Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of derivation of ribophosphate backbone and terminal ribophosphate groups in oligoribonucleotides on their stability and interaction with eukaryotic cells

Identifieur interne : 000E05 ( Istex/Curation ); précédent : 000E04; suivant : 000E06

Effect of derivation of ribophosphate backbone and terminal ribophosphate groups in oligoribonucleotides on their stability and interaction with eukaryotic cells

Auteurs : A. S. Boutorine [Russie] ; A. G. Venyaminova [Russie] ; M. N. Repkova [Russie] ; Z. A. Sergueyeva [Russie] ; D. V. Pyshnyï [Russie]

Source :

RBID : ISTEX:6AF443B42049E7135A9919680D4163D453F0AA7F

English descriptors

Abstract

Abstract: Various derivatives of oligoribonucleotides were synthesized by the H-phosphonate method. Different modifications of the ribophosphate backbone were designed in order to protect the derivatives against nucleolytic enzymes present in the biological media. These modifications include coupling of fluorescein moiety to 3′-terminal ribose, 2′-O-methylation of ribose, introduction of phosphorothioate internucleotide bonds throughout the molecule, replacement of the two last 3′-terminal phosphodiester bonds by phosphoroamidates and coupling of the last 3′-terminal nucleotide via the 3′-3′-phosphodiester bond. All modifications were tested for their effect on the stability of the derivatives against phosphodiesterase from snake venom and nucleases of the cell culture media. 2′-O-methylated oligoribonucleotides containing either terminal 3′-3′-linkage or two 3′-terminal phosphoroamidate internucleotide bonds appeared to be the most stable under the most severe conditions used. The results demonstrate a possibility to use protected oligoribonucleotide derivatives for experiments in vivo when the use of deoxy-analogues might be ineffective. The uptake of 2′-O-methylated derivatives and their 5′-cholesterol conjugates (coupled via a disulfide bond) by human carcinoma cells did not differ from that of the corresponding oligodeoxyribonucleotides, 85% of the bound derivatives were found in the membrane-cytosolic fraction, while only 15% were found in the nuclear fraction. The oligonucleotide moiety of 2′-O-methyloligoribonucleotide-cholesterol conjugate was not translocated through the cellular membrane. After cleavage of the linkage between cholesterol and oligonucleotide by dithiothreitol the major portion of the oligonucleotide moiety was released into the media. The derivatives, as well as their 5′-cholesterol conjugates, which entered the cells, were stable and protected from action of dithiothreitol dissolved in culture media. These results demonstrate an endocytosis mechanism of penetration as observed in similar experiments using oligodeoxyribonucleotides.

Url:
DOI: 10.1016/0300-9084(94)90059-0

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:6AF443B42049E7135A9919680D4163D453F0AA7F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Effect of derivation of ribophosphate backbone and terminal ribophosphate groups in oligoribonucleotides on their stability and interaction with eukaryotic cells</title>
<author>
<name sortKey="Boutorine, A S" sort="Boutorine, A S" uniqKey="Boutorine A" first="A. S." last="Boutorine">A. S. Boutorine</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Venyaminova, A G" sort="Venyaminova, A G" uniqKey="Venyaminova A" first="A. G." last="Venyaminova">A. G. Venyaminova</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Repkova, M N" sort="Repkova, M N" uniqKey="Repkova M" first="M. N." last="Repkova">M. N. Repkova</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sergueyeva, Z A" sort="Sergueyeva, Z A" uniqKey="Sergueyeva Z" first="Z. A." last="Sergueyeva">Z. A. Sergueyeva</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pyshnyi, D V" sort="Pyshnyi, D V" uniqKey="Pyshnyi D" first="D. V." last="Pyshnyï">D. V. Pyshnyï</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6AF443B42049E7135A9919680D4163D453F0AA7F</idno>
<date when="1994" year="1994">1994</date>
<idno type="doi">10.1016/0300-9084(94)90059-0</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-FML8B2B1-V/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E05</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000E05</idno>
<idno type="wicri:Area/Istex/Curation">000E05</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Effect of derivation of ribophosphate backbone and terminal ribophosphate groups in oligoribonucleotides on their stability and interaction with eukaryotic cells</title>
<author>
<name sortKey="Boutorine, A S" sort="Boutorine, A S" uniqKey="Boutorine A" first="A. S." last="Boutorine">A. S. Boutorine</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Venyaminova, A G" sort="Venyaminova, A G" uniqKey="Venyaminova A" first="A. G." last="Venyaminova">A. G. Venyaminova</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Repkova, M N" sort="Repkova, M N" uniqKey="Repkova M" first="M. N." last="Repkova">M. N. Repkova</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sergueyeva, Z A" sort="Sergueyeva, Z A" uniqKey="Sergueyeva Z" first="Z. A." last="Sergueyeva">Z. A. Sergueyeva</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pyshnyi, D V" sort="Pyshnyi, D V" uniqKey="Pyshnyi D" first="D. V." last="Pyshnyï">D. V. Pyshnyï</name>
<affiliation wicri:level="1">
<mods:affiliation>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk, Russia</mods:affiliation>
<country xml:lang="fr">Russie</country>
<wicri:regionArea>Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Lavrentyev Prosp 8, 630090 Novosibirsk</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Biochimie</title>
<title level="j" type="abbrev">BIOCHI</title>
<idno type="ISSN">0300-9084</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1994">1994</date>
<biblScope unit="volume">76</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="23">23</biblScope>
<biblScope unit="page" to="32">32</biblScope>
</imprint>
<idno type="ISSN">0300-9084</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0300-9084</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acetonitrile gradient</term>
<term>Active molecules</term>
<term>Analogue</term>
<term>Antisense</term>
<term>Antisense inhibitors</term>
<term>Antisense oligonucleotides</term>
<term>Biological effects</term>
<term>Biological media</term>
<term>Bioorg khimia</term>
<term>Cell culture media</term>
<term>Chemical modifications</term>
<term>Chemical synthesis</term>
<term>Cholesterol conjugates</term>
<term>Cholesterol moiety</term>
<term>Chromatography characteristics</term>
<term>Cobra venom phosphodiesterase</term>
<term>Culture media</term>
<term>Culture medium</term>
<term>Degradation</term>
<term>Derivative</term>
<term>Different modifications</term>
<term>Disulfide bond</term>
<term>Disullide bond</term>
<term>Eagle culture medium</term>
<term>Electrophoretic analysis</term>
<term>Entire ribophosphate backbone</term>
<term>Eucaryotic cells</term>
<term>Fetal calf serum</term>
<term>Fluorescein moiety</term>
<term>Hplc</term>
<term>Human carcinoma cells</term>
<term>Incubation</term>
<term>Inorganic phosphate</term>
<term>Inversed bond</term>
<term>Inverted bond</term>
<term>Kinetic curves</term>
<term>Lichrosorb column</term>
<term>Liquid scintillation counter</term>
<term>Methanol gradient</term>
<term>Modification</term>
<term>Moiety</term>
<term>Nuclear fraction</term>
<term>Nucleic acids</term>
<term>Oligodeoxyribonucleotides</term>
<term>Oligonucleotide</term>
<term>Oligonucleotide derivatives</term>
<term>Oligonucleotide moiety</term>
<term>Oligonucleotide synthesis</term>
<term>Oligonucleotides</term>
<term>Oligoribonucleotide</term>
<term>Oligoribonucleotide derivatives</term>
<term>Oligoribonucleotides</term>
<term>Phosphatase activity</term>
<term>Phosphodiester</term>
<term>Phosphodiester bonds</term>
<term>Phosphodiesterase</term>
<term>Phosphoroamidate bonds</term>
<term>Radioactive material</term>
<term>Radioactivity content</term>
<term>Ribophosphate</term>
<term>Ribophosphate backbone</term>
<term>Room temperature</term>
<term>Russian academy</term>
<term>Same conditions</term>
<term>Several oligoribonucleotide derivatives</term>
<term>Terminal protection</term>
<term>Total radioactivity</term>
<term>Uptake</term>
<term>Venom</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Various derivatives of oligoribonucleotides were synthesized by the H-phosphonate method. Different modifications of the ribophosphate backbone were designed in order to protect the derivatives against nucleolytic enzymes present in the biological media. These modifications include coupling of fluorescein moiety to 3′-terminal ribose, 2′-O-methylation of ribose, introduction of phosphorothioate internucleotide bonds throughout the molecule, replacement of the two last 3′-terminal phosphodiester bonds by phosphoroamidates and coupling of the last 3′-terminal nucleotide via the 3′-3′-phosphodiester bond. All modifications were tested for their effect on the stability of the derivatives against phosphodiesterase from snake venom and nucleases of the cell culture media. 2′-O-methylated oligoribonucleotides containing either terminal 3′-3′-linkage or two 3′-terminal phosphoroamidate internucleotide bonds appeared to be the most stable under the most severe conditions used. The results demonstrate a possibility to use protected oligoribonucleotide derivatives for experiments in vivo when the use of deoxy-analogues might be ineffective. The uptake of 2′-O-methylated derivatives and their 5′-cholesterol conjugates (coupled via a disulfide bond) by human carcinoma cells did not differ from that of the corresponding oligodeoxyribonucleotides, 85% of the bound derivatives were found in the membrane-cytosolic fraction, while only 15% were found in the nuclear fraction. The oligonucleotide moiety of 2′-O-methyloligoribonucleotide-cholesterol conjugate was not translocated through the cellular membrane. After cleavage of the linkage between cholesterol and oligonucleotide by dithiothreitol the major portion of the oligonucleotide moiety was released into the media. The derivatives, as well as their 5′-cholesterol conjugates, which entered the cells, were stable and protected from action of dithiothreitol dissolved in culture media. These results demonstrate an endocytosis mechanism of penetration as observed in similar experiments using oligodeoxyribonucleotides.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 000E05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:6AF443B42049E7135A9919680D4163D453F0AA7F
   |texte=   Effect of derivation of ribophosphate backbone and terminal ribophosphate groups in oligoribonucleotides on their stability and interaction with eukaryotic cells
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021