Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.

Identifieur interne : 002073 ( Main/Merge ); précédent : 002072; suivant : 002074

Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.

Auteurs : Hannah R. Leverentz [États-Unis] ; Helena W. Qi [États-Unis] ; Donald G. Truhlar [États-Unis]

Source :

RBID : pubmed:26588742

Abstract

The binding energies and relative conformational energies of five configurations of the water 16-mer are computed using 61 levels of density functional (DF) theory, 12 methods combining DF theory with molecular mechanics damped dispersion (DF-MM), seven semiempirical-wave function (SWF) methods, and five methods combining SWF theory with molecular mechanics damped dispersion (SWF-MM). The accuracies of the computed energies are assessed by comparing them to recent high-level ab initio results; this assessment is more relevant to bulk water than previous tests on small clusters because a 16-mer is large enough to have water molecules that participate in more than three hydrogen bonds. We find that for water 16-mer binding energies the best DF, DF-MM, SWF, and SWF-MM methods (and their mean unsigned errors in kcal/mol) are respectively M06-2X (1.6), ωB97X-D (2.3), SCC-DFTB-γ(h) (35.2), and PM3-D (3.2). We also mention the good performance of CAM-B3LYP (1.8), M05-2X (1.9), and TPSSLYP (3.0). In contrast, for relative energies of various water nanoparticle 16-mer structures, the best methods (and mean unsigned errors in kcal/mol), in the same order of classes of methods, are SOGGA11-X (0.3), ωB97X-D (0.2), PM6 (0.4), and PMOv1 (0.6). We also mention the good performance of LC-ωPBE-D3 (0.3) and ωB97X (0.4). When both relative and binding energies are taken into consideration, the best methods overall (out of the 85 tested) are M05-2X without molecular mechanics and ωB97X-D when molecular mechanics corrections are included; with considerably higher average errors and considerably lower cost, the best SWF or SWF-MM method is PMOv1. We use six of the best methods for binding energies of the water 16-mers to calculate the binding energies of water hexamers and water 17-mers to test whether these methods are also reliable for binding energy calculations on other types of water clusters.

DOI: 10.1021/ct300848z
PubMed: 26588742

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26588742

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.</title>
<author>
<name sortKey="Leverentz, Hannah R" sort="Leverentz, Hannah R" uniqKey="Leverentz H" first="Hannah R" last="Leverentz">Hannah R. Leverentz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431</wicri:regionArea>
<wicri:noRegion>Minnesota 55455-0431</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Helena W" sort="Qi, Helena W" uniqKey="Qi H" first="Helena W" last="Qi">Helena W. Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431</wicri:regionArea>
<wicri:noRegion>Minnesota 55455-0431</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Truhlar, Donald G" sort="Truhlar, Donald G" uniqKey="Truhlar D" first="Donald G" last="Truhlar">Donald G. Truhlar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431</wicri:regionArea>
<wicri:noRegion>Minnesota 55455-0431</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:26588742</idno>
<idno type="pmid">26588742</idno>
<idno type="doi">10.1021/ct300848z</idno>
<idno type="wicri:Area/PubMed/Corpus">001D17</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D17</idno>
<idno type="wicri:Area/PubMed/Curation">001D17</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D17</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001B99</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001B99</idno>
<idno type="wicri:Area/Ncbi/Merge">001359</idno>
<idno type="wicri:Area/Ncbi/Curation">001359</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001359</idno>
<idno type="wicri:doubleKey">1549-9618:2013:Leverentz H:assessing:the:accuracy</idno>
<idno type="wicri:Area/Main/Merge">002073</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.</title>
<author>
<name sortKey="Leverentz, Hannah R" sort="Leverentz, Hannah R" uniqKey="Leverentz H" first="Hannah R" last="Leverentz">Hannah R. Leverentz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431</wicri:regionArea>
<wicri:noRegion>Minnesota 55455-0431</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Qi, Helena W" sort="Qi, Helena W" uniqKey="Qi H" first="Helena W" last="Qi">Helena W. Qi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431</wicri:regionArea>
<wicri:noRegion>Minnesota 55455-0431</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Truhlar, Donald G" sort="Truhlar, Donald G" uniqKey="Truhlar D" first="Donald G" last="Truhlar">Donald G. Truhlar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431</wicri:regionArea>
<wicri:noRegion>Minnesota 55455-0431</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical theory and computation</title>
<idno type="ISSN">1549-9618</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The binding energies and relative conformational energies of five configurations of the water 16-mer are computed using 61 levels of density functional (DF) theory, 12 methods combining DF theory with molecular mechanics damped dispersion (DF-MM), seven semiempirical-wave function (SWF) methods, and five methods combining SWF theory with molecular mechanics damped dispersion (SWF-MM). The accuracies of the computed energies are assessed by comparing them to recent high-level ab initio results; this assessment is more relevant to bulk water than previous tests on small clusters because a 16-mer is large enough to have water molecules that participate in more than three hydrogen bonds. We find that for water 16-mer binding energies the best DF, DF-MM, SWF, and SWF-MM methods (and their mean unsigned errors in kcal/mol) are respectively M06-2X (1.6), ωB97X-D (2.3), SCC-DFTB-γ(h) (35.2), and PM3-D (3.2). We also mention the good performance of CAM-B3LYP (1.8), M05-2X (1.9), and TPSSLYP (3.0). In contrast, for relative energies of various water nanoparticle 16-mer structures, the best methods (and mean unsigned errors in kcal/mol), in the same order of classes of methods, are SOGGA11-X (0.3), ωB97X-D (0.2), PM6 (0.4), and PMOv1 (0.6). We also mention the good performance of LC-ωPBE-D3 (0.3) and ωB97X (0.4). When both relative and binding energies are taken into consideration, the best methods overall (out of the 85 tested) are M05-2X without molecular mechanics and ωB97X-D when molecular mechanics corrections are included; with considerably higher average errors and considerably lower cost, the best SWF or SWF-MM method is PMOv1. We use six of the best methods for binding energies of the water 16-mers to calculate the binding energies of water hexamers and water 17-mers to test whether these methods are also reliable for binding energy calculations on other types of water clusters. </div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002073 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Merge/biblio.hfd -nk 002073 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:26588742
   |texte=   Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Merge/RBID.i   -Sk "pubmed:26588742" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021