Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular evolution: A theory approaches experiments

Identifieur interne : 003A53 ( Main/Exploration ); précédent : 003A52; suivant : 003A54

Molecular evolution: A theory approaches experiments

Auteurs : Christian V. Forst [États-Unis]

Source :

RBID : ISTEX:ABB3147D98E0DA7F4C5780E517B5299CCBE2E6E5

English descriptors

Abstract

Abstract: Applied Molecular evolution, especially in vitro techniques developed in the last few years have revolutionized the design of functional biopolymers. SELEX techniques for example have become particularly popular. These methods have been enormously successful, yet this success is not trivial: the huge number of sequences being searched, the low concentrations of individual species and the bias and noise inherent in the techniques would seem to make these experiments very difficult. The theory presented here will give a comprehensive description of directed molecular evolution of RNA molecules in detail and biopolymers in general. Essential for an understanding is an adequate genotype–phenotype relationship. This relationship exhibits neutral properties which explain the success of these experimental methods. Influences of the initial library, the error rate, the cycle length and other parameters on the experiments are characterized. New problems arise in extending the concept of evolutionary optimization of biopolymers in a Darwinian scenario to complex reaction networks.

Url:
DOI: 10.1016/S0168-1656(98)00107-2


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Molecular evolution: A theory approaches experiments</title>
<author>
<name sortKey="Forst, Christian V" sort="Forst, Christian V" uniqKey="Forst C" first="Christian V." last="Forst">Christian V. Forst</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ABB3147D98E0DA7F4C5780E517B5299CCBE2E6E5</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0168-1656(98)00107-2</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-C7JJXD20-N/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002544</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002544</idno>
<idno type="wicri:Area/Istex/Curation">002544</idno>
<idno type="wicri:Area/Istex/Checkpoint">001261</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001261</idno>
<idno type="wicri:doubleKey">0168-1656:1998:Forst C:molecular:evolution:a</idno>
<idno type="wicri:Area/Main/Merge">003B02</idno>
<idno type="wicri:Area/Main/Curation">003A53</idno>
<idno type="wicri:Area/Main/Exploration">003A53</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Molecular evolution: A theory approaches experiments</title>
<author>
<name sortKey="Forst, Christian V" sort="Forst, Christian V" uniqKey="Forst C" first="Christian V." last="Forst">Christian V. Forst</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Theoretical Biophysics Group, Beckman Institute, University of Illinois, 405 N. Mathews, Urbana, IL 61801</wicri:regionArea>
<wicri:noRegion>IL 61801</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Biotechnology</title>
<title level="j" type="abbrev">BIOTEC</title>
<idno type="ISSN">0168-1656</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">64</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="101">101</biblScope>
<biblScope unit="page" to="118">118</biblScope>
</imprint>
<idno type="ISSN">0168-1656</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0168-1656</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Alternative structures</term>
<term>Autocatalytic networks</term>
<term>Autocatalytic sets</term>
<term>Base pairs</term>
<term>Better phenotypes</term>
<term>Biol</term>
<term>Biomolecules</term>
<term>Biopolymers</term>
<term>Biotechnology</term>
<term>Case study</term>
<term>Catalytic</term>
<term>Catalytic network</term>
<term>Catalytic networks</term>
<term>Catalytic support</term>
<term>Chain length</term>
<term>Chem</term>
<term>Common structures</term>
<term>Constant organisation</term>
<term>Darwinian scenario</term>
<term>Different sequences</term>
<term>Distinct scenarios</term>
<term>Dominant hypercycle</term>
<term>Doped libraries</term>
<term>Dynamical</term>
<term>Dynamical behavior</term>
<term>Dynamical system theory</term>
<term>Dynamical systems</term>
<term>Dynamics</term>
<term>Eigen</term>
<term>Elsevier science</term>
<term>Error rate</term>
<term>Evolution machine</term>
<term>Evolutionary</term>
<term>Evolutionary biotechnology</term>
<term>Evolutionary context</term>
<term>Evolutionary design</term>
<term>Evolutionary dynamics</term>
<term>Evolutionary optimization</term>
<term>Evolutionary strategies</term>
<term>Exhaustive enumeration</term>
<term>Fontana</term>
<term>Forst</term>
<term>Forst journal</term>
<term>Friedrich schiller universitat</term>
<term>General description</term>
<term>Generic properties</term>
<term>Genetic diversity</term>
<term>Genotype</term>
<term>Genotype phenotype maps</term>
<term>Hofacker</term>
<term>Hypercycle</term>
<term>Hypercycles</term>
<term>Institute studies</term>
<term>Lecture notes</term>
<term>Maximal concentration</term>
<term>Microsystems technol</term>
<term>Molecular diversity</term>
<term>Molecular evolution</term>
<term>Molecular populations</term>
<term>Molecular properties</term>
<term>Neutral drift</term>
<term>Neutral evolution</term>
<term>Neutral neighbors</term>
<term>Neutral network</term>
<term>Neutral networks</term>
<term>Optimization</term>
<term>Other hand</term>
<term>Other parameters</term>
<term>Parasite</term>
<term>Parental phenotype</term>
<term>Phenotype</term>
<term>Phenotype mapping</term>
<term>Preliminary studies</term>
<term>Quasispecies</term>
<term>Quasispecies dynamics</term>
<term>Random graphs</term>
<term>Random sequences</term>
<term>Rare structures</term>
<term>Reaction networks</term>
<term>Reaction paths</term>
<term>Reaction rates</term>
<term>Reidys</term>
<term>Replication</term>
<term>Same structure</term>
<term>Scenario</term>
<term>Schober</term>
<term>Schuster</term>
<term>Secondary structure</term>
<term>Secondary structures</term>
<term>Selection constraint</term>
<term>Selection cycles</term>
<term>Selective neutrality</term>
<term>Sequence space</term>
<term>Sequence structure</term>
<term>Sequence structure maps</term>
<term>Shape space</term>
<term>Short hypercycles</term>
<term>Single parasite</term>
<term>Small clusters</term>
<term>Small fraction</term>
<term>Stadler</term>
<term>Structural features</term>
<term>Structural information</term>
<term>Technological applications</term>
<term>Tness</term>
<term>Tness landscape</term>
<term>Total number</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Applied Molecular evolution, especially in vitro techniques developed in the last few years have revolutionized the design of functional biopolymers. SELEX techniques for example have become particularly popular. These methods have been enormously successful, yet this success is not trivial: the huge number of sequences being searched, the low concentrations of individual species and the bias and noise inherent in the techniques would seem to make these experiments very difficult. The theory presented here will give a comprehensive description of directed molecular evolution of RNA molecules in detail and biopolymers in general. Essential for an understanding is an adequate genotype–phenotype relationship. This relationship exhibits neutral properties which explain the success of these experimental methods. Influences of the initial library, the error rate, the cycle length and other parameters on the experiments are characterized. New problems arise in extending the concept of evolutionary optimization of biopolymers in a Darwinian scenario to complex reaction networks.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Forst, Christian V" sort="Forst, Christian V" uniqKey="Forst C" first="Christian V." last="Forst">Christian V. Forst</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:ABB3147D98E0DA7F4C5780E517B5299CCBE2E6E5
   |texte=   Molecular evolution: A theory approaches experiments
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021