Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Scaling and the Smoluchowski equations.

Identifieur interne : 002C97 ( Main/Exploration ); précédent : 002C96; suivant : 002C98

Scaling and the Smoluchowski equations.

Auteurs : J. Goodisman [États-Unis] ; J. Chaiken

Source :

RBID : pubmed:16942336

Abstract

The Smoluchowski equations, which describe coalescence growth, take into account combination reactions between a j-mer and a k-mer to form a (j+k)-mer, but not breakup of larger clusters to smaller ones. All combination reactions are assumed to be second order, with rate constants K(jk). The K(jk) are said to scale if K(lambda j,gamma k) = lambda(mu)gamma(nu)K(jk) for j < or = k. It can then be shown that, for large k, the number density or population of k-mers is given by Ak(a)e(-bk), where A is a normalization constant (a function of a, b, and time), a = -(mu+nu), and b(mu+nu-1) depends linearly on time. We prove this in a simple, transparent manner. We also discuss the origin of odd-even population oscillations for small k. A common scaling arises from the ballistic model, which assumes that the velocity of a k-mer is proportional to 1/square root of m(k) (Maxwell distribution), i.e., thermal equilibrium. This does not hold for the nascent distribution of clusters produced from monomers by reactive collisions. By direct calculation, invoking conservation of momentum in collisions, we show that, for this distribution, velocities are proportional to m(k)(-0.577). This leads to mu+nu = 0.090, intermediate between the ballistic (0.167) and diffusive (0.000) results. These results are discussed in light of the existence of systems in the experimental literature which apparently correspond to very negative values of mu+nu.

DOI: 10.1063/1.2218836
PubMed: 16942336


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Scaling and the Smoluchowski equations.</title>
<author>
<name sortKey="Goodisman, J" sort="Goodisman, J" uniqKey="Goodisman J" first="J" last="Goodisman">J. Goodisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100</wicri:regionArea>
<wicri:noRegion>New York 13244-4100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chaiken, J" sort="Chaiken, J" uniqKey="Chaiken J" first="J" last="Chaiken">J. Chaiken</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16942336</idno>
<idno type="pmid">16942336</idno>
<idno type="doi">10.1063/1.2218836</idno>
<idno type="wicri:Area/PubMed/Corpus">002226</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002226</idno>
<idno type="wicri:Area/PubMed/Curation">002226</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002226</idno>
<idno type="wicri:Area/PubMed/Checkpoint">002098</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">002098</idno>
<idno type="wicri:Area/Ncbi/Merge">000466</idno>
<idno type="wicri:Area/Ncbi/Curation">000466</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000466</idno>
<idno type="wicri:doubleKey">0021-9606:2006:Goodisman J:scaling:and:the</idno>
<idno type="wicri:Area/Main/Merge">002D23</idno>
<idno type="wicri:Area/Main/Curation">002C97</idno>
<idno type="wicri:Area/Main/Exploration">002C97</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Scaling and the Smoluchowski equations.</title>
<author>
<name sortKey="Goodisman, J" sort="Goodisman, J" uniqKey="Goodisman J" first="J" last="Goodisman">J. Goodisman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Syracuse University, Syracuse, New York 13244-4100</wicri:regionArea>
<wicri:noRegion>New York 13244-4100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chaiken, J" sort="Chaiken, J" uniqKey="Chaiken J" first="J" last="Chaiken">J. Chaiken</name>
</author>
</analytic>
<series>
<title level="j">The Journal of chemical physics</title>
<idno type="ISSN">0021-9606</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Smoluchowski equations, which describe coalescence growth, take into account combination reactions between a j-mer and a k-mer to form a (j+k)-mer, but not breakup of larger clusters to smaller ones. All combination reactions are assumed to be second order, with rate constants K(jk). The K(jk) are said to scale if K(lambda j,gamma k) = lambda(mu)gamma(nu)K(jk) for j < or = k. It can then be shown that, for large k, the number density or population of k-mers is given by Ak(a)e(-bk), where A is a normalization constant (a function of a, b, and time), a = -(mu+nu), and b(mu+nu-1) depends linearly on time. We prove this in a simple, transparent manner. We also discuss the origin of odd-even population oscillations for small k. A common scaling arises from the ballistic model, which assumes that the velocity of a k-mer is proportional to 1/square root of m(k) (Maxwell distribution), i.e., thermal equilibrium. This does not hold for the nascent distribution of clusters produced from monomers by reactive collisions. By direct calculation, invoking conservation of momentum in collisions, we show that, for this distribution, velocities are proportional to m(k)(-0.577). This leads to mu+nu = 0.090, intermediate between the ballistic (0.167) and diffusive (0.000) results. These results are discussed in light of the existence of systems in the experimental literature which apparently correspond to very negative values of mu+nu.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chaiken, J" sort="Chaiken, J" uniqKey="Chaiken J" first="J" last="Chaiken">J. Chaiken</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Goodisman, J" sort="Goodisman, J" uniqKey="Goodisman J" first="J" last="Goodisman">J. Goodisman</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16942336
   |texte=   Scaling and the Smoluchowski equations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16942336" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021