Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biochemistry and Structural DNA Nanotechnology:  An Evolving Symbiotic Relationship†

Identifieur interne : 003247 ( Main/Curation ); précédent : 003246; suivant : 003248

Biochemistry and Structural DNA Nanotechnology:  An Evolving Symbiotic Relationship†

Auteurs : Nadrian C. Seeman [États-Unis]

Source :

RBID : ISTEX:714807CF328BEECEF437F3A5CA198A3EF614077F

Abstract

Structural DNA nanotechnology is derived from naturally occurring structures and phenomena in cellular biochemistry. Motifs based on branched DNA molecules are linked together by sticky ends to produce objects, periodic arrays, and nanomechanical devices. The motifs include Holliday junction analogues, double and triple crossover molecules, knots, and parallelograms. Polyhedral catenanes, such as a cube or a truncated octahedron, have been assembled from branched junctions. Stiff motifs have been used to produce periodic arrays, containing topographic features visible in atomic force microscopy; these include deliberately striped patterns and cavities whose sizes can be tuned by design. Deliberately knotted molecules have been assembled. Aperiodic arrangements of DNA tiles can be used to produce assemblies corresponding to logical computation. Both DNA structural transitions and branch migration have been used as the basis for the operation of DNA nanomechanical devices. Structural DNA nanotechnology has been used in a number of applications in biochemistry. An RNA knot has been used to establish the existence of RNA topoisomerase activity. The sequence dependence of crossover isomerization and branch migration at symmetric sites has been established through the use of symmetric immobile junctions. DNA parallelogram arrays have been used to determine the interhelical angles for a variety of DNA branched junctions. The relationship between biochemistry and structural DNA nanotechnology continues to grow.

Url:
DOI: 10.1021/bi030079v

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:714807CF328BEECEF437F3A5CA198A3EF614077F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Biochemistry and Structural DNA Nanotechnology:  An Evolving Symbiotic Relationship†</title>
<author>
<name sortKey="Seeman, Nadrian C" sort="Seeman, Nadrian C" uniqKey="Seeman N" first="Nadrian C." last="Seeman">Nadrian C. Seeman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:714807CF328BEECEF437F3A5CA198A3EF614077F</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1021/bi030079v</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-N5P4FLD5-P/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002197</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002197</idno>
<idno type="wicri:Area/Istex/Curation">002197</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C52</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C52</idno>
<idno type="wicri:doubleKey">0006-2960:2003:Seeman N:biochemistry:and:structural</idno>
<idno type="wicri:Area/Main/Merge">003282</idno>
<idno type="wicri:Area/Main/Curation">003247</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Biochemistry and Structural DNA Nanotechnology:  An Evolving Symbiotic Relationship
<ref type="bib" target="#bi030079vAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Seeman, Nadrian C" sort="Seeman, Nadrian C" uniqKey="Seeman N" first="Nadrian C." last="Seeman">Nadrian C. Seeman</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, New York University, New York, New York 10003</wicri:regionArea>
<wicri:noRegion>New York 10003</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2003</date>
<date type="published">2003</date>
<biblScope unit="vol">42</biblScope>
<biblScope unit="issue">24</biblScope>
<biblScope unit="page" from="7259">7259</biblScope>
<biblScope unit="page" to="7269">7269</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Structural DNA nanotechnology is derived from naturally occurring structures and phenomena in cellular biochemistry. Motifs based on branched DNA molecules are linked together by sticky ends to produce objects, periodic arrays, and nanomechanical devices. The motifs include Holliday junction analogues, double and triple crossover molecules, knots, and parallelograms. Polyhedral catenanes, such as a cube or a truncated octahedron, have been assembled from branched junctions. Stiff motifs have been used to produce periodic arrays, containing topographic features visible in atomic force microscopy; these include deliberately striped patterns and cavities whose sizes can be tuned by design. Deliberately knotted molecules have been assembled. Aperiodic arrangements of DNA tiles can be used to produce assemblies corresponding to logical computation. Both DNA structural transitions and branch migration have been used as the basis for the operation of DNA nanomechanical devices. Structural DNA nanotechnology has been used in a number of applications in biochemistry. An RNA knot has been used to establish the existence of RNA topoisomerase activity. The sequence dependence of crossover isomerization and branch migration at symmetric sites has been established through the use of symmetric immobile junctions. DNA parallelogram arrays have been used to determine the interhelical angles for a variety of DNA branched junctions. The relationship between biochemistry and structural DNA nanotechnology continues to grow.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003247 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 003247 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:714807CF328BEECEF437F3A5CA198A3EF614077F
   |texte=   Biochemistry and Structural DNA Nanotechnology:  An Evolving Symbiotic Relationship†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021