Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymer-in-a-Box Mechanism for the Thermal Stabilization of Collagen Molecules in Fibers

Identifieur interne : 003920 ( Main/Exploration ); précédent : 003919; suivant : 003921

Polymer-in-a-Box Mechanism for the Thermal Stabilization of Collagen Molecules in Fibers

Auteurs : Christopher A. Miles [Royaume-Uni] ; Michael Ghelashvili [Royaume-Uni]

Source :

RBID : ISTEX:09C046DECD354F94AE6001E000C152EAE762CDA7

English descriptors

Abstract

Abstract: Collagen molecules in solution unfold close to the maximum body temperature of the species of animal from which the molecules are extracted. It is therefore vital that collagen is stabilized during fiber formation. In this paper, our concept that the collagen molecule is thermally stabilized by loss of configurational entropy of the molecule in the fiber lattice, is refined by examining the process theoretically. Combining an equation for the entropy of a polymer-in-a-box with our previously published rate theory analysis of collagen denaturation, we have derived a hyperbolic relationship between the denaturation temperature, Tm, and the volume fraction, ϵ, of water in the fiber. DSC data were consistent with the model for water volume fractions greater than 0.2. At a water volume fraction of about 0.2, there was an abrupt change in the slope of the linear relationship between 1/Tm and ϵ. This may have been caused by a collapse of the gap-overlap fiber structure at low hydrations. At more than 6 moles water per tripeptide, the enthalpy of denaturation on a dry tendon basis was independent of hydration at 58.55±0.59Jg−1. Between about 6 and 1 moles water per tripeptide, dehydration caused a substantial loss of enthalpy of denaturation, caused by a loss of water bridges from the hydration network surrounding the triple helix. At very low hydrations (less than 1 mole of water per tripeptide), where there was not enough water to form bridges and only sufficient to hydrogen bond to primary binding sites on the peptide chains, the enthalpy was approximately constant at 11.6±0.69J g−1. This was assigned mainly to the breaking of the direct hydrogen bonds between the alpha chains.

Url:
DOI: 10.1016/S0006-3495(99)77476-X


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymer-in-a-Box Mechanism for the Thermal Stabilization of Collagen Molecules in Fibers</title>
<author>
<name sortKey="Miles, Christopher A" sort="Miles, Christopher A" uniqKey="Miles C" first="Christopher A." last="Miles">Christopher A. Miles</name>
</author>
<author>
<name sortKey="Ghelashvili, Michael" sort="Ghelashvili, Michael" uniqKey="Ghelashvili M" first="Michael" last="Ghelashvili">Michael Ghelashvili</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:09C046DECD354F94AE6001E000C152EAE762CDA7</idno>
<date when="1999" year="1999">1999</date>
<idno type="doi">10.1016/S0006-3495(99)77476-X</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-FXMBCNWW-7/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002072</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002072</idno>
<idno type="wicri:Area/Istex/Curation">002072</idno>
<idno type="wicri:Area/Istex/Checkpoint">001173</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001173</idno>
<idno type="wicri:doubleKey">0006-3495:1999:Miles C:polymer:in:a</idno>
<idno type="wicri:Area/Main/Merge">003965</idno>
<idno type="wicri:Area/Main/Curation">003920</idno>
<idno type="wicri:Area/Main/Exploration">003920</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polymer-in-a-Box Mechanism for the Thermal Stabilization of Collagen Molecules in Fibers</title>
<author>
<name sortKey="Miles, Christopher A" sort="Miles, Christopher A" uniqKey="Miles C" first="Christopher A." last="Miles">Christopher A. Miles</name>
<affiliation wicri:level="2">
<country>Royaume-Uni</country>
<placeName>
<region type="country">Angleterre</region>
</placeName>
<wicri:cityArea>Collagen Research Group, Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU</wicri:cityArea>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Royaume-Uni</country>
</affiliation>
</author>
<author>
<name sortKey="Ghelashvili, Michael" sort="Ghelashvili, Michael" uniqKey="Ghelashvili M" first="Michael" last="Ghelashvili">Michael Ghelashvili</name>
<affiliation wicri:level="2">
<country>Royaume-Uni</country>
<placeName>
<region type="country">Angleterre</region>
</placeName>
<wicri:cityArea>Collagen Research Group, Department of Clinical Veterinary Science, University of Bristol, Langford, Bristol BS40 5DU</wicri:cityArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biophysical Journal</title>
<title level="j" type="abbrev">BPJ</title>
<idno type="ISSN">0006-3495</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1999">1999</date>
<biblScope unit="volume">76</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="3243">3243</biblScope>
<biblScope unit="page" to="3252">3252</biblScope>
</imprint>
<idno type="ISSN">0006-3495</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-3495</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acetic acid</term>
<term>Activation enthalpy</term>
<term>Activation entropy</term>
<term>Adjacent molecules</term>
<term>Basement membranes</term>
<term>Biophysical journal table</term>
<term>Biophysical journal volume</term>
<term>Calorimetric measurements</term>
<term>Calorimetry</term>
<term>Collagen</term>
<term>Collagen denaturation</term>
<term>Collagen denaturation endotherm</term>
<term>Collagen fiber</term>
<term>Collagen fibers</term>
<term>Collagen fibrils</term>
<term>Collagen molecule</term>
<term>Collagen molecules</term>
<term>Configurational entropy</term>
<term>Dehydrated</term>
<term>Dehydrated fiber</term>
<term>Dehydration</term>
<term>Denaturation</term>
<term>Denaturation endotherm</term>
<term>Denaturation temperature</term>
<term>Different lengths</term>
<term>Different levels</term>
<term>Differential scanning calorimetry</term>
<term>Endotherm</term>
<term>Enthalpy</term>
<term>Entropy</term>
<term>Excess water</term>
<term>Fiber formation</term>
<term>Fiber lattice</term>
<term>First part</term>
<term>Flory</term>
<term>Garrett</term>
<term>Helix</term>
<term>High hydrations</term>
<term>Hydrated</term>
<term>Hydrated fiber</term>
<term>Hydrated fibers</term>
<term>Hydrated state</term>
<term>Hydration</term>
<term>Hydration levels</term>
<term>Hydration range</term>
<term>Hydrogen bonds</term>
<term>Hydroxyproline content</term>
<term>Hyperbolic relation</term>
<term>Interaxial spacing</term>
<term>Intermediate hydration levels</term>
<term>Intermediate hydrations</term>
<term>Intrafibrillar water</term>
<term>Labile</term>
<term>Labile domain</term>
<term>Lateral dimensions</term>
<term>Lattice</term>
<term>Lower hydrations</term>
<term>Molecule</term>
<term>Moles water</term>
<term>Phase transition</term>
<term>Polymer</term>
<term>Preliminary experiments</term>
<term>Present data</term>
<term>Present work</term>
<term>Previous sample</term>
<term>Previous studies</term>
<term>Previous work</term>
<term>Rate process</term>
<term>Regression line</term>
<term>Sample pans</term>
<term>Scanning rate</term>
<term>Small peak</term>
<term>Standard error</term>
<term>Substantial increase</term>
<term>Tendon</term>
<term>Thermal activation</term>
<term>Thermal denaturation</term>
<term>Thermal stability</term>
<term>Thermal stabilization</term>
<term>Tmax</term>
<term>Triple helix</term>
<term>Triplet</term>
<term>Volume fraction</term>
<term>Water bridge molecules</term>
<term>Water bridges</term>
<term>Water concentration</term>
<term>Water concentrations</term>
<term>Water content</term>
<term>Water molecules</term>
<term>Water region</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Collagen molecules in solution unfold close to the maximum body temperature of the species of animal from which the molecules are extracted. It is therefore vital that collagen is stabilized during fiber formation. In this paper, our concept that the collagen molecule is thermally stabilized by loss of configurational entropy of the molecule in the fiber lattice, is refined by examining the process theoretically. Combining an equation for the entropy of a polymer-in-a-box with our previously published rate theory analysis of collagen denaturation, we have derived a hyperbolic relationship between the denaturation temperature, Tm, and the volume fraction, ϵ, of water in the fiber. DSC data were consistent with the model for water volume fractions greater than 0.2. At a water volume fraction of about 0.2, there was an abrupt change in the slope of the linear relationship between 1/Tm and ϵ. This may have been caused by a collapse of the gap-overlap fiber structure at low hydrations. At more than 6 moles water per tripeptide, the enthalpy of denaturation on a dry tendon basis was independent of hydration at 58.55±0.59Jg−1. Between about 6 and 1 moles water per tripeptide, dehydration caused a substantial loss of enthalpy of denaturation, caused by a loss of water bridges from the hydration network surrounding the triple helix. At very low hydrations (less than 1 mole of water per tripeptide), where there was not enough water to form bridges and only sufficient to hydrogen bond to primary binding sites on the peptide chains, the enthalpy was approximately constant at 11.6±0.69J g−1. This was assigned mainly to the breaking of the direct hydrogen bonds between the alpha chains.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
</region>
</list>
<tree>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Miles, Christopher A" sort="Miles, Christopher A" uniqKey="Miles C" first="Christopher A." last="Miles">Christopher A. Miles</name>
</region>
<name sortKey="Ghelashvili, Michael" sort="Ghelashvili, Michael" uniqKey="Ghelashvili M" first="Michael" last="Ghelashvili">Michael Ghelashvili</name>
<name sortKey="Miles, Christopher A" sort="Miles, Christopher A" uniqKey="Miles C" first="Christopher A." last="Miles">Christopher A. Miles</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003920 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003920 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:09C046DECD354F94AE6001E000C152EAE762CDA7
   |texte=   Polymer-in-a-Box Mechanism for the Thermal Stabilization of Collagen Molecules in Fibers
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021