Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Processing and microstructural control: lessons from natural materials

Identifieur interne : 004553 ( Main/Exploration ); précédent : 004552; suivant : 004554

Processing and microstructural control: lessons from natural materials

Auteurs : Christopher Viney [États-Unis]

Source :

RBID : ISTEX:DCB013A1F981F3ED6BE7D25055A1B5C24517A864

English descriptors

Abstract

Abstract: Renewable natural materials have been exploited for several millennia. Within the past two decades, it has become apparent that materials science can benefit from a detailed knowledge of the synthetic pathways and molecular self-assembly mechanisms by which natural materials are produced. This review describes the most significant classes of macromolecule used in the synthesis of biological materials. It explains how the techniques of genetic engineering can be employed to modify the structure or quantitative yield of these materials. The role of the liquid crystalline state in materials self-assembly, and the effects of hierachical molecular order on the properties of natural materials, are emphasized. The wide range of contexts in which biological principles have impacted materials science is illustrated with several specific examples.

Url:
DOI: 10.1016/0920-2307(93)90006-Z


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Processing and microstructural control: lessons from natural materials</title>
<author>
<name sortKey="Viney, Christopher" sort="Viney, Christopher" uniqKey="Viney C" first="Christopher" last="Viney">Christopher Viney</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DCB013A1F981F3ED6BE7D25055A1B5C24517A864</idno>
<date when="1993" year="1993">1993</date>
<idno type="doi">10.1016/0920-2307(93)90006-Z</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-B1S665HS-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002367</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002367</idno>
<idno type="wicri:Area/Istex/Curation">002367</idno>
<idno type="wicri:Area/Istex/Checkpoint">001B64</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001B64</idno>
<idno type="wicri:doubleKey">0920-2307:1993:Viney C:processing:and:microstructural</idno>
<idno type="wicri:Area/Main/Merge">004619</idno>
<idno type="wicri:Area/Main/Curation">004553</idno>
<idno type="wicri:Area/Main/Exploration">004553</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Processing and microstructural control: lessons from natural materials</title>
<author>
<name sortKey="Viney, Christopher" sort="Viney, Christopher" uniqKey="Viney C" first="Christopher" last="Viney">Christopher Viney</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
<wicri:cityArea>Molecular Bioengineering Program, Center for Bioengineering WD-12, University of Washington, Seattle</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Materials Science Reports</title>
<title level="j" type="abbrev">MATSR</title>
<idno type="ISSN">0920-2307</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1993">1993</date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">5</biblScope>
<biblScope unit="page" from="187">187</biblScope>
<biblScope unit="page" to="236">236</biblScope>
</imprint>
<idno type="ISSN">0920-2307</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0920-2307</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Academic press</term>
<term>Acid</term>
<term>Acidic</term>
<term>Acidic macromolecules</term>
<term>Acidic proteins</term>
<term>Alkaline solution</term>
<term>Alper</term>
<term>American chemical society</term>
<term>Amino</term>
<term>Amino acid</term>
<term>Amino acid residue</term>
<term>Amino acid residues</term>
<term>Amino acid sequence</term>
<term>Amino acid sequences</term>
<term>Amino acids</term>
<term>Amylose</term>
<term>Analog</term>
<term>Anisotropic</term>
<term>Anisotropic unit</term>
<term>Anomeric</term>
<term>Anomeric carbon</term>
<term>Antiparallel chains</term>
<term>Appl</term>
<term>Aqueous environment</term>
<term>Aqueous solution</term>
<term>Aragonite</term>
<term>Aragonite lattices</term>
<term>Artificial process</term>
<term>Athermal</term>
<term>Athermal behavior</term>
<term>Athermal system</term>
<term>Avian eggshells</term>
<term>Axial</term>
<term>Axial ratio</term>
<term>Axial ratio ratio</term>
<term>Biodegradable materials</term>
<term>Bioduplicated materials</term>
<term>Bioemanent</term>
<term>Bioemanent materials</term>
<term>Biol</term>
<term>Biological composites</term>
<term>Biological materials</term>
<term>Biological polymers</term>
<term>Biological process</term>
<term>Biological processes</term>
<term>Biological sources</term>
<term>Biological structures</term>
<term>Biomimetic</term>
<term>Biomimetic material</term>
<term>Biphasic</term>
<term>Biphasic behavior</term>
<term>Biphasic regime</term>
<term>Blue phase</term>
<term>Calcite</term>
<term>Calvert</term>
<term>Carbohydrate</term>
<term>Carbohydrate polymers</term>
<term>Carbon atom</term>
<term>Carbon oxygen</term>
<term>Cell division</term>
<term>Cell membranes</term>
<term>Cellular synthesis</term>
<term>Ceramic particles</term>
<term>Chem</term>
<term>Chemical environment</term>
<term>Chemical steps</term>
<term>Chemical structure</term>
<term>Chiral</term>
<term>Chiral center</term>
<term>Chitin</term>
<term>Cholesteric</term>
<term>Classification schemes</term>
<term>Collagen</term>
<term>Composite structure</term>
<term>Concentration range</term>
<term>Conchoidal cleavage</term>
<term>Conformation</term>
<term>Copper sulfate</term>
<term>Cryst</term>
<term>Crystal growth</term>
<term>Crystal structure</term>
<term>Crystalline</term>
<term>Crystalline domains</term>
<term>Crystalline form</term>
<term>Crystalline materials</term>
<term>Crystalline order</term>
<term>Crystalline phase</term>
<term>Crystalline phases</term>
<term>Crystalline polymer</term>
<term>Crystallite</term>
<term>Crystallographic orientation</term>
<term>Current opinion</term>
<term>Derivative</term>
<term>Different types</term>
<term>Double helix</term>
<term>Drag line</term>
<term>Ellis horwood</term>
<term>Empirical formula</term>
<term>Energy storage material</term>
<term>Entire length</term>
<term>Extremophiles</term>
<term>Fibril</term>
<term>Fibroin</term>
<term>Fischer projection</term>
<term>Foreign protein</term>
<term>Form structures</term>
<term>Frame silk</term>
<term>Framework macromolecules</term>
<term>Frankel</term>
<term>Genetic engineering</term>
<term>Glass microscope slide</term>
<term>Glucose</term>
<term>Glucose molecules</term>
<term>Glutamic acid</term>
<term>Glycosidic oxygen</term>
<term>Growth conditions</term>
<term>Growth rates</term>
<term>Helical</term>
<term>Helix</term>
<term>Hierarchical</term>
<term>Hierarchical microstructures</term>
<term>High temperatures</term>
<term>Higher concentrations</term>
<term>Higher plants</term>
<term>Hollow structures</term>
<term>Host organism</term>
<term>Hydrated ferric oxide</term>
<term>Hydrogen bonds</term>
<term>Hydrophilic</term>
<term>Hydrophobic</term>
<term>Hydrophobic tail</term>
<term>Individual molecules</term>
<term>Industrial utilization</term>
<term>Interaction parameter</term>
<term>Intermolecular</term>
<term>Intermolecular forces</term>
<term>Intermolecular hydrogen</term>
<term>Intramolecular</term>
<term>Intramolecular hydrogen</term>
<term>Intramolecular hydrogen bonds</term>
<term>Inverse temperature transition</term>
<term>Isotropic</term>
<term>Kaplan</term>
<term>Large number</term>
<term>Lateral diffusion</term>
<term>Lipid</term>
<term>Lipid microstructures</term>
<term>Liquid crystal</term>
<term>Liquid crystallinity</term>
<term>Liquid crystals</term>
<term>Long axis</term>
<term>Lower energy</term>
<term>Lyotropic</term>
<term>Macromolecular</term>
<term>Macromolecule</term>
<term>Magnetic particles</term>
<term>Main chain</term>
<term>Materials processing</term>
<term>Materials research society</term>
<term>Materials science</term>
<term>Materials synthesis</term>
<term>Matrix</term>
<term>Matrix polymer</term>
<term>Microstructural</term>
<term>Microstructural controk lessons</term>
<term>Microstructural control</term>
<term>Microstructure</term>
<term>Microstructures</term>
<term>Mineral nucleation</term>
<term>Mineralized tissue</term>
<term>Model compounds</term>
<term>Molar heat</term>
<term>Molecular biology</term>
<term>Molecular conformation</term>
<term>Molecular order</term>
<term>Molecular orientation</term>
<term>Molecular segments</term>
<term>Molecular structure</term>
<term>Molecular weight</term>
<term>Molecule</term>
<term>Monomer</term>
<term>More detail</term>
<term>Mucus</term>
<term>Muscle proteins</term>
<term>Nacre</term>
<term>Narrow concentration range</term>
<term>Natural marine adhesives</term>
<term>Natural materials</term>
<term>Natural organisms</term>
<term>Natural polymers</term>
<term>Natural process</term>
<term>Natural proteins</term>
<term>Natural silk secretions</term>
<term>Nematic</term>
<term>Nematic phase</term>
<term>Nematic phases</term>
<term>Nematic state</term>
<term>Novel materials</term>
<term>Nucleation</term>
<term>Open form</term>
<term>Optical anisotropy</term>
<term>Organelle membranes</term>
<term>Organic matrix</term>
<term>Organic template</term>
<term>Organism</term>
<term>Orientational order</term>
<term>Other chain</term>
<term>Oxford university press</term>
<term>Oxygen atoms</term>
<term>Partial classification</term>
<term>Periodic array</term>
<term>Phase change</term>
<term>Phase diagram</term>
<term>Phase diagrams</term>
<term>Phosphate group</term>
<term>Phospholipid</term>
<term>Physical properties</term>
<term>Piney</term>
<term>Piney processing</term>
<term>Plant cell walls</term>
<term>Plasmid</term>
<term>Pleated structure</term>
<term>Polar head group</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer chains</term>
<term>Polymer matrix</term>
<term>Polymer solution</term>
<term>Polypeptide</term>
<term>Polypeptide chain</term>
<term>Polysaccharide</term>
<term>Precipitation</term>
<term>Preferred direction</term>
<term>Primary structure</term>
<term>Proc</term>
<term>Processing steps</term>
<term>Proline residues</term>
<term>Protein</term>
<term>Protein polymers</term>
<term>Protein synthesis</term>
<term>Pure polymer</term>
<term>Random coil</term>
<term>Random coil conformation</term>
<term>Rapid commun</term>
<term>Reaction vessels</term>
<term>Recombinant plasmid</term>
<term>Recombinant plasmids</term>
<term>Research literature</term>
<term>Rieke</term>
<term>Ring structure</term>
<term>Same time</term>
<term>Schematic representation</term>
<term>Second layer</term>
<term>Secondary structure</term>
<term>Secretion</term>
<term>Secretory granules</term>
<term>Shear direction</term>
<term>Silk</term>
<term>Silk fiber</term>
<term>Silk fibroin</term>
<term>Silk fibroin molecules</term>
<term>Silk secretion</term>
<term>Silk secretions</term>
<term>Silkworm</term>
<term>Silkworm fibroin</term>
<term>Silkworm silk</term>
<term>Silkworm silk secretion</term>
<term>Simple lattice model</term>
<term>Single atoms</term>
<term>Single crystal</term>
<term>Site number</term>
<term>Small increase</term>
<term>Small volumes</term>
<term>Smectic</term>
<term>Solid fiber</term>
<term>Solid material</term>
<term>Solid materials</term>
<term>Solid state</term>
<term>Solvent molecule</term>
<term>Source organism</term>
<term>Spider</term>
<term>Spinodal decomposition</term>
<term>Stockton press</term>
<term>Structural biology</term>
<term>Structural material</term>
<term>Subsequent solidification</term>
<term>Supramolecular</term>
<term>Supramolecular structure</term>
<term>Tertiary structure</term>
<term>Thaliana cells</term>
<term>Tirrell</term>
<term>Transgenic</term>
<term>Transgenic organisms</term>
<term>Ultrastructure processing</term>
<term>Unwanted ions</term>
<term>Vesicle</term>
<term>Viney</term>
<term>Viney processing</term>
<term>Vivo</term>
<term>Volume fraction</term>
<term>Waterinsoluble fibers</term>
<term>Wide range</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Renewable natural materials have been exploited for several millennia. Within the past two decades, it has become apparent that materials science can benefit from a detailed knowledge of the synthetic pathways and molecular self-assembly mechanisms by which natural materials are produced. This review describes the most significant classes of macromolecule used in the synthesis of biological materials. It explains how the techniques of genetic engineering can be employed to modify the structure or quantitative yield of these materials. The role of the liquid crystalline state in materials self-assembly, and the effects of hierachical molecular order on the properties of natural materials, are emphasized. The wide range of contexts in which biological principles have impacted materials science is illustrated with several specific examples.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Viney, Christopher" sort="Viney, Christopher" uniqKey="Viney C" first="Christopher" last="Viney">Christopher Viney</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004553 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004553 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DCB013A1F981F3ED6BE7D25055A1B5C24517A864
   |texte=   Processing and microstructural control: lessons from natural materials
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021