Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein.

Identifieur interne : 000756 ( Ncbi/Merge ); précédent : 000755; suivant : 000757

Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein.

Auteurs : Piotr Cysewski [Pologne] ; Przemysław Czele

Source :

RBID : pubmed:20464436

Descripteurs français

English descriptors

Abstract

The configuration hyperspace of canonical and oxidized 14-mers of B-DNA comprising telomere repeat units d(ApGpGpGpTpT) was sampled over 40 ns via molecular dynamic (MD) simulations. The energetic and structural consequences of TRF1 binding to telomere B-DNA were compared with non-complexed systems. Energetic properties of analyzed pairs, di- and tri-nucleotide steps occurring in central telomere repeat unit were estimated by means of advanced quantum chemistry computations including not only BSSE corrections, electron correlation contributions but also non-negligible many-body terms. These data along with bases pair and base step parameters distributions allow for quantization of consequences of oxidation and/or TRF1 binding to telomere repeat units. Occurrence of 8-oxoguanine in central telomeric triad (CTT) is the source of high stiffness if compared to non-modified oligomer. The origin of this property comes from significantly alteration of intermolecular interactions introduced by 8-oxoguanine. The increased stability observed for base-base interactions are accumulated and characterizes also di- and tri-nucleotides. The observed changes in the intermolecular interactions originate from structural alterations imposed by TRF1 binding to canonical and oxidized telomere B-DNA. First and most direct consequence of TRF1 binding to oxidized telomere repeat unit is alteration of shift-slide correlations if compared to canonical system. This in turn leads to large differences in purine-purine overlapping in oxidized structures. Thus, oxidized telomere B-DNA double strands are sensitive to interactions with protein ligands and numerous structural and energetic changes are imposed on base pairs forming CTT.

DOI: 10.1007/s00894-010-0730-8
PubMed: 20464436

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20464436

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein.</title>
<author>
<name sortKey="Cysewski, Piotr" sort="Cysewski, Piotr" uniqKey="Cysewski P" first="Piotr" last="Cysewski">Piotr Cysewski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physical Chemistry Department, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz, Poland. piotr.cysewski@cm.umk.pl</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Physical Chemistry Department, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz</wicri:regionArea>
<wicri:noRegion>Bydgoszcz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Czele, Przemyslaw" sort="Czele, Przemyslaw" uniqKey="Czele P" first="Przemysław" last="Czele">Przemysław Czele</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20464436</idno>
<idno type="pmid">20464436</idno>
<idno type="doi">10.1007/s00894-010-0730-8</idno>
<idno type="wicri:Area/PubMed/Corpus">001F51</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F51</idno>
<idno type="wicri:Area/PubMed/Curation">001F51</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F51</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E17</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E17</idno>
<idno type="wicri:Area/Ncbi/Merge">000756</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein.</title>
<author>
<name sortKey="Cysewski, Piotr" sort="Cysewski, Piotr" uniqKey="Cysewski P" first="Piotr" last="Cysewski">Piotr Cysewski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Physical Chemistry Department, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz, Poland. piotr.cysewski@cm.umk.pl</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Physical Chemistry Department, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz</wicri:regionArea>
<wicri:noRegion>Bydgoszcz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Czele, Przemyslaw" sort="Czele, Przemyslaw" uniqKey="Czele P" first="Przemysław" last="Czele">Przemysław Czele</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular modeling</title>
<idno type="eISSN">0948-5023</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Molecular Conformation</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Binding</term>
<term>Purines (metabolism)</term>
<term>Regression Analysis</term>
<term>Repetitive Sequences, Nucleic Acid (genetics)</term>
<term>Telomere (chemistry)</term>
<term>Telomere (genetics)</term>
<term>Telomere (metabolism)</term>
<term>Telomeric Repeat Binding Protein 1 (chemistry)</term>
<term>Telomeric Repeat Binding Protein 1 (metabolism)</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de régression</term>
<term>Conformation moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Oxydoréduction</term>
<term>Protéine-1 se liant aux répétitions télomériques ()</term>
<term>Protéine-1 se liant aux répétitions télomériques (métabolisme)</term>
<term>Purines (métabolisme)</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées d'acides nucléiques (génétique)</term>
<term>Thermodynamique</term>
<term>Télomère ()</term>
<term>Télomère (génétique)</term>
<term>Télomère (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Telomeric Repeat Binding Protein 1</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Purines</term>
<term>Telomeric Repeat Binding Protein 1</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Telomere</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Telomere</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Séquences répétées d'acides nucléiques</term>
<term>Télomère</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Telomere</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéine-1 se liant aux répétitions télomériques</term>
<term>Purines</term>
<term>Télomère</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Molecular Conformation</term>
<term>Molecular Sequence Data</term>
<term>Oxidation-Reduction</term>
<term>Protein Binding</term>
<term>Regression Analysis</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de régression</term>
<term>Conformation moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Liaison aux protéines</term>
<term>Oxydoréduction</term>
<term>Protéine-1 se liant aux répétitions télomériques</term>
<term>Séquence nucléotidique</term>
<term>Thermodynamique</term>
<term>Télomère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The configuration hyperspace of canonical and oxidized 14-mers of B-DNA comprising telomere repeat units d(ApGpGpGpTpT) was sampled over 40 ns via molecular dynamic (MD) simulations. The energetic and structural consequences of TRF1 binding to telomere B-DNA were compared with non-complexed systems. Energetic properties of analyzed pairs, di- and tri-nucleotide steps occurring in central telomere repeat unit were estimated by means of advanced quantum chemistry computations including not only BSSE corrections, electron correlation contributions but also non-negligible many-body terms. These data along with bases pair and base step parameters distributions allow for quantization of consequences of oxidation and/or TRF1 binding to telomere repeat units. Occurrence of 8-oxoguanine in central telomeric triad (CTT) is the source of high stiffness if compared to non-modified oligomer. The origin of this property comes from significantly alteration of intermolecular interactions introduced by 8-oxoguanine. The increased stability observed for base-base interactions are accumulated and characterizes also di- and tri-nucleotides. The observed changes in the intermolecular interactions originate from structural alterations imposed by TRF1 binding to canonical and oxidized telomere B-DNA. First and most direct consequence of TRF1 binding to oxidized telomere repeat unit is alteration of shift-slide correlations if compared to canonical system. This in turn leads to large differences in purine-purine overlapping in oxidized structures. Thus, oxidized telomere B-DNA double strands are sensitive to interactions with protein ligands and numerous structural and energetic changes are imposed on base pairs forming CTT.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20464436</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>01</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">0948-5023</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular modeling</Title>
<ISOAbbreviation>J Mol Model</ISOAbbreviation>
</Journal>
<ArticleTitle>Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein.</ArticleTitle>
<Pagination>
<MedlinePgn>1797-807</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00894-010-0730-8</ELocationID>
<Abstract>
<AbstractText>The configuration hyperspace of canonical and oxidized 14-mers of B-DNA comprising telomere repeat units d(ApGpGpGpTpT) was sampled over 40 ns via molecular dynamic (MD) simulations. The energetic and structural consequences of TRF1 binding to telomere B-DNA were compared with non-complexed systems. Energetic properties of analyzed pairs, di- and tri-nucleotide steps occurring in central telomere repeat unit were estimated by means of advanced quantum chemistry computations including not only BSSE corrections, electron correlation contributions but also non-negligible many-body terms. These data along with bases pair and base step parameters distributions allow for quantization of consequences of oxidation and/or TRF1 binding to telomere repeat units. Occurrence of 8-oxoguanine in central telomeric triad (CTT) is the source of high stiffness if compared to non-modified oligomer. The origin of this property comes from significantly alteration of intermolecular interactions introduced by 8-oxoguanine. The increased stability observed for base-base interactions are accumulated and characterizes also di- and tri-nucleotides. The observed changes in the intermolecular interactions originate from structural alterations imposed by TRF1 binding to canonical and oxidized telomere B-DNA. First and most direct consequence of TRF1 binding to oxidized telomere repeat unit is alteration of shift-slide correlations if compared to canonical system. This in turn leads to large differences in purine-purine overlapping in oxidized structures. Thus, oxidized telomere B-DNA double strands are sensitive to interactions with protein ligands and numerous structural and energetic changes are imposed on base pairs forming CTT.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cysewski</LastName>
<ForeName>Piotr</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Physical Chemistry Department, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950, Bydgoszcz, Poland. piotr.cysewski@cm.umk.pl</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Czeleń</LastName>
<ForeName>Przemysław</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Mol Model</MedlineTA>
<NlmUniqueID>9806569</NlmUniqueID>
<ISSNLinking>0948-5023</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011687">Purines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035321">Telomeric Repeat Binding Protein 1</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011687" MajorTopicYN="N">Purines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012044" MajorTopicYN="N">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016615" MajorTopicYN="N">Telomere</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035321" MajorTopicYN="N">Telomeric Repeat Binding Protein 1</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>12</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20464436</ArticleId>
<ArticleId IdType="doi">10.1007/s00894-010-0730-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Phys Chem. 2000;51:435-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11031289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2003 May;24(7):898-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Sep;9(9):646-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12198485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 May 31;345(6274):458-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2342578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Feb 24;33(4):1230-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Dec;9(12):1237-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11738049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Model. 2007 Jul;13(6-7):739-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17340111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2005 Jan;6(1):39-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Feb 24;403(6772):859-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10706276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2007 Nov;3(6):2312-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26636222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Aug;8(2):351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11545737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2003 Feb 1;12(3):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12554677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2002 Apr;19(5):839-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11922839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Oct 2;124(39):11802-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12296748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 1999 Nov 10;99(11):3247-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11749516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 Jul;27(7):339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2001 Dec 19;487(3-4):93-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11738936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2000 Jun 30;451(1-2):227-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10915875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Dec 8;270(5242):1663-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7502076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Model. 2009 Jun;15(6):597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19039609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 1995 Jul 3;75(1):168-171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10059142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1997 Oct;17(2):231-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9326950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2002 Apr;12(2):190-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Comput Sci. 2003 May-Jun;43(3):810-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12767138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14771-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 May 21;125(20):6331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12785867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Dec;26(16):1668-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2005 Jan;14(1):119-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Biol Chem. 2003 Jul;27(3):431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12927117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1989 Feb 20;205(4):787-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2926825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2005 Jun;26(8):788-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Invest. 2000 Nov;80(11):1739-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Oct 12;127(40):13906-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16201812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Model. 2009 Jun;15(6):607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19132417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2010 Apr 15;114(14):4789-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20307074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2007 Jun 1;92(11):3817-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17351000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 16;279(5349):349-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9454332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Sep 1;31(17):5108-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2000 Dec;33(12):889-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Jul 1;91(1):164-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1992 Sep;63(3):751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1384741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Chem Chem Phys. 2005 Apr 21;7(8):1624-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19787917</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Czele, Przemyslaw" sort="Czele, Przemyslaw" uniqKey="Czele P" first="Przemysław" last="Czele">Przemysław Czele</name>
</noCountry>
<country name="Pologne">
<noRegion>
<name sortKey="Cysewski, Piotr" sort="Cysewski, Piotr" uniqKey="Cysewski P" first="Piotr" last="Cysewski">Piotr Cysewski</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000756 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000756 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:20464436
   |texte=   Structural and energetic consequences of oxidation of d(ApGpGpGpTpT) telomere repeat unit in complex with TRF1 protein.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:20464436" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021