Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Concentration quenching in chlorophyll

Identifieur interne : 005081 ( Main/Exploration ); précédent : 005080; suivant : 005082

Concentration quenching in chlorophyll

Auteurs : G. S. Beddard [Royaume-Uni] ; G. Porter [Royaume-Uni]

Source :

RBID : ISTEX:E210D71C4C9769CDDF3E4C01C2A177C255862CC1

Abstract

IN the primary process of plant photosynthesis it is generally accepted that efficient energy migration occurs between about 300 molecules of chlorophyll a, with subsequent light collection by a chemical trap. Solutions of chlorophyll in vitro, whether in fluid solvents1, monolayers2,3, multilayers4,5 or, as shown recently in our laboratory, in rigid matrices of PMMA and in bilayer lipid vesicles, exhibit the phenomenon of concentration quenching of the excited state at concentrations much lower than those which are present in the chloroplast. At a chlorophyll concentration of 101 M, which is comparable with that in the chloroplast, none of the in vitro systems has a fluorescent yield as high as is found in vivo, especially when the photochemical traps are closed. To try to understand the apparent absence of concentration quenching in vivo, we have re-examined its mechanism in vitro, and conclude that each chlorophyll molecule in the light-collecting system must be separated from other chlorophyll molecules, so as to prevent trap formation by orbital overlap and so that the minimum distance, averaged over all orientations in a random array, is 10 .

Url:
DOI: 10.1038/260366a0


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Concentration quenching in chlorophyll</title>
<author>
<name sortKey="Beddard, G S" sort="Beddard, G S" uniqKey="Beddard G" first="G. S." last="Beddard">G. S. Beddard</name>
</author>
<author>
<name sortKey="Porter, G" sort="Porter, G" uniqKey="Porter G" first="G." last="Porter">G. Porter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E210D71C4C9769CDDF3E4C01C2A177C255862CC1</idno>
<date when="1976" year="1976">1976</date>
<idno type="doi">10.1038/260366a0</idno>
<idno type="url">https://api.istex.fr/ark:/67375/GT4-H5B8PGBZ-K/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A39</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A39</idno>
<idno type="wicri:Area/Istex/Curation">001A39</idno>
<idno type="wicri:Area/Istex/Checkpoint">002525</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">002525</idno>
<idno type="wicri:doubleKey">0028-0836:1976:Beddard G:concentration:quenching:in</idno>
<idno type="wicri:Area/Main/Merge">005161</idno>
<idno type="wicri:Area/Main/Curation">005081</idno>
<idno type="wicri:Area/Main/Exploration">005081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Concentration quenching in chlorophyll</title>
<author>
<name sortKey="Beddard, G S" sort="Beddard, G S" uniqKey="Beddard G" first="G. S." last="Beddard">G. S. Beddard</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Davy Faraday Research Laboratory, The Royal Institution, 21 Albemarle Street, London W1X 4BS</wicri:regionArea>
<wicri:noRegion>London W1X 4BS</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Porter, G" sort="Porter, G" uniqKey="Porter G" first="G." last="Porter">G. Porter</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Davy Faraday Research Laboratory, The Royal Institution, 21 Albemarle Street, London W1X 4BS</wicri:regionArea>
<wicri:noRegion>London W1X 4BS</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Nature</title>
<imprint>
<publisher>Nature Publishing Group</publisher>
<date when="1976-03-25">1976-03-25</date>
<biblScope unit="vol">260</biblScope>
<biblScope unit="issue">5549</biblScope>
<biblScope unit="page" from="366">366</biblScope>
<biblScope unit="page" to="367">367</biblScope>
<date type="Copyright" when="1976">1976</date>
</imprint>
<idno type="ISSN">0028-0836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">IN the primary process of plant photosynthesis it is generally accepted that efficient energy migration occurs between about 300 molecules of chlorophyll a, with subsequent light collection by a chemical trap. Solutions of chlorophyll in vitro, whether in fluid solvents1, monolayers2,3, multilayers4,5 or, as shown recently in our laboratory, in rigid matrices of PMMA and in bilayer lipid vesicles, exhibit the phenomenon of concentration quenching of the excited state at concentrations much lower than those which are present in the chloroplast. At a chlorophyll concentration of 101 M, which is comparable with that in the chloroplast, none of the in vitro systems has a fluorescent yield as high as is found in vivo, especially when the photochemical traps are closed. To try to understand the apparent absence of concentration quenching in vivo, we have re-examined its mechanism in vitro, and conclude that each chlorophyll molecule in the light-collecting system must be separated from other chlorophyll molecules, so as to prevent trap formation by orbital overlap and so that the minimum distance, averaged over all orientations in a random array, is 10 .</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Beddard, G S" sort="Beddard, G S" uniqKey="Beddard G" first="G. S." last="Beddard">G. S. Beddard</name>
</noRegion>
<name sortKey="Porter, G" sort="Porter, G" uniqKey="Porter G" first="G." last="Porter">G. Porter</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005081 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005081 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E210D71C4C9769CDDF3E4C01C2A177C255862CC1
   |texte=   Concentration quenching in chlorophyll
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021