Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.

Identifieur interne : 000575 ( Ncbi/Merge ); précédent : 000574; suivant : 000576

High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.

Auteurs : Dean Tantin [États-Unis] ; Matthew Gemberling ; Catherine Callister ; William G. Fairbrother ; William Fairbrother

Source :

RBID : pubmed:18212089

Descripteurs français

English descriptors

Abstract

The transcription factor POU5F1 is a key regulator of embryonic stem (ES) cell pluripotency and a known oncoprotein. We have developed a novel high-throughput binding assay called MEGAshift (microarray evaluation of genomic aptamers by shift) that we use to pinpoint the exact location, affinity, and stoichiometry of the DNA-protein complexes identified by chromatin immunoprecipitation studies. We consider all genomic regions identified as POU5F1-ChIP-enriched in both human and mouse. Compared with regions that are ChIP-enriched in a single species, we find these regions more likely to be near actively transcribed genes in ES cells. We resynthesize these genomic regions as a pool of tiled 35-mers. This oligonucleotide pool is then assayed for binding to recombinant POU5F1 by gel shift. The degree of binding for each oligonucleotide is accurately measured on a custom oligonucleotide microarray. We explore the relationship between experimentally determined and computationally predicted binding strengths, find many novel functional combinations of POU5F1 half sites, and demonstrate efficient motif discovery by incorporating binding information into a motif finding algorithm. In addition to further refining location studies for transcription factors, this method holds promise for the high-throughput screening of promoters, SNP regions, and epigenetic modifications for factor binding.

DOI: 10.1101/gr.072942.107
PubMed: 18212089

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18212089

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.</title>
<author>
<name sortKey="Tantin, Dean" sort="Tantin, Dean" uniqKey="Tantin D" first="Dean" last="Tantin">Dean Tantin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112</wicri:regionArea>
<wicri:noRegion>Utah 84112</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gemberling, Matthew" sort="Gemberling, Matthew" uniqKey="Gemberling M" first="Matthew" last="Gemberling">Matthew Gemberling</name>
</author>
<author>
<name sortKey="Callister, Catherine" sort="Callister, Catherine" uniqKey="Callister C" first="Catherine" last="Callister">Catherine Callister</name>
</author>
<author>
<name sortKey="Fairbrother, William G" sort="Fairbrother, William G" uniqKey="Fairbrother W" first="William G" last="Fairbrother">William G. Fairbrother</name>
</author>
<author>
<name sortKey="Fairbrother, William" sort="Fairbrother, William" uniqKey="Fairbrother W" first="William" last="Fairbrother">William Fairbrother</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18212089</idno>
<idno type="pmid">18212089</idno>
<idno type="doi">10.1101/gr.072942.107</idno>
<idno type="wicri:Area/PubMed/Corpus">002130</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002130</idno>
<idno type="wicri:Area/PubMed/Curation">002130</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002130</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001F87</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001F87</idno>
<idno type="wicri:Area/Ncbi/Merge">000575</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.</title>
<author>
<name sortKey="Tantin, Dean" sort="Tantin, Dean" uniqKey="Tantin D" first="Dean" last="Tantin">Dean Tantin</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112</wicri:regionArea>
<wicri:noRegion>Utah 84112</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gemberling, Matthew" sort="Gemberling, Matthew" uniqKey="Gemberling M" first="Matthew" last="Gemberling">Matthew Gemberling</name>
</author>
<author>
<name sortKey="Callister, Catherine" sort="Callister, Catherine" uniqKey="Callister C" first="Catherine" last="Callister">Catherine Callister</name>
</author>
<author>
<name sortKey="Fairbrother, William G" sort="Fairbrother, William G" uniqKey="Fairbrother W" first="William G" last="Fairbrother">William G. Fairbrother</name>
</author>
<author>
<name sortKey="Fairbrother, William" sort="Fairbrother, William" uniqKey="Fairbrother W" first="William" last="Fairbrother">William Fairbrother</name>
</author>
</analytic>
<series>
<title level="j">Genome research</title>
<idno type="ISSN">1088-9051</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Chromatin Immunoprecipitation</term>
<term>DNA (chemistry)</term>
<term>DNA (metabolism)</term>
<term>Electrophoretic Mobility Shift Assay (methods)</term>
<term>Embryonic Stem Cells (metabolism)</term>
<term>Genomics</term>
<term>Humans</term>
<term>Mice</term>
<term>Octamer Transcription Factor-3 (metabolism)</term>
<term>Oligonucleotide Array Sequence Analysis (methods)</term>
<term>Oligonucleotide Probes</term>
<term>Promoter Regions, Genetic</term>
<term>Regulatory Elements, Transcriptional</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>ADN (métabolisme)</term>
<term>Animaux</term>
<term>Cellules souches embryonnaires (métabolisme)</term>
<term>Facteur de transcription Oct-3 (métabolisme)</term>
<term>Génomique</term>
<term>Humains</term>
<term>Immunoprécipitation de la chromatine</term>
<term>Lignée cellulaire</term>
<term>Régions promotrices (génétique)</term>
<term>Sites de fixation</term>
<term>Sondes oligonucléotidiques</term>
<term>Souris</term>
<term>Séquençage par oligonucléotides en batterie ()</term>
<term>Test de retard de migration électrophorétique ()</term>
<term>Éléments de régulation transcriptionnelle</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA</term>
<term>Octamer Transcription Factor-3</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryonic Stem Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Electrophoretic Mobility Shift Assay</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>Cellules souches embryonnaires</term>
<term>Facteur de transcription Oct-3</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Chromatin Immunoprecipitation</term>
<term>Genomics</term>
<term>Humans</term>
<term>Mice</term>
<term>Oligonucleotide Probes</term>
<term>Promoter Regions, Genetic</term>
<term>Regulatory Elements, Transcriptional</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Animaux</term>
<term>Génomique</term>
<term>Humains</term>
<term>Immunoprécipitation de la chromatine</term>
<term>Lignée cellulaire</term>
<term>Régions promotrices (génétique)</term>
<term>Sites de fixation</term>
<term>Sondes oligonucléotidiques</term>
<term>Souris</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Test de retard de migration électrophorétique</term>
<term>Éléments de régulation transcriptionnelle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The transcription factor POU5F1 is a key regulator of embryonic stem (ES) cell pluripotency and a known oncoprotein. We have developed a novel high-throughput binding assay called MEGAshift (microarray evaluation of genomic aptamers by shift) that we use to pinpoint the exact location, affinity, and stoichiometry of the DNA-protein complexes identified by chromatin immunoprecipitation studies. We consider all genomic regions identified as POU5F1-ChIP-enriched in both human and mouse. Compared with regions that are ChIP-enriched in a single species, we find these regions more likely to be near actively transcribed genes in ES cells. We resynthesize these genomic regions as a pool of tiled 35-mers. This oligonucleotide pool is then assayed for binding to recombinant POU5F1 by gel shift. The degree of binding for each oligonucleotide is accurately measured on a custom oligonucleotide microarray. We explore the relationship between experimentally determined and computationally predicted binding strengths, find many novel functional combinations of POU5F1 half sites, and demonstrate efficient motif discovery by incorporating binding information into a motif finding algorithm. In addition to further refining location studies for transcription factors, this method holds promise for the high-throughput screening of promoters, SNP regions, and epigenetic modifications for factor binding.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18212089</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>05</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1088-9051</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>18</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2008</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Genome research</Title>
<ISOAbbreviation>Genome Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.</ArticleTitle>
<Pagination>
<MedlinePgn>631-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gr.072942.107</ELocationID>
<Abstract>
<AbstractText>The transcription factor POU5F1 is a key regulator of embryonic stem (ES) cell pluripotency and a known oncoprotein. We have developed a novel high-throughput binding assay called MEGAshift (microarray evaluation of genomic aptamers by shift) that we use to pinpoint the exact location, affinity, and stoichiometry of the DNA-protein complexes identified by chromatin immunoprecipitation studies. We consider all genomic regions identified as POU5F1-ChIP-enriched in both human and mouse. Compared with regions that are ChIP-enriched in a single species, we find these regions more likely to be near actively transcribed genes in ES cells. We resynthesize these genomic regions as a pool of tiled 35-mers. This oligonucleotide pool is then assayed for binding to recombinant POU5F1 by gel shift. The degree of binding for each oligonucleotide is accurately measured on a custom oligonucleotide microarray. We explore the relationship between experimentally determined and computationally predicted binding strengths, find many novel functional combinations of POU5F1 half sites, and demonstrate efficient motif discovery by incorporating binding information into a motif finding algorithm. In addition to further refining location studies for transcription factors, this method holds promise for the high-throughput screening of promoters, SNP regions, and epigenetic modifications for factor binding.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tantin</LastName>
<ForeName>Dean</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gemberling</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Callister</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fairbrother</LastName>
<ForeName>William G</ForeName>
<Initials>WG</Initials>
</Author>
<Author ValidYN="N">
<LastName>Fairbrother</LastName>
<ForeName>William</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>01</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genome Res</MedlineTA>
<NlmUniqueID>9518021</NlmUniqueID>
<ISSNLinking>1088-9051</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050814">Octamer Transcription Factor-3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015345">Oligonucleotide Probes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C494173">POU5F1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Genome Res. 2009 Apr;19(4):690</RefSource>
<Note>Fairbrother, William [corrected to Fairbrother, William G]</Note>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="N">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024202" MajorTopicYN="N">Electrophoretic Mobility Shift Assay</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053595" MajorTopicYN="N">Embryonic Stem Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050814" MajorTopicYN="N">Octamer Transcription Factor-3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015345" MajorTopicYN="N">Oligonucleotide Probes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050436" MajorTopicYN="Y">Regulatory Elements, Transcriptional</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18212089</ArticleId>
<ArticleId IdType="pii">gr.072942.107</ArticleId>
<ArticleId IdType="doi">10.1101/gr.072942.107</ArticleId>
<ArticleId IdType="pmc">PMC2279250</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2000 Apr;24(4):372-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10742100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2007 Aug;4(8):651-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17558387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Dec 8;103(6):853-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11136971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Sep;8(3):569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11583619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Jun;12(6):996-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2002 Dec;12(5-6):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12528890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Mar 14;302(3):581-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Aug 15;17(16):2048-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2003 Nov;4(5):361-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14667503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2004 Mar;83(3):349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14986705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2004 Apr;5(4):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Sep;8(9):2551-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2573524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Dec 17;75(6):1187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7903220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Nov;17(11):6321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9343393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jul 1;12(13):2073-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2004 Nov;5(11):1078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Dec;36(12):1331-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15543148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 1;280(26):24731-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Jul;25(14):6031-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15988017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 23;122(6):947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jan 13;124(1):207-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16413492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Apr;38(4):431-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16518401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2007 Apr 1;120(7):1598-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17205510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Jun 8;316(5830):1497-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Jul 13;130(1):77-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 19;448(7151):318-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Callister, Catherine" sort="Callister, Catherine" uniqKey="Callister C" first="Catherine" last="Callister">Catherine Callister</name>
<name sortKey="Fairbrother, William" sort="Fairbrother, William" uniqKey="Fairbrother W" first="William" last="Fairbrother">William Fairbrother</name>
<name sortKey="Fairbrother, William G" sort="Fairbrother, William G" uniqKey="Fairbrother W" first="William G" last="Fairbrother">William G. Fairbrother</name>
<name sortKey="Gemberling, Matthew" sort="Gemberling, Matthew" uniqKey="Gemberling M" first="Matthew" last="Gemberling">Matthew Gemberling</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Tantin, Dean" sort="Tantin, Dean" uniqKey="Tantin D" first="Dean" last="Tantin">Dean Tantin</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000575 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000575 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:18212089
   |texte=   High-throughput biochemical analysis of in vivo location data reveals novel distinct classes of POU5F1(Oct4)/DNA complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:18212089" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021