Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection.

Identifieur interne : 000337 ( Ncbi/Checkpoint ); précédent : 000336; suivant : 000338

Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection.

Auteurs : Zheng Rong Yang [Royaume-Uni]

Source :

RBID : pubmed:15797903

Descripteurs français

English descriptors

Abstract

Although the outbreak of the severe acute respiratory syndrome (SARS) is currently over, it is expected that it will return to attack human beings. A critical challenge to scientists from various disciplines worldwide is to study the specificity of cleavage activity of SARS-related coronavirus (SARS-CoV) and use the knowledge obtained from the study for effective inhibitor design to fight the disease. The most commonly used inductive programming methods for knowledge discovery from data assume that the elements of input patterns are orthogonal to each other. Suppose a sub-sequence is denoted as P2-P1-P1'-P2', the conventional inductive programming method may result in a rule like 'if P1 = Q, then the sub-sequence is cleaved, otherwise non-cleaved'. If the site P1 is not orthogonal to the others (for instance, P2, P1' and P2'), the prediction power of these kind of rules may be limited. Therefore this study is aimed at developing a novel method for constructing non-orthogonal decision trees for mining protease data.

DOI: 10.1093/bioinformatics/bti404
PubMed: 15797903


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15797903

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection.</title>
<author>
<name sortKey="Yang, Zheng Rong" sort="Yang, Zheng Rong" uniqKey="Yang Z" first="Zheng Rong" last="Yang">Zheng Rong Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science, Exeter University, United Kingdom. z.r.yang@exeter.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Computer Science, Exeter University</wicri:regionArea>
<wicri:noRegion>Exeter University</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15797903</idno>
<idno type="pmid">15797903</idno>
<idno type="doi">10.1093/bioinformatics/bti404</idno>
<idno type="wicri:Area/PubMed/Corpus">002341</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002341</idno>
<idno type="wicri:Area/PubMed/Curation">002341</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002341</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002192</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002192</idno>
<idno type="wicri:Area/Ncbi/Merge">000337</idno>
<idno type="wicri:Area/Ncbi/Curation">000337</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000337</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection.</title>
<author>
<name sortKey="Yang, Zheng Rong" sort="Yang, Zheng Rong" uniqKey="Yang Z" first="Zheng Rong" last="Yang">Zheng Rong Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Computer Science, Exeter University, United Kingdom. z.r.yang@exeter.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Computer Science, Exeter University</wicri:regionArea>
<wicri:noRegion>Exeter University</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Bioinformatics (Oxford, England)</title>
<idno type="ISSN">1367-4803</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Artificial Intelligence</term>
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Cysteine Endopeptidases</term>
<term>Databases, Protein</term>
<term>Decision Support Techniques</term>
<term>Endopeptidases (analysis)</term>
<term>Endopeptidases (chemistry)</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Sequence Alignment (methods)</term>
<term>Sequence Analysis, Protein (methods)</term>
<term>Sequence Homology, Amino Acid</term>
<term>Viral Proteins (analysis)</term>
<term>Viral Proteins (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Alignement de séquences ()</term>
<term>Analyse de séquence de protéine ()</term>
<term>Bases de données de protéines</term>
<term>Cysteine endopeptidases</term>
<term>Endopeptidases ()</term>
<term>Endopeptidases (analyse)</term>
<term>Intelligence artificielle</term>
<term>Liaison aux protéines</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Protéines virales ()</term>
<term>Protéines virales (analyse)</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Techniques d'aide à la décision</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Endopeptidases</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Cysteine Endopeptidases</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Endopeptidases</term>
<term>Protéines virales</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Alignment</term>
<term>Sequence Analysis, Protein</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Artificial Intelligence</term>
<term>Binding Sites</term>
<term>Computer Simulation</term>
<term>Databases, Protein</term>
<term>Decision Support Techniques</term>
<term>Models, Chemical</term>
<term>Models, Molecular</term>
<term>Protein Binding</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Alignement de séquences</term>
<term>Analyse de séquence de protéine</term>
<term>Bases de données de protéines</term>
<term>Cysteine endopeptidases</term>
<term>Endopeptidases</term>
<term>Intelligence artificielle</term>
<term>Liaison aux protéines</term>
<term>Modèles chimiques</term>
<term>Modèles moléculaires</term>
<term>Protéines virales</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Simulation numérique</term>
<term>Sites de fixation</term>
<term>Techniques d'aide à la décision</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although the outbreak of the severe acute respiratory syndrome (SARS) is currently over, it is expected that it will return to attack human beings. A critical challenge to scientists from various disciplines worldwide is to study the specificity of cleavage activity of SARS-related coronavirus (SARS-CoV) and use the knowledge obtained from the study for effective inhibitor design to fight the disease. The most commonly used inductive programming methods for knowledge discovery from data assume that the elements of input patterns are orthogonal to each other. Suppose a sub-sequence is denoted as P2-P1-P1'-P2', the conventional inductive programming method may result in a rule like 'if P1 = Q, then the sub-sequence is cleaved, otherwise non-cleaved'. If the site P1 is not orthogonal to the others (for instance, P2, P1' and P2'), the prediction power of these kind of rules may be limited. Therefore this study is aimed at developing a novel method for constructing non-orthogonal decision trees for mining protease data.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Yang, Zheng Rong" sort="Yang, Zheng Rong" uniqKey="Yang Z" first="Zheng Rong" last="Yang">Zheng Rong Yang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000337 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd -nk 000337 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:15797903
   |texte=   Mining SARS-CoV protease cleavage data using non-orthogonal decision trees: a novel method for decisive template selection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Checkpoint/RBID.i   -Sk "pubmed:15797903" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021