G. Hoch</name>
<name sortKey="Kubareva, Elena A" sort="Kubareva, Elena A" uniqKey="Kubareva E" first="Elena A" last="Kubareva">Elena A. Kubareva</name>
<name sortKey="Lechner, Marcus" sort="Lechner, Marcus" uniqKey="Lechner M" first="Marcus" last="Lechner">Marcus Lechner</name>
<name sortKey="Oretskaya, Tatiana S" sort="Oretskaya, Tatiana S" uniqKey="Oretskaya T" first="Tatiana S" last="Oretskaya">Tatiana S. Oretskaya</name>
<name sortKey="Salas, Margarita" sort="Salas, Margarita" uniqKey="Salas M" first="Margarita" last="Salas">Margarita Salas</name>
<name sortKey="Zatsepin, Timofei S" sort="Zatsepin, Timofei S" uniqKey="Zatsepin T" first="Timofei S" last="Zatsepin">Timofei S. Zatsepin</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000C66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:24464747
   |texte=   Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs--commonalities and differences.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:24464747" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021