Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.

Identifieur interne : 000272 ( Ncbi/Merge ); précédent : 000271; suivant : 000273

Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.

Auteurs : Rita Crinelli [Italie] ; Marzia Bianchi ; Lucia Gentilini ; Linda Palma ; Mads D. S Rensen ; Torsten Bryld ; Ravindra B. Babu ; Khalil Arar ; Jesper Wengel ; Mauro Magnani

Source :

RBID : pubmed:15051810

Descripteurs français

English descriptors

Abstract

Double-stranded oligonucleotides (ODNs) containing the consensus binding sequence of a transcription factor provide a rationally designed tool to manipulate gene expression at the transcriptional level by the decoy approach. However, modifications introduced into oligonucleotides to increase stability quite often do not guarantee that transcription factor affinity and/or specificity of recognition are retained. We have previously evaluated the use of locked nucleic acids (LNA) in the design of decoy molecules for the transcription factor kappaB. Oligo nucleotides containing LNA substitutions displayed high resistance to exo- and endonucleolytic degradation, with LNA-DNA mix-mers being more stable than LNA-DNA-LNA gap-mers. However, insertion of internal LNA bases resulted in a loss of affinity for the transcription factor. This latter effect apparently depended on positioning of the internal LNA substitutions. Indeed, here we demonstrate that intra- and inter-strand positioning of internal LNAs has to be carefully considered to maintain affinity and achieve high stability, respectively. Unfortunately, our data also indicate that LNA positioning is not the only parameter affecting transcription factor binding, the interference in part being dependent on the intrinsic conformational properties of this nucleotide analog. To circumvent this problem, the successful use of an alpha-L-ribo- configured LNA is demonstrated, indicating LNA-DNA-alpha-L-LNA molecules as promising new decoy agents.

DOI: 10.1093/nar/gkh503
PubMed: 15051810

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15051810

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.</title>
<author>
<name sortKey="Crinelli, Rita" sort="Crinelli, Rita" uniqKey="Crinelli R" first="Rita" last="Crinelli">Rita Crinelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Istituto di Chimica Biologica G. Fornaini, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto di Chimica Biologica G. Fornaini, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino</wicri:regionArea>
<wicri:noRegion>I-61029 Urbino</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bianchi, Marzia" sort="Bianchi, Marzia" uniqKey="Bianchi M" first="Marzia" last="Bianchi">Marzia Bianchi</name>
</author>
<author>
<name sortKey="Gentilini, Lucia" sort="Gentilini, Lucia" uniqKey="Gentilini L" first="Lucia" last="Gentilini">Lucia Gentilini</name>
</author>
<author>
<name sortKey="Palma, Linda" sort="Palma, Linda" uniqKey="Palma L" first="Linda" last="Palma">Linda Palma</name>
</author>
<author>
<name sortKey="S Rensen, Mads D" sort="S Rensen, Mads D" uniqKey="S Rensen M" first="Mads D" last="S Rensen">Mads D. S Rensen</name>
</author>
<author>
<name sortKey="Bryld, Torsten" sort="Bryld, Torsten" uniqKey="Bryld T" first="Torsten" last="Bryld">Torsten Bryld</name>
</author>
<author>
<name sortKey="Babu, Ravindra B" sort="Babu, Ravindra B" uniqKey="Babu R" first="Ravindra B" last="Babu">Ravindra B. Babu</name>
</author>
<author>
<name sortKey="Arar, Khalil" sort="Arar, Khalil" uniqKey="Arar K" first="Khalil" last="Arar">Khalil Arar</name>
</author>
<author>
<name sortKey="Wengel, Jesper" sort="Wengel, Jesper" uniqKey="Wengel J" first="Jesper" last="Wengel">Jesper Wengel</name>
</author>
<author>
<name sortKey="Magnani, Mauro" sort="Magnani, Mauro" uniqKey="Magnani M" first="Mauro" last="Magnani">Mauro Magnani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15051810</idno>
<idno type="pmid">15051810</idno>
<idno type="doi">10.1093/nar/gkh503</idno>
<idno type="wicri:Area/PubMed/Corpus">002397</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002397</idno>
<idno type="wicri:Area/PubMed/Curation">002397</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002397</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002226</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002226</idno>
<idno type="wicri:Area/Ncbi/Merge">000272</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.</title>
<author>
<name sortKey="Crinelli, Rita" sort="Crinelli, Rita" uniqKey="Crinelli R" first="Rita" last="Crinelli">Rita Crinelli</name>
<affiliation wicri:level="1">
<nlm:affiliation>Istituto di Chimica Biologica G. Fornaini, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Istituto di Chimica Biologica G. Fornaini, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino</wicri:regionArea>
<wicri:noRegion>I-61029 Urbino</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bianchi, Marzia" sort="Bianchi, Marzia" uniqKey="Bianchi M" first="Marzia" last="Bianchi">Marzia Bianchi</name>
</author>
<author>
<name sortKey="Gentilini, Lucia" sort="Gentilini, Lucia" uniqKey="Gentilini L" first="Lucia" last="Gentilini">Lucia Gentilini</name>
</author>
<author>
<name sortKey="Palma, Linda" sort="Palma, Linda" uniqKey="Palma L" first="Linda" last="Palma">Linda Palma</name>
</author>
<author>
<name sortKey="S Rensen, Mads D" sort="S Rensen, Mads D" uniqKey="S Rensen M" first="Mads D" last="S Rensen">Mads D. S Rensen</name>
</author>
<author>
<name sortKey="Bryld, Torsten" sort="Bryld, Torsten" uniqKey="Bryld T" first="Torsten" last="Bryld">Torsten Bryld</name>
</author>
<author>
<name sortKey="Babu, Ravindra B" sort="Babu, Ravindra B" uniqKey="Babu R" first="Ravindra B" last="Babu">Ravindra B. Babu</name>
</author>
<author>
<name sortKey="Arar, Khalil" sort="Arar, Khalil" uniqKey="Arar K" first="Khalil" last="Arar">Khalil Arar</name>
</author>
<author>
<name sortKey="Wengel, Jesper" sort="Wengel, Jesper" uniqKey="Wengel J" first="Jesper" last="Wengel">Jesper Wengel</name>
</author>
<author>
<name sortKey="Magnani, Mauro" sort="Magnani, Mauro" uniqKey="Magnani M" first="Mauro" last="Magnani">Mauro Magnani</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Consensus Sequence</term>
<term>Endonucleases (metabolism)</term>
<term>Exonucleases (metabolism)</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>NF-kappa B (metabolism)</term>
<term>Oligonucleotides</term>
<term>Oligonucleotides, Antisense (chemistry)</term>
<term>Oligonucleotides, Antisense (metabolism)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Endonucleases (métabolisme)</term>
<term>Exonucleases (métabolisme)</term>
<term>Facteur de transcription NF-kappa B (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains</term>
<term>Oligonucléotides</term>
<term>Oligonucléotides antisens ()</term>
<term>Oligonucléotides antisens (métabolisme)</term>
<term>Sites de fixation</term>
<term>Séquence consensus</term>
<term>Séquence nucléotidique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oligonucleotides, Antisense</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Endonucleases</term>
<term>Exonucleases</term>
<term>NF-kappa B</term>
<term>Oligonucleotides, Antisense</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Endonucleases</term>
<term>Exonucleases</term>
<term>Facteur de transcription NF-kappa B</term>
<term>Facteurs de transcription</term>
<term>Oligonucléotides antisens</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Consensus Sequence</term>
<term>HeLa Cells</term>
<term>Humans</term>
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HeLa</term>
<term>Humains</term>
<term>Oligonucléotides</term>
<term>Oligonucléotides antisens</term>
<term>Sites de fixation</term>
<term>Séquence consensus</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Double-stranded oligonucleotides (ODNs) containing the consensus binding sequence of a transcription factor provide a rationally designed tool to manipulate gene expression at the transcriptional level by the decoy approach. However, modifications introduced into oligonucleotides to increase stability quite often do not guarantee that transcription factor affinity and/or specificity of recognition are retained. We have previously evaluated the use of locked nucleic acids (LNA) in the design of decoy molecules for the transcription factor kappaB. Oligo nucleotides containing LNA substitutions displayed high resistance to exo- and endonucleolytic degradation, with LNA-DNA mix-mers being more stable than LNA-DNA-LNA gap-mers. However, insertion of internal LNA bases resulted in a loss of affinity for the transcription factor. This latter effect apparently depended on positioning of the internal LNA substitutions. Indeed, here we demonstrate that intra- and inter-strand positioning of internal LNAs has to be carefully considered to maintain affinity and achieve high stability, respectively. Unfortunately, our data also indicate that LNA positioning is not the only parameter affecting transcription factor binding, the interference in part being dependent on the intrinsic conformational properties of this nucleotide analog. To circumvent this problem, the successful use of an alpha-L-ribo- configured LNA is demonstrated, indicating LNA-DNA-alpha-L-LNA molecules as promising new decoy agents.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15051810</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>07</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2004</Year>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.</ArticleTitle>
<Pagination>
<MedlinePgn>1874-85</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Double-stranded oligonucleotides (ODNs) containing the consensus binding sequence of a transcription factor provide a rationally designed tool to manipulate gene expression at the transcriptional level by the decoy approach. However, modifications introduced into oligonucleotides to increase stability quite often do not guarantee that transcription factor affinity and/or specificity of recognition are retained. We have previously evaluated the use of locked nucleic acids (LNA) in the design of decoy molecules for the transcription factor kappaB. Oligo nucleotides containing LNA substitutions displayed high resistance to exo- and endonucleolytic degradation, with LNA-DNA mix-mers being more stable than LNA-DNA-LNA gap-mers. However, insertion of internal LNA bases resulted in a loss of affinity for the transcription factor. This latter effect apparently depended on positioning of the internal LNA substitutions. Indeed, here we demonstrate that intra- and inter-strand positioning of internal LNAs has to be carefully considered to maintain affinity and achieve high stability, respectively. Unfortunately, our data also indicate that LNA positioning is not the only parameter affecting transcription factor binding, the interference in part being dependent on the intrinsic conformational properties of this nucleotide analog. To circumvent this problem, the successful use of an alpha-L-ribo- configured LNA is demonstrated, indicating LNA-DNA-alpha-L-LNA molecules as promising new decoy agents.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Crinelli</LastName>
<ForeName>Rita</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Istituto di Chimica Biologica G. Fornaini, Università degli Studi di Urbino Carlo Bo, Via Saffi 2, I-61029 Urbino, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bianchi</LastName>
<ForeName>Marzia</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gentilini</LastName>
<ForeName>Lucia</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palma</LastName>
<ForeName>Linda</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sørensen</LastName>
<ForeName>Mads D</ForeName>
<Initials>MD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bryld</LastName>
<ForeName>Torsten</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Babu</LastName>
<ForeName>Ravindra B</ForeName>
<Initials>RB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arar</LastName>
<ForeName>Khalil</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wengel</LastName>
<ForeName>Jesper</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Magnani</LastName>
<ForeName>Mauro</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>03</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016328">NF-kappa B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016376">Oligonucleotides, Antisense</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C477371">locked nucleic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D004720">Endonucleases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D005092">Exonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016384" MajorTopicYN="N">Consensus Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004720" MajorTopicYN="N">Endonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005092" MajorTopicYN="N">Exonucleases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006367" MajorTopicYN="N">HeLa Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016328" MajorTopicYN="N">NF-kappa B</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016376" MajorTopicYN="N">Oligonucleotides, Antisense</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>3</Month>
<Day>31</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15051810</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkh503</ArticleId>
<ArticleId IdType="pii">32/6/1874</ArticleId>
<ArticleId IdType="pmc">PMC390358</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2001 Jan;8(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11182314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Pharmacol Sci. 2001 May;22(5):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11339974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Biotechnol. 2000 Jul;1(1):57-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleosides Nucleotides Nucleic Acids. 2001 Apr-Jul;20(4-7):389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11563053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 Dec;268(23):6066-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11733000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Mar 13;124(10):2164-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11878970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vivo. 2002 Jan-Feb;16(1):45-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11980360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2002 Mar;10(3):383-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12005436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2002 Jun;9(11):749-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12032702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jun 1;30(11):2435-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Mol Ther. 2002 Apr;4(2):166-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12044038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antisense Nucleic Acid Drug Dev. 2002 Apr;12(2):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12074369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2002 Jun 28;90(12):1234-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12089058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jul 5;277(27):24694-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11970948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2002 Oct;2(10):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12360277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2002 Jul 2;8(13):3001-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12489231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2003 Feb;21(2):74-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12573856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Feb 28;278(9):7500-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Res. 2003;13(5):279-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12688679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2003 May;4(4):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12699354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jun 15;31(12):3185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12799446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Apr 30-May 6;326(6116):886-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1990 Nov 16;250(4983):997-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2237444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Today. 1998 Aug;4(8):358-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9755455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1999 Oct 30;354(9189):1493-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10551494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 12;274(46):33114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10551882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Nov 19;461(3):136-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2000;313:3-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10595347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2000;313:268-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10595361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Recognit. 2000 Jan-Feb;13(1):44-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2000 Mar-Apr;11(2):228-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10725100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 9;97(10):5633-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10805816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2000 Nov;106(9):1071-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11067859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Struct Dyn. 2000 Dec;18(3):353-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11149512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Jan 5;266(1):252-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1985897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Nov 27;71(5):777-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1330326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Nov 11;20(21):5857-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1454556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Oct 28;269(43):26801-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 1995 Mar;47(3):636-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7700261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 29;83(7):1101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8548798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 1997 Dec;8(6):713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 22;391(6665):410-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9450761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 1997 Dec;29(12):1305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9570129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 1998 Jun 1;82(10):1023-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9622154</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Arar, Khalil" sort="Arar, Khalil" uniqKey="Arar K" first="Khalil" last="Arar">Khalil Arar</name>
<name sortKey="Babu, Ravindra B" sort="Babu, Ravindra B" uniqKey="Babu R" first="Ravindra B" last="Babu">Ravindra B. Babu</name>
<name sortKey="Bianchi, Marzia" sort="Bianchi, Marzia" uniqKey="Bianchi M" first="Marzia" last="Bianchi">Marzia Bianchi</name>
<name sortKey="Bryld, Torsten" sort="Bryld, Torsten" uniqKey="Bryld T" first="Torsten" last="Bryld">Torsten Bryld</name>
<name sortKey="Gentilini, Lucia" sort="Gentilini, Lucia" uniqKey="Gentilini L" first="Lucia" last="Gentilini">Lucia Gentilini</name>
<name sortKey="Magnani, Mauro" sort="Magnani, Mauro" uniqKey="Magnani M" first="Mauro" last="Magnani">Mauro Magnani</name>
<name sortKey="Palma, Linda" sort="Palma, Linda" uniqKey="Palma L" first="Linda" last="Palma">Linda Palma</name>
<name sortKey="S Rensen, Mads D" sort="S Rensen, Mads D" uniqKey="S Rensen M" first="Mads D" last="S Rensen">Mads D. S Rensen</name>
<name sortKey="Wengel, Jesper" sort="Wengel, Jesper" uniqKey="Wengel J" first="Jesper" last="Wengel">Jesper Wengel</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="Crinelli, Rita" sort="Crinelli, Rita" uniqKey="Crinelli R" first="Rita" last="Crinelli">Rita Crinelli</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000272 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000272 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:15051810
   |texte=   Transcription factor decoy oligonucleotides modified with locked nucleic acids: an in vitro study to reconcile biostability with binding affinity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:15051810" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021