Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins.

Identifieur interne : 000011 ( Ncbi/Merge ); précédent : 000010; suivant : 000012

Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins.

Auteurs : W W Newcomb [États-Unis] ; F L Homa ; D R Thomsen ; B L Trus ; N. Cheng ; A. Steven ; F. Booy ; J C Brown

Source :

RBID : pubmed:10196320

Descripteurs français

English descriptors

Abstract

An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.

PubMed: 10196320

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:10196320

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins.</title>
<author>
<name sortKey="Newcomb, W W" sort="Newcomb, W W" uniqKey="Newcomb W" first="W W" last="Newcomb">W W Newcomb</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908</wicri:regionArea>
<wicri:noRegion>Virginia 22908</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Homa, F L" sort="Homa, F L" uniqKey="Homa F" first="F L" last="Homa">F L Homa</name>
</author>
<author>
<name sortKey="Thomsen, D R" sort="Thomsen, D R" uniqKey="Thomsen D" first="D R" last="Thomsen">D R Thomsen</name>
</author>
<author>
<name sortKey="Trus, B L" sort="Trus, B L" uniqKey="Trus B" first="B L" last="Trus">B L Trus</name>
</author>
<author>
<name sortKey="Cheng, N" sort="Cheng, N" uniqKey="Cheng N" first="N" last="Cheng">N. Cheng</name>
</author>
<author>
<name sortKey="Steven, A" sort="Steven, A" uniqKey="Steven A" first="A" last="Steven">A. Steven</name>
</author>
<author>
<name sortKey="Booy, F" sort="Booy, F" uniqKey="Booy F" first="F" last="Booy">F. Booy</name>
</author>
<author>
<name sortKey="Brown, J C" sort="Brown, J C" uniqKey="Brown J" first="J C" last="Brown">J C Brown</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1999">1999</date>
<idno type="RBID">pubmed:10196320</idno>
<idno type="pmid">10196320</idno>
<idno type="wicri:Area/PubMed/Corpus">002637</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002637</idno>
<idno type="wicri:Area/PubMed/Curation">002637</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002637</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002501</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002501</idno>
<idno type="wicri:Area/Ncbi/Merge">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins.</title>
<author>
<name sortKey="Newcomb, W W" sort="Newcomb, W W" uniqKey="Newcomb W" first="W W" last="Newcomb">W W Newcomb</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908</wicri:regionArea>
<wicri:noRegion>Virginia 22908</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Homa, F L" sort="Homa, F L" uniqKey="Homa F" first="F L" last="Homa">F L Homa</name>
</author>
<author>
<name sortKey="Thomsen, D R" sort="Thomsen, D R" uniqKey="Thomsen D" first="D R" last="Thomsen">D R Thomsen</name>
</author>
<author>
<name sortKey="Trus, B L" sort="Trus, B L" uniqKey="Trus B" first="B L" last="Trus">B L Trus</name>
</author>
<author>
<name sortKey="Cheng, N" sort="Cheng, N" uniqKey="Cheng N" first="N" last="Cheng">N. Cheng</name>
</author>
<author>
<name sortKey="Steven, A" sort="Steven, A" uniqKey="Steven A" first="A" last="Steven">A. Steven</name>
</author>
<author>
<name sortKey="Booy, F" sort="Booy, F" uniqKey="Booy F" first="F" last="Booy">F. Booy</name>
</author>
<author>
<name sortKey="Brown, J C" sort="Brown, J C" uniqKey="Brown J" first="J C" last="Brown">J C Brown</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="1999" type="published">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Capsid (metabolism)</term>
<term>Capsid Proteins</term>
<term>Herpesvirus 1, Human (metabolism)</term>
<term>Herpesvirus 1, Human (physiology)</term>
<term>Herpesvirus 1, Human (ultrastructure)</term>
<term>Humans</term>
<term>Protein Precursors (metabolism)</term>
<term>Rabbits</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Viral Proteins (metabolism)</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Assemblage viral</term>
<term>Capside (métabolisme)</term>
<term>Herpèsvirus humain de type 1 (métabolisme)</term>
<term>Herpèsvirus humain de type 1 (physiologie)</term>
<term>Herpèsvirus humain de type 1 (ultrastructure)</term>
<term>Humains</term>
<term>Lapins</term>
<term>Protéines de capside</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines virales (métabolisme)</term>
<term>Précurseurs de protéines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Protein Precursors</term>
<term>Recombinant Fusion Proteins</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Capsid Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Capsid</term>
<term>Herpesvirus 1, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Capside</term>
<term>Herpèsvirus humain de type 1</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines virales</term>
<term>Précurseurs de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herpèsvirus humain de type 1</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herpesvirus 1, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Herpesvirus 1, Human</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Rabbits</term>
<term>Virus Assembly</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Assemblage viral</term>
<term>Herpèsvirus humain de type 1</term>
<term>Humains</term>
<term>Lapins</term>
<term>Protéines de capside</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10196320</PMID>
<DateCompleted>
<Year>1999</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>73</Volume>
<Issue>5</Issue>
<PubDate>
<Year>1999</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>4239-50</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Newcomb</LastName>
<ForeName>W W</ForeName>
<Initials>WW</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Homa</LastName>
<ForeName>F L</ForeName>
<Initials>FL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thomsen</LastName>
<ForeName>D R</ForeName>
<Initials>DR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trus</LastName>
<ForeName>B L</ForeName>
<Initials>BL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Steven</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Booy</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>J C</ForeName>
<Initials>JC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI037549</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI41644</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI37549</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 AI037549</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI041644</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 AI041644</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D036022">Capsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C054582">ICP35 protein, Human herpesvirus 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011498">Protein Precursors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C082563">VP19 protein, Human herpesvirus 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C079750">VP23 protein, Human herpesvirus 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C442523">VP5 protein, Herpes simplex virus type 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002213" MajorTopicYN="N">Capsid</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036022" MajorTopicYN="N">Capsid Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018259" MajorTopicYN="N">Herpesvirus 1, Human</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011498" MajorTopicYN="N">Protein Precursors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014764" MajorTopicYN="N">Viral Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019065" MajorTopicYN="Y">Virus Assembly</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1999</Year>
<Month>4</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1999</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1999</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10196320</ArticleId>
<ArticleId IdType="pmc">PMC104203</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Rev Med Virol. 1997 Jul;7(2):107-122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10398476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1993 Mar;64(3):824-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8471727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Feb 17;228(2):229-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9123829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1961 May;236:1372-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13767412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1994 May;75 ( Pt 5):1091-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8176370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1996 Sep;77 ( Pt 9):2251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8811025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Jan;70(1):533-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8523566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1994 Sep;75 ( Pt 9):2355-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8077934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1996 Jan-Feb;116(1):48-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Sep 30;242(4):456-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7932703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 11;35(23):7412-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8652518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jul;69(7):4347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7769696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1998 Jan;74(1):576-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Jul 20;232(2):499-511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8393939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2001 Jan;133(1):23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11356061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Feb;71(2):1281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8995652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 May 15;17(10):2721-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9582265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Jan;71(1):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8985337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1981 Jul 30;112(2):529-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7257185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Apr;68(4):2442-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8139029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1985 May;54(2):598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2985822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Sep;72(9):7428-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9696839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 Apr 15;156(3):633-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6750133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Med Virol. 1993;40:206-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8438077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1989 Nov;63(11):4697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2552147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1986 Feb;57(2):578-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3003389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Jun;69(6):3690-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7745718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Nov 1;263(3):447-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1994 May;75 ( Pt 5):1101-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8176371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1996 Jan-Feb;116(1):120-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1995 Nov;69(11):7362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7474170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Jul;71(7):5197-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Nov 1;263(3):432-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 1996 Jan-Feb;116(1):200-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8742744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 May;72(5):3944-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9557680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):6059-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8057482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1994 Sep;68(9):5384-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8057422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1988 Aug 20;202(4):743-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3262767</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Booy, F" sort="Booy, F" uniqKey="Booy F" first="F" last="Booy">F. Booy</name>
<name sortKey="Brown, J C" sort="Brown, J C" uniqKey="Brown J" first="J C" last="Brown">J C Brown</name>
<name sortKey="Cheng, N" sort="Cheng, N" uniqKey="Cheng N" first="N" last="Cheng">N. Cheng</name>
<name sortKey="Homa, F L" sort="Homa, F L" uniqKey="Homa F" first="F L" last="Homa">F L Homa</name>
<name sortKey="Steven, A" sort="Steven, A" uniqKey="Steven A" first="A" last="Steven">A. Steven</name>
<name sortKey="Thomsen, D R" sort="Thomsen, D R" uniqKey="Thomsen D" first="D R" last="Thomsen">D R Thomsen</name>
<name sortKey="Trus, B L" sort="Trus, B L" uniqKey="Trus B" first="B L" last="Trus">B L Trus</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Newcomb, W W" sort="Newcomb, W W" uniqKey="Newcomb W" first="W W" last="Newcomb">W W Newcomb</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:10196320
   |texte=   Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:10196320" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021