Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401.

Identifieur interne : 000719 ( Ncbi/Merge ); précédent : 000718; suivant : 000720

Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401.

Auteurs : Simani Gaseitsiwe [Suède] ; Davide Valentini ; Shahnaz Mahdavifar ; Marie Reilly ; Anneka Ehrnst ; Markus Maeurer

Source :

RBID : pubmed:19864486

Descripteurs français

English descriptors

Abstract

A more effective vaccine against Mycobacterium tuberculosis is needed, and a number of M. tuberculosis vaccine candidates are currently in preclinical or clinical phase I and II studies. One of the strategies to select M. tuberculosis (protein) targets to elicit a CD8(+) or CD4(+) T-cell response is to gauge the binding of candidate peptides to major histocompatibility complex (MHC) class I or class II molecules, a prerequisite for successful peptide presentation and to expand antigen-specific T cells. We scanned 61 proteins from the M. tuberculosis proteome for potential MHC class II-presented epitopes that could serve as targets for CD4(+) T-cell responses. We constructed a peptide microarray consisting of 7,466 unique peptides derived from 61 M. tuberculosis proteins. The peptides were 15-mers overlapping by 12 amino acids. Soluble recombinant DRB1*0101 (DR1), DRB1*1501 (DR2), and DRB1*0401 (DR4) monomers were used to gauge binding to individual peptide species. Out of 7,466 peptides, 1,282, 674, and 1,854 peptides formed stable complexes with HLA-DR1, -DR2, and -DR4, respectively. Five hundred forty-four peptides bound to all three MHC class II molecules, 609 bound to only two, and 756 bound to only a single MHC class II molecule. This allowed us to rank M. tuberculosis proteins by epitope density. M. tuberculosis proteins contained "hot spots," i.e., regions with enriched MHC class II binding epitopes. Two hundred twenty-two peptides that formed MHC class II-peptide complexes had previously been described as exclusively recognized by IgG in sera from patients with active pulmonary tuberculosis, but not in sera from healthy individuals, suggesting that these peptides serve as B-cell and CD4(+) T-cell epitopes. This work helps to identify not only M. tuberculosis peptides with immunogenic potential, but also the most immunogenic proteins. This information is useful for vaccine design and the development of future tools to explore immune responses to M. tuberculosis.

DOI: 10.1128/CVI.00208-09
PubMed: 19864486

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19864486

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401.</title>
<author>
<name sortKey="Gaseitsiwe, Simani" sort="Gaseitsiwe, Simani" uniqKey="Gaseitsiwe S" first="Simani" last="Gaseitsiwe">Simani Gaseitsiwe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, and the Swedish Institute for Infectious Disease Control (SMI), Nobels Väg 18, SE. 17182 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, and the Swedish Institute for Infectious Disease Control (SMI), Nobels Väg 18, SE. 17182 Stockholm</wicri:regionArea>
<wicri:noRegion>SE. 17182 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valentini, Davide" sort="Valentini, Davide" uniqKey="Valentini D" first="Davide" last="Valentini">Davide Valentini</name>
</author>
<author>
<name sortKey="Mahdavifar, Shahnaz" sort="Mahdavifar, Shahnaz" uniqKey="Mahdavifar S" first="Shahnaz" last="Mahdavifar">Shahnaz Mahdavifar</name>
</author>
<author>
<name sortKey="Reilly, Marie" sort="Reilly, Marie" uniqKey="Reilly M" first="Marie" last="Reilly">Marie Reilly</name>
</author>
<author>
<name sortKey="Ehrnst, Anneka" sort="Ehrnst, Anneka" uniqKey="Ehrnst A" first="Anneka" last="Ehrnst">Anneka Ehrnst</name>
</author>
<author>
<name sortKey="Maeurer, Markus" sort="Maeurer, Markus" uniqKey="Maeurer M" first="Markus" last="Maeurer">Markus Maeurer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:19864486</idno>
<idno type="pmid">19864486</idno>
<idno type="doi">10.1128/CVI.00208-09</idno>
<idno type="wicri:Area/PubMed/Corpus">001F86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F86</idno>
<idno type="wicri:Area/PubMed/Curation">001F86</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F86</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E28</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E28</idno>
<idno type="wicri:Area/Ncbi/Merge">000719</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401.</title>
<author>
<name sortKey="Gaseitsiwe, Simani" sort="Gaseitsiwe, Simani" uniqKey="Gaseitsiwe S" first="Simani" last="Gaseitsiwe">Simani Gaseitsiwe</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, and the Swedish Institute for Infectious Disease Control (SMI), Nobels Väg 18, SE. 17182 Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, and the Swedish Institute for Infectious Disease Control (SMI), Nobels Väg 18, SE. 17182 Stockholm</wicri:regionArea>
<wicri:noRegion>SE. 17182 Stockholm</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valentini, Davide" sort="Valentini, Davide" uniqKey="Valentini D" first="Davide" last="Valentini">Davide Valentini</name>
</author>
<author>
<name sortKey="Mahdavifar, Shahnaz" sort="Mahdavifar, Shahnaz" uniqKey="Mahdavifar S" first="Shahnaz" last="Mahdavifar">Shahnaz Mahdavifar</name>
</author>
<author>
<name sortKey="Reilly, Marie" sort="Reilly, Marie" uniqKey="Reilly M" first="Marie" last="Reilly">Marie Reilly</name>
</author>
<author>
<name sortKey="Ehrnst, Anneka" sort="Ehrnst, Anneka" uniqKey="Ehrnst A" first="Anneka" last="Ehrnst">Anneka Ehrnst</name>
</author>
<author>
<name sortKey="Maeurer, Markus" sort="Maeurer, Markus" uniqKey="Maeurer M" first="Markus" last="Maeurer">Markus Maeurer</name>
</author>
</analytic>
<series>
<title level="j">Clinical and vaccine immunology : CVI</title>
<idno type="eISSN">1556-679X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (immunology)</term>
<term>Epitopes, B-Lymphocyte (immunology)</term>
<term>Epitopes, T-Lymphocyte (immunology)</term>
<term>HLA-A Antigens (immunology)</term>
<term>HLA-DR Antigens (immunology)</term>
<term>HLA-DRB1 Chains</term>
<term>Humans</term>
<term>Mycobacterium tuberculosis (immunology)</term>
<term>Peptides (immunology)</term>
<term>Protein Array Analysis (methods)</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse par réseau de protéines ()</term>
<term>Antigènes HLA-A (immunologie)</term>
<term>Antigènes HLA-DR (immunologie)</term>
<term>Chaines HLA-DRB1</term>
<term>Déterminants antigéniques des lymphocytes B (immunologie)</term>
<term>Déterminants antigéniques des lymphocytes T (immunologie)</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
<term>Mycobacterium tuberculosis (immunologie)</term>
<term>Peptides (immunologie)</term>
<term>Protéines bactériennes (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Epitopes, B-Lymphocyte</term>
<term>Epitopes, T-Lymphocyte</term>
<term>HLA-A Antigens</term>
<term>HLA-DR Antigens</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>HLA-DRB1 Chains</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Antigènes HLA-A</term>
<term>Antigènes HLA-DR</term>
<term>Déterminants antigéniques des lymphocytes B</term>
<term>Déterminants antigéniques des lymphocytes T</term>
<term>Mycobacterium tuberculosis</term>
<term>Peptides</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Mycobacterium tuberculosis</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Protein Array Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Protein Binding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse par réseau de protéines</term>
<term>Chaines HLA-DRB1</term>
<term>Humains</term>
<term>Liaison aux protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A more effective vaccine against Mycobacterium tuberculosis is needed, and a number of M. tuberculosis vaccine candidates are currently in preclinical or clinical phase I and II studies. One of the strategies to select M. tuberculosis (protein) targets to elicit a CD8(+) or CD4(+) T-cell response is to gauge the binding of candidate peptides to major histocompatibility complex (MHC) class I or class II molecules, a prerequisite for successful peptide presentation and to expand antigen-specific T cells. We scanned 61 proteins from the M. tuberculosis proteome for potential MHC class II-presented epitopes that could serve as targets for CD4(+) T-cell responses. We constructed a peptide microarray consisting of 7,466 unique peptides derived from 61 M. tuberculosis proteins. The peptides were 15-mers overlapping by 12 amino acids. Soluble recombinant DRB1*0101 (DR1), DRB1*1501 (DR2), and DRB1*0401 (DR4) monomers were used to gauge binding to individual peptide species. Out of 7,466 peptides, 1,282, 674, and 1,854 peptides formed stable complexes with HLA-DR1, -DR2, and -DR4, respectively. Five hundred forty-four peptides bound to all three MHC class II molecules, 609 bound to only two, and 756 bound to only a single MHC class II molecule. This allowed us to rank M. tuberculosis proteins by epitope density. M. tuberculosis proteins contained "hot spots," i.e., regions with enriched MHC class II binding epitopes. Two hundred twenty-two peptides that formed MHC class II-peptide complexes had previously been described as exclusively recognized by IgG in sera from patients with active pulmonary tuberculosis, but not in sera from healthy individuals, suggesting that these peptides serve as B-cell and CD4(+) T-cell epitopes. This work helps to identify not only M. tuberculosis peptides with immunogenic potential, but also the most immunogenic proteins. This information is useful for vaccine design and the development of future tools to explore immune responses to M. tuberculosis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19864486</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1556-679X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Clinical and vaccine immunology : CVI</Title>
<ISOAbbreviation>Clin. Vaccine Immunol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401.</ArticleTitle>
<Pagination>
<MedlinePgn>168-75</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/CVI.00208-09</ELocationID>
<Abstract>
<AbstractText>A more effective vaccine against Mycobacterium tuberculosis is needed, and a number of M. tuberculosis vaccine candidates are currently in preclinical or clinical phase I and II studies. One of the strategies to select M. tuberculosis (protein) targets to elicit a CD8(+) or CD4(+) T-cell response is to gauge the binding of candidate peptides to major histocompatibility complex (MHC) class I or class II molecules, a prerequisite for successful peptide presentation and to expand antigen-specific T cells. We scanned 61 proteins from the M. tuberculosis proteome for potential MHC class II-presented epitopes that could serve as targets for CD4(+) T-cell responses. We constructed a peptide microarray consisting of 7,466 unique peptides derived from 61 M. tuberculosis proteins. The peptides were 15-mers overlapping by 12 amino acids. Soluble recombinant DRB1*0101 (DR1), DRB1*1501 (DR2), and DRB1*0401 (DR4) monomers were used to gauge binding to individual peptide species. Out of 7,466 peptides, 1,282, 674, and 1,854 peptides formed stable complexes with HLA-DR1, -DR2, and -DR4, respectively. Five hundred forty-four peptides bound to all three MHC class II molecules, 609 bound to only two, and 756 bound to only a single MHC class II molecule. This allowed us to rank M. tuberculosis proteins by epitope density. M. tuberculosis proteins contained "hot spots," i.e., regions with enriched MHC class II binding epitopes. Two hundred twenty-two peptides that formed MHC class II-peptide complexes had previously been described as exclusively recognized by IgG in sera from patients with active pulmonary tuberculosis, but not in sera from healthy individuals, suggesting that these peptides serve as B-cell and CD4(+) T-cell epitopes. This work helps to identify not only M. tuberculosis peptides with immunogenic potential, but also the most immunogenic proteins. This information is useful for vaccine design and the development of future tools to explore immune responses to M. tuberculosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gaseitsiwe</LastName>
<ForeName>Simani</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, and the Swedish Institute for Infectious Disease Control (SMI), Nobels Väg 18, SE. 17182 Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Valentini</LastName>
<ForeName>Davide</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mahdavifar</LastName>
<ForeName>Shahnaz</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reilly</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ehrnst</LastName>
<ForeName>Anneka</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maeurer</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>10</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Clin Vaccine Immunol</MedlineTA>
<NlmUniqueID>101252125</NlmUniqueID>
<ISSNLinking>1556-679X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018985">Epitopes, B-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018984">Epitopes, T-Lymphocyte</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015234">HLA-A Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006684">HLA-DR Antigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D059811">HLA-DRB1 Chains</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C487961">HLA-DRB1*01:01 antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C553505">HLA-DRB1*04:01 antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C489631">HLA-DRB1*15:01 antigen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018985" MajorTopicYN="N">Epitopes, B-Lymphocyte</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018984" MajorTopicYN="N">Epitopes, T-Lymphocyte</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015234" MajorTopicYN="N">HLA-A Antigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006684" MajorTopicYN="N">HLA-DR Antigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059811" MajorTopicYN="N">HLA-DRB1 Chains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009169" MajorTopicYN="N">Mycobacterium tuberculosis</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040081" MajorTopicYN="N">Protein Array Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>10</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19864486</ArticleId>
<ArticleId IdType="pii">CVI.00208-09</ArticleId>
<ArticleId IdType="doi">10.1128/CVI.00208-09</ArticleId>
<ArticleId IdType="pmc">PMC2812096</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Hum Immunol. 2006 Aug;67(8):643-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 1989 Dec;19(12):2237-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2481588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(3):1238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Princ Pract. 2005 May-Jun;14(3):140-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15863985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comb Chem. 2000 Jul-Aug;2(4):361-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2009 May 15;182(10):6369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19414790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 May;74(5):2751-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16622212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Dec 15;165(12):7140-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2004 Mar;111(3):318-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15009432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2001 Nov;104(3):269-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008;3(12):e3840</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19065269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Apr 1;197(7):990-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Antigens. 2003 May;61(5):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2007 Dec 1;328(1-2):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17765917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Vaccine Immunol. 2009 Apr;16(4):567-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Tuberc Lung Dis. 2006 Jul;10(7):717-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16848331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2005 Mar 18;23(17-18):2121-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15755582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2008 Mar 15;180(6):4011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2009 Sep;10(9):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19633673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2000 Sep 15;60(18):5228-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11016652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Immunol. 2005 Oct;66(10):1074-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16386650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Immun. 2007 Jun;8(4):334-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17429413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol Methods. 2002 Sep 1;267(1):13-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 1998 Jan 21;279(3):226-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9438744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Immunol. 2009 Mar;69(3):213-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19281533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chest. 1999 Feb;115(2):428-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunome Res. 2007 Dec 14;3:10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18081934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Scand J Immunol. 2007 May;65(5):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17444958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Dec 5;25(50):8384-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 1996 Jun;8(3):348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8794000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Crit Care Med. 2006 Apr 1;173(7):803-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Microbiol Biotechnol. 2007 Jun;17(6):879-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18050904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2006 Oct 1;194(7):984-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16960787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2008 May;38(5):1231-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18398933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Tuberc Lung Dis. 2004 Aug;8(8):1017-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15305487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Immunol. 2007 Nov;37(11):3089-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1999 Dec;104(12):R63-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10606632</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ehrnst, Anneka" sort="Ehrnst, Anneka" uniqKey="Ehrnst A" first="Anneka" last="Ehrnst">Anneka Ehrnst</name>
<name sortKey="Maeurer, Markus" sort="Maeurer, Markus" uniqKey="Maeurer M" first="Markus" last="Maeurer">Markus Maeurer</name>
<name sortKey="Mahdavifar, Shahnaz" sort="Mahdavifar, Shahnaz" uniqKey="Mahdavifar S" first="Shahnaz" last="Mahdavifar">Shahnaz Mahdavifar</name>
<name sortKey="Reilly, Marie" sort="Reilly, Marie" uniqKey="Reilly M" first="Marie" last="Reilly">Marie Reilly</name>
<name sortKey="Valentini, Davide" sort="Valentini, Davide" uniqKey="Valentini D" first="Davide" last="Valentini">Davide Valentini</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Gaseitsiwe, Simani" sort="Gaseitsiwe, Simani" uniqKey="Gaseitsiwe S" first="Simani" last="Gaseitsiwe">Simani Gaseitsiwe</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000719 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000719 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19864486
   |texte=   Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19864486" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021