Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global microsatellite content distinguishes humans, primates, animals, and plants.

Identifieur interne : 000708 ( Ncbi/Merge ); précédent : 000707; suivant : 000709

Global microsatellite content distinguishes humans, primates, animals, and plants.

Auteurs : C L Galindo [États-Unis] ; L J Mciver ; J F Mccormick ; M A Skinner ; Y. Xie ; R A Gelhausen ; K. Ng ; N M Kumar ; H R Garner

Source :

RBID : pubmed:19717526

Descripteurs français

English descriptors

Abstract

Microsatellites are highly mutable, repetitive sequences commonly used as genetic markers, but they have never been studied en masse. Using a custom microarray to measure hybridization intensities of every possible repetitive nucleotide motif from 1-mers to 6-mers, we examined 25 genomes. Here, we show that global microsatellite content varies predictably by species, as measured by array hybridization signal intensities, correlating with established taxonomic relationships, and particular motifs are characteristic of one species versus another. For instance, hominid-specific microsatellite motifs were identified despite alignment of the human reference, Celera, and Venter genomic sequences indicating substantial variation (30-50%) among individuals. Differential microsatellite motifs were mainly associated with genes involved in developmental processes, whereas those found in intergenic regions exhibited no discernible pattern. This is the first description of a method for evaluating microsatellite content to classify individual genomes.

DOI: 10.1093/molbev/msp192
PubMed: 19717526

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19717526

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Global microsatellite content distinguishes humans, primates, animals, and plants.</title>
<author>
<name sortKey="Galindo, C L" sort="Galindo, C L" uniqKey="Galindo C" first="C L" last="Galindo">C L Galindo</name>
<affiliation wicri:level="2">
<nlm:affiliation>McDermott Center for Human Growth and Development of the University of Texas Southwestern Medical Center, Dallas, Texas, USA. Cristi.galindo@utsouthwestern.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McDermott Center for Human Growth and Development of the University of Texas Southwestern Medical Center, Dallas, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mciver, L J" sort="Mciver, L J" uniqKey="Mciver L" first="L J" last="Mciver">L J Mciver</name>
</author>
<author>
<name sortKey="Mccormick, J F" sort="Mccormick, J F" uniqKey="Mccormick J" first="J F" last="Mccormick">J F Mccormick</name>
</author>
<author>
<name sortKey="Skinner, M A" sort="Skinner, M A" uniqKey="Skinner M" first="M A" last="Skinner">M A Skinner</name>
</author>
<author>
<name sortKey="Xie, Y" sort="Xie, Y" uniqKey="Xie Y" first="Y" last="Xie">Y. Xie</name>
</author>
<author>
<name sortKey="Gelhausen, R A" sort="Gelhausen, R A" uniqKey="Gelhausen R" first="R A" last="Gelhausen">R A Gelhausen</name>
</author>
<author>
<name sortKey="Ng, K" sort="Ng, K" uniqKey="Ng K" first="K" last="Ng">K. Ng</name>
</author>
<author>
<name sortKey="Kumar, N M" sort="Kumar, N M" uniqKey="Kumar N" first="N M" last="Kumar">N M Kumar</name>
</author>
<author>
<name sortKey="Garner, H R" sort="Garner, H R" uniqKey="Garner H" first="H R" last="Garner">H R Garner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19717526</idno>
<idno type="pmid">19717526</idno>
<idno type="doi">10.1093/molbev/msp192</idno>
<idno type="wicri:Area/PubMed/Corpus">001F96</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F96</idno>
<idno type="wicri:Area/PubMed/Curation">001F96</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F96</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F09</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F09</idno>
<idno type="wicri:Area/Ncbi/Merge">000708</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Global microsatellite content distinguishes humans, primates, animals, and plants.</title>
<author>
<name sortKey="Galindo, C L" sort="Galindo, C L" uniqKey="Galindo C" first="C L" last="Galindo">C L Galindo</name>
<affiliation wicri:level="2">
<nlm:affiliation>McDermott Center for Human Growth and Development of the University of Texas Southwestern Medical Center, Dallas, Texas, USA. Cristi.galindo@utsouthwestern.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>McDermott Center for Human Growth and Development of the University of Texas Southwestern Medical Center, Dallas, Texas</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mciver, L J" sort="Mciver, L J" uniqKey="Mciver L" first="L J" last="Mciver">L J Mciver</name>
</author>
<author>
<name sortKey="Mccormick, J F" sort="Mccormick, J F" uniqKey="Mccormick J" first="J F" last="Mccormick">J F Mccormick</name>
</author>
<author>
<name sortKey="Skinner, M A" sort="Skinner, M A" uniqKey="Skinner M" first="M A" last="Skinner">M A Skinner</name>
</author>
<author>
<name sortKey="Xie, Y" sort="Xie, Y" uniqKey="Xie Y" first="Y" last="Xie">Y. Xie</name>
</author>
<author>
<name sortKey="Gelhausen, R A" sort="Gelhausen, R A" uniqKey="Gelhausen R" first="R A" last="Gelhausen">R A Gelhausen</name>
</author>
<author>
<name sortKey="Ng, K" sort="Ng, K" uniqKey="Ng K" first="K" last="Ng">K. Ng</name>
</author>
<author>
<name sortKey="Kumar, N M" sort="Kumar, N M" uniqKey="Kumar N" first="N M" last="Kumar">N M Kumar</name>
</author>
<author>
<name sortKey="Garner, H R" sort="Garner, H R" uniqKey="Garner H" first="H R" last="Garner">H R Garner</name>
</author>
</analytic>
<series>
<title level="j">Molecular biology and evolution</title>
<idno type="eISSN">1537-1719</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Composition (genetics)</term>
<term>Genetic Loci (genetics)</term>
<term>Genome (genetics)</term>
<term>Humans</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Nucleic Acid Hybridization (genetics)</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Pan troglodytes (genetics)</term>
<term>Plants (genetics)</term>
<term>Primates (genetics)</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Composition en bases nucléiques (génétique)</term>
<term>Génome (génétique)</term>
<term>Humains</term>
<term>Hybridation d'acides nucléiques (génétique)</term>
<term>Locus génétiques (génétique)</term>
<term>Pan troglodytes (génétique)</term>
<term>Plantes (génétique)</term>
<term>Primates (génétique)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Spécificité d'espèce</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Base Composition</term>
<term>Genetic Loci</term>
<term>Genome</term>
<term>Microsatellite Repeats</term>
<term>Nucleic Acid Hybridization</term>
<term>Pan troglodytes</term>
<term>Plants</term>
<term>Primates</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Composition en bases nucléiques</term>
<term>Génome</term>
<term>Hybridation d'acides nucléiques</term>
<term>Locus génétiques</term>
<term>Pan troglodytes</term>
<term>Plantes</term>
<term>Primates</term>
<term>Répétitions microsatellites</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Spécificité d'espèce</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Microsatellites are highly mutable, repetitive sequences commonly used as genetic markers, but they have never been studied en masse. Using a custom microarray to measure hybridization intensities of every possible repetitive nucleotide motif from 1-mers to 6-mers, we examined 25 genomes. Here, we show that global microsatellite content varies predictably by species, as measured by array hybridization signal intensities, correlating with established taxonomic relationships, and particular motifs are characteristic of one species versus another. For instance, hominid-specific microsatellite motifs were identified despite alignment of the human reference, Celera, and Venter genomic sequences indicating substantial variation (30-50%) among individuals. Differential microsatellite motifs were mainly associated with genes involved in developmental processes, whereas those found in intergenic regions exhibited no discernible pattern. This is the first description of a method for evaluating microsatellite content to classify individual genomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19717526</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1537-1719</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biology and evolution</Title>
<ISOAbbreviation>Mol. Biol. Evol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Global microsatellite content distinguishes humans, primates, animals, and plants.</ArticleTitle>
<Pagination>
<MedlinePgn>2809-19</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/molbev/msp192</ELocationID>
<Abstract>
<AbstractText>Microsatellites are highly mutable, repetitive sequences commonly used as genetic markers, but they have never been studied en masse. Using a custom microarray to measure hybridization intensities of every possible repetitive nucleotide motif from 1-mers to 6-mers, we examined 25 genomes. Here, we show that global microsatellite content varies predictably by species, as measured by array hybridization signal intensities, correlating with established taxonomic relationships, and particular motifs are characteristic of one species versus another. For instance, hominid-specific microsatellite motifs were identified despite alignment of the human reference, Celera, and Venter genomic sequences indicating substantial variation (30-50%) among individuals. Differential microsatellite motifs were mainly associated with genes involved in developmental processes, whereas those found in intergenic regions exhibited no discernible pattern. This is the first description of a method for evaluating microsatellite content to classify individual genomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Galindo</LastName>
<ForeName>C L</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>McDermott Center for Human Growth and Development of the University of Texas Southwestern Medical Center, Dallas, Texas, USA. Cristi.galindo@utsouthwestern.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McIver</LastName>
<ForeName>L J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McCormick</LastName>
<ForeName>J F</ForeName>
<Initials>JF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Skinner</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gelhausen</LastName>
<ForeName>R A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ng</LastName>
<ForeName>K</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>N M</ForeName>
<Initials>NM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Garner</LastName>
<ForeName>H R</ForeName>
<Initials>HR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 HL007360</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>5-T32-HL07360-28</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>08</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biol Evol</MedlineTA>
<NlmUniqueID>8501455</NlmUniqueID>
<ISSNLinking>0737-4038</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001482" MajorTopicYN="N">Base Composition</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056426" MajorTopicYN="N">Genetic Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009693" MajorTopicYN="N">Nucleic Acid Hybridization</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002679" MajorTopicYN="N">Pan troglodytes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011323" MajorTopicYN="N">Primates</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19717526</ArticleId>
<ArticleId IdType="pii">msp192</ArticleId>
<ArticleId IdType="doi">10.1093/molbev/msp192</ArticleId>
<ArticleId IdType="pmc">PMC2782327</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):956-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Sep;14(10):3235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16101788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Jan;104(1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12579424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007;7:176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Sep 4;5(10):e254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8748-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008;8:180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18573213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2002 Aug;89(2):127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2008 Jul;31(7):328-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Apr 15;21(8):1358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15673565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 8;321(5890):760-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Feb;122(2):535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jun 10;308(5728):1630-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15947188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2006 Jan;27(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16320307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Oct;6(10):729-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Oct;28(10):1040-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2006 May;22(5):253-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 Jun;21(6):1057-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15014156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Dec 19;278(5346):2117-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1998 Sep;7(9):1425-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9700197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2002 Dec;45(6):1216-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Aug 19;400(6746):766-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10466725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18058-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15596718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10956-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Mar;23(3):598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16301296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 16;291(5507):1304-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1996 Aug;12(4):357-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8902363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jan;18(1):30-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Feb 1;69(3):1143-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19155293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Jun;5(6):435-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15153996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 May;26(5):1017-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19221007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):2957-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2005 Oct;6(10):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16205714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2007 May;23(5):209-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):860-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237011</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Garner, H R" sort="Garner, H R" uniqKey="Garner H" first="H R" last="Garner">H R Garner</name>
<name sortKey="Gelhausen, R A" sort="Gelhausen, R A" uniqKey="Gelhausen R" first="R A" last="Gelhausen">R A Gelhausen</name>
<name sortKey="Kumar, N M" sort="Kumar, N M" uniqKey="Kumar N" first="N M" last="Kumar">N M Kumar</name>
<name sortKey="Mccormick, J F" sort="Mccormick, J F" uniqKey="Mccormick J" first="J F" last="Mccormick">J F Mccormick</name>
<name sortKey="Mciver, L J" sort="Mciver, L J" uniqKey="Mciver L" first="L J" last="Mciver">L J Mciver</name>
<name sortKey="Ng, K" sort="Ng, K" uniqKey="Ng K" first="K" last="Ng">K. Ng</name>
<name sortKey="Skinner, M A" sort="Skinner, M A" uniqKey="Skinner M" first="M A" last="Skinner">M A Skinner</name>
<name sortKey="Xie, Y" sort="Xie, Y" uniqKey="Xie Y" first="Y" last="Xie">Y. Xie</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Galindo, C L" sort="Galindo, C L" uniqKey="Galindo C" first="C L" last="Galindo">C L Galindo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000708 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000708 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:19717526
   |texte=   Global microsatellite content distinguishes humans, primates, animals, and plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:19717526" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021