Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†

Identifieur interne : 002774 ( Istex/Corpus ); précédent : 002773; suivant : 002775

P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†

Auteurs : Michael Gale ; Collin M. Blakely ; André Darveau ; Patrick R. Romano ; Marcus J. Korth ; Michael G. Katze

Source :

RBID : ISTEX:496B39CB24F6FA7131E3382C0F0D7617C71A8862

Abstract

The 52 kDa protein referred to as P52rIPK was first identified as a regulator of P58IPK, a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52rIPK and P58IPK each possess structural domains implicated in stress signaling, including the charged domain of P52rIPK and the tetratricopeptide repeat (TPR) and DnaJ domains of P58IPK. The P52rIPK charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52rIPK function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58IPK. This domain bound specifically to P58IPK TPR domain 7, the domain adjacent to the TPR motif required for P58IPK interaction with PKR, thus providing a mechanism for P52rIPK inhibition of P58IPK function. Both the charged domain of P52rIPK and the TPR 7 domain of P58IPK were required for P52rIPK to mediate downstream control of PKR activity, eIF2α phosphorylation, and cell growth. Furthermore, we found that P52rIPK and P58IPK formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52rIPK charged domain functions as a TPR-specific signaling motif to directly regulate P58IPK within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation.

Url:
DOI: 10.1021/bi020397e

Links to Exploration step

ISTEX:496B39CB24F6FA7131E3382C0F0D7617C71A8862

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†</title>
<author>
<name sortKey="Gale, Michael" sort="Gale, Michael" uniqKey="Gale M" first="Michael" last="Gale">Michael Gale</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Texas Southwestern Medical Center.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blakely, Collin M" sort="Blakely, Collin M" uniqKey="Blakely C" first="Collin M." last="Blakely">Collin M. Blakely</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Washington.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  University of Pennsylvania School of Medicine,Philadelphia, PA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Darveau, Andre" sort="Darveau, Andre" uniqKey="Darveau A" first="André" last="Darveau">André Darveau</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Université Laval.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Romano, Patrick R" sort="Romano, Patrick R" uniqKey="Romano P" first="Patrick R." last="Romano">Patrick R. Romano</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Thomas Jefferson University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J." last="Korth">Marcus J. Korth</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Washington.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G." last="Katze">Michael G. Katze</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Washington.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Tel:  206-732-6136.Fax:  206-732-6056. E-mail:  honey@u.washington.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:496B39CB24F6FA7131E3382C0F0D7617C71A8862</idno>
<date when="2002" year="2002">2002</date>
<idno type="doi">10.1021/bi020397e</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-5VJNB1S2-X/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002774</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002774</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">P52
<hi rend="superscript">rIPK</hi>
Regulates the Molecular Cochaperone P58
<hi rend="superscript">IPK</hi>
To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress
<ref type="bib" target="#bi020397eAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author>
<name sortKey="Gale, Michael" sort="Gale, Michael" uniqKey="Gale M" first="Michael" last="Gale">Michael Gale</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Texas Southwestern Medical Center.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Blakely, Collin M" sort="Blakely, Collin M" uniqKey="Blakely C" first="Collin M." last="Blakely">Collin M. Blakely</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Washington.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  University of Pennsylvania School of Medicine,Philadelphia, PA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Darveau, Andre" sort="Darveau, Andre" uniqKey="Darveau A" first="André" last="Darveau">André Darveau</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Université Laval.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Romano, Patrick R" sort="Romano, Patrick R" uniqKey="Romano P" first="Patrick R." last="Romano">Patrick R. Romano</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Thomas Jefferson University.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Korth, Marcus J" sort="Korth, Marcus J" uniqKey="Korth M" first="Marcus J." last="Korth">Marcus J. Korth</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Washington.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Katze, Michael G" sort="Katze, Michael G" uniqKey="Katze M" first="Michael G." last="Katze">Michael G. Katze</name>
<affiliation>
<mods:affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> University of Washington.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> To whom correspondence should be addressed. Tel:  206-732-6136.Fax:  206-732-6056. E-mail:  honey@u.washington.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2002</date>
<date type="published">2002</date>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">39</biblScope>
<biblScope unit="page" from="11878">11878</biblScope>
<biblScope unit="page" to="11887">11887</biblScope>
</imprint>
<idno type="ISSN">0006-2960</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0006-2960</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The 52 kDa protein referred to as P52rIPK was first identified as a regulator of P58IPK, a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52rIPK and P58IPK each possess structural domains implicated in stress signaling, including the charged domain of P52rIPK and the tetratricopeptide repeat (TPR) and DnaJ domains of P58IPK. The P52rIPK charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52rIPK function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58IPK. This domain bound specifically to P58IPK TPR domain 7, the domain adjacent to the TPR motif required for P58IPK interaction with PKR, thus providing a mechanism for P52rIPK inhibition of P58IPK function. Both the charged domain of P52rIPK and the TPR 7 domain of P58IPK were required for P52rIPK to mediate downstream control of PKR activity, eIF2α phosphorylation, and cell growth. Furthermore, we found that P52rIPK and P58IPK formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52rIPK charged domain functions as a TPR-specific signaling motif to directly regulate P58IPK within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>kinase</json:string>
<json:string>eif2r</json:string>
<json:string>translational</json:string>
<json:string>phosphorylation</json:string>
<json:string>protein kinase</json:string>
<json:string>biol</json:string>
<json:string>katze</json:string>
<json:string>deletion</json:string>
<json:string>translational control</json:string>
<json:string>tetratricopeptide</json:string>
<json:string>gal4</json:string>
<json:string>mutant</json:string>
<json:string>gcn2</json:string>
<json:string>galactose</json:string>
<json:string>biochemistry</json:string>
<json:string>eif2r phosphorylation</json:string>
<json:string>coexpressing</json:string>
<json:string>fusion protein</json:string>
<json:string>phosphorylated</json:string>
<json:string>immunoprecipitation</json:string>
<json:string>plasmid</json:string>
<json:string>cytoplasmic</json:string>
<json:string>assay</json:string>
<json:string>pathway</json:string>
<json:string>hela</json:string>
<json:string>tpr7</json:string>
<json:string>immunoblot analysis</json:string>
<json:string>mrna</json:string>
<json:string>immunoblot</json:string>
<json:string>yeast</json:string>
<json:string>cerevisiae</json:string>
<json:string>galactose medium</json:string>
<json:string>protein interaction</json:string>
<json:string>coexpression</json:string>
<json:string>arsenite</json:string>
<json:string>eukaryotic</json:string>
<json:string>chem</json:string>
<json:string>interferon</json:string>
<json:string>mathews</json:string>
<json:string>encoding</json:string>
<json:string>cold spring harbor</json:string>
<json:string>cold spring harbor laboratory press</json:string>
<json:string>datum</json:string>
<json:string>gal4 activation domain</json:string>
<json:string>yeast cell</json:string>
<json:string>translation product</json:string>
<json:string>domain</json:string>
<json:string>heat shock protein</json:string>
<json:string>cell growth</json:string>
<json:string>cellular inhibitor</json:string>
<json:string>mrna translation</json:string>
<json:string>cytoplasmic stress</json:string>
<json:string>serum withdrawal</json:string>
<json:string>sodium arsenite</json:string>
<json:string>heat shock</json:string>
<json:string>hela cell</json:string>
<json:string>growth suppression</json:string>
<json:string>immunoprecipitation reaction</json:string>
<json:string>interactive domain</json:string>
<json:string>gene expression</json:string>
<json:string>gal4 domain</json:string>
<json:string>lower panel</json:string>
<json:string>sonenberg</json:string>
<json:string>gale</json:string>
<json:string>perk</json:string>
<json:string>hershey</json:string>
<json:string>protein</json:string>
<json:string>yeast coexpressing</json:string>
<json:string>yeast strain</json:string>
<json:string>yeast cell coexpressing</json:string>
<json:string>endoplasmic reticulum</json:string>
<json:string>yeast assay</json:string>
<json:string>antibody specific</json:string>
<json:string>translation initiation</json:string>
<json:string>complex formation</json:string>
<json:string>protein response</json:string>
<json:string>regulatory function</json:string>
<json:string>protein standard</json:string>
<json:string>oncogenic potential</json:string>
<json:string>yeast eif2r</json:string>
<json:string>deletion mutant</json:string>
<json:string>amino acid</json:string>
<json:string>protein synthesis</json:string>
<json:string>cellular</json:string>
<json:string>inhibitor</json:string>
<json:string>vivo</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>GALE, Michael</name>
<affiliations>
<json:string>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</json:string>
<json:string>University of Texas Southwestern Medical Center.</json:string>
</affiliations>
</json:item>
<json:item>
<name>BLAKELY Collin M.</name>
<affiliations>
<json:string>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</json:string>
<json:string>University of Washington.</json:string>
<json:string>Current address:  University of Pennsylvania School of Medicine,Philadelphia, PA.</json:string>
</affiliations>
</json:item>
<json:item>
<name>DARVEAU André</name>
<affiliations>
<json:string>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</json:string>
<json:string>Université Laval.</json:string>
</affiliations>
</json:item>
<json:item>
<name>ROMANO Patrick R.</name>
<affiliations>
<json:string>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</json:string>
<json:string>Thomas Jefferson University.</json:string>
</affiliations>
</json:item>
<json:item>
<name>KORTH Marcus J.</name>
<affiliations>
<json:string>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</json:string>
<json:string>University of Washington.</json:string>
</affiliations>
</json:item>
<json:item>
<name>KATZE Michael G.</name>
<affiliations>
<json:string>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</json:string>
<json:string>University of Washington.</json:string>
<json:string>To whom correspondence should be addressed. Tel:  206-732-6136.Fax:  206-732-6056. E-mail:  honey@u.washington.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-5VJNB1S2-X</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The 52 kDa protein referred to as P52rIPK was first identified as a regulator of P58IPK, a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52rIPK and P58IPK each possess structural domains implicated in stress signaling, including the charged domain of P52rIPK and the tetratricopeptide repeat (TPR) and DnaJ domains of P58IPK. The P52rIPK charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52rIPK function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58IPK. This domain bound specifically to P58IPK TPR domain 7, the domain adjacent to the TPR motif required for P58IPK interaction with PKR, thus providing a mechanism for P52rIPK inhibition of P58IPK function. Both the charged domain of P52rIPK and the TPR 7 domain of P58IPK were required for P52rIPK to mediate downstream control of PKR activity, eIF2α phosphorylation, and cell growth. Furthermore, we found that P52rIPK and P58IPK formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52rIPK charged domain functions as a TPR-specific signaling motif to directly regulate P58IPK within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation.</abstract>
<qualityIndicators>
<score>9.664</score>
<pdfWordCount>8512</pdfWordCount>
<pdfCharCount>53252</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>10</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>851</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>222</abstractWordCount>
<abstractCharCount>1462</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Biochemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0006-2960</json:string>
</issn>
<eissn>
<json:string>1520-4995</json:string>
</eissn>
<volume>41</volume>
<issue>39</issue>
<pages>
<first>11878</first>
<last>11887</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-5VJNB1S2-X</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2002</publicationDate>
<copyrightDate>2002</copyrightDate>
<doi>
<json:string>10.1021/bi020397e</json:string>
</doi>
<id>496B39CB24F6FA7131E3382C0F0D7617C71A8862</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-5VJNB1S2-X/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-5VJNB1S2-X/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-5VJNB1S2-X/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-5VJNB1S2-X/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">P52
<hi rend="superscript">rIPK</hi>
Regulates the Molecular Cochaperone P58
<hi rend="superscript">IPK</hi>
To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress
<ref type="bib" target="#bi020397eAF2">
<hi rend="superscript"></hi>
</ref>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2002 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">2002</date>
<date type="Copyright" when="2002">2002</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">P52
<hi rend="superscript">rIPK</hi>
Regulates the Molecular Cochaperone P58
<hi rend="superscript">IPK</hi>
To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress
<ref type="bib" target="#bi020397eAF2">
<hi rend="superscript"></hi>
</ref>
</title>
<author xml:id="author-0000">
<persName>
<surname>Gale,</surname>
<forename type="first">Michael</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Microbiology and The Simmons Comprehensive Cancer Center</orgName>
<orgName type="institution">University of Texas Southwestern Medical Center</orgName>
<address>
<addrLine>Dallas</addrLine>
<addrLine>Texas 75390</addrLine>
<addrLine>Department of Microbiology</addrLine>
<addrLine>University of Washington</addrLine>
<addrLine>Seattle</addrLine>
<addrLine>Washington 98195</addrLine>
<addrLine>Département de Biochimie et Microbiologie</addrLine>
<addrLine>Université Laval</addrLine>
<addrLine>Québec</addrLine>
<country key="CA" xml:lang="en">CANADA</country>
<addrLine>and Thomas Jefferson University and the Jefferson Center for Biomedical Research</addrLine>
<addrLine>Doylestown</addrLine>
<addrLine>Pennsylvania 18901</addrLine>
</address>
</affiliation>
<note place="foot" n="bi020397eAF3">
<ref></ref>
<p>  University of Texas Southwestern Medical Center.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Blakely</surname>
<forename type="first">Collin M.</forename>
</persName>
<note place="foot" n="bi020397eAF4">
<ref>§</ref>
<p>  University of Washington.</p>
</note>
<note place="foot" n="bi020397eAF5">
<ref></ref>
<p>  Current address:  University of Pennsylvania School of Medicine, Philadelphia, PA.</p>
</note>
</author>
<author xml:id="author-0002">
<persName>
<surname>Darveau</surname>
<forename type="first">André</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Microbiology and The Simmons Comprehensive Cancer Center</orgName>
<orgName type="institution">University of Texas Southwestern Medical Center</orgName>
<address>
<addrLine>Dallas</addrLine>
<addrLine>Texas 75390</addrLine>
<addrLine>Department of Microbiology</addrLine>
<addrLine>University of Washington</addrLine>
<addrLine>Seattle</addrLine>
<addrLine>Washington 98195</addrLine>
<addrLine>Département de Biochimie et Microbiologie</addrLine>
<addrLine>Université Laval</addrLine>
<addrLine>Québec</addrLine>
<country key="CA" xml:lang="en">CANADA</country>
<addrLine>and Thomas Jefferson University and the Jefferson Center for Biomedical Research</addrLine>
<addrLine>Doylestown</addrLine>
<addrLine>Pennsylvania 18901</addrLine>
</address>
</affiliation>
<note place="foot" n="bi020397eAF6">
<ref></ref>
<p>  Université Laval.</p>
</note>
</author>
<author xml:id="author-0003">
<persName>
<surname>Romano</surname>
<forename type="first">Patrick R.</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Microbiology and The Simmons Comprehensive Cancer Center</orgName>
<orgName type="institution">University of Texas Southwestern Medical Center</orgName>
<address>
<addrLine>Dallas</addrLine>
<addrLine>Texas 75390</addrLine>
<addrLine>Department of Microbiology</addrLine>
<addrLine>University of Washington</addrLine>
<addrLine>Seattle</addrLine>
<addrLine>Washington 98195</addrLine>
<addrLine>Département de Biochimie et Microbiologie</addrLine>
<addrLine>Université Laval</addrLine>
<addrLine>Québec</addrLine>
<country key="CA" xml:lang="en">CANADA</country>
<addrLine>and Thomas Jefferson University and the Jefferson Center for Biomedical Research</addrLine>
<addrLine>Doylestown</addrLine>
<addrLine>Pennsylvania 18901</addrLine>
</address>
</affiliation>
<note place="foot" n="bi020397eAF10">
<ref>#</ref>
<p>  Thomas Jefferson University.</p>
</note>
</author>
<author xml:id="author-0004">
<persName>
<surname>Korth</surname>
<forename type="first">Marcus J.</forename>
</persName>
<affiliation>
<orgName type="institution">Department of Microbiology and The Simmons Comprehensive Cancer Center</orgName>
<orgName type="institution">University of Texas Southwestern Medical Center</orgName>
<address>
<addrLine>Dallas</addrLine>
<addrLine>Texas 75390</addrLine>
<addrLine>Department of Microbiology</addrLine>
<addrLine>University of Washington</addrLine>
<addrLine>Seattle</addrLine>
<addrLine>Washington 98195</addrLine>
<addrLine>Département de Biochimie et Microbiologie</addrLine>
<addrLine>Université Laval</addrLine>
<addrLine>Québec</addrLine>
<country key="CA" xml:lang="en">CANADA</country>
<addrLine>and Thomas Jefferson University and the Jefferson Center for Biomedical Research</addrLine>
<addrLine>Doylestown</addrLine>
<addrLine>Pennsylvania 18901</addrLine>
</address>
</affiliation>
<note place="foot" n="bi020397eAF4">
<ref>§</ref>
<p>  University of Washington.</p>
</note>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<surname>Katze</surname>
<forename type="first">Michael G.</forename>
</persName>
<note place="foot" n="bi020397eAF4">
<ref>§</ref>
<p>  University of Washington.</p>
</note>
<affiliation role="corresp"> To whom correspondence should be addressed. Tel:  206-732-6136. Fax:  206-732-6056. E-mail:  honey@u.washington.edu.</affiliation>
</author>
<idno type="istex">496B39CB24F6FA7131E3382C0F0D7617C71A8862</idno>
<idno type="ark">ark:/67375/TPS-5VJNB1S2-X</idno>
<idno type="DOI">10.1021/bi020397e</idno>
</analytic>
<monogr>
<title level="j" type="main">Biochemistry</title>
<title level="j" type="abbrev">Biochemistry</title>
<idno type="acspubs">bi</idno>
<idno type="coden">bichaw</idno>
<idno type="pISSN">0006-2960</idno>
<idno type="eISSN">1520-4995</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2002</date>
<date type="published">2002</date>
<biblScope unit="vol">41</biblScope>
<biblScope unit="issue">39</biblScope>
<biblScope unit="page" from="11878">11878</biblScope>
<biblScope unit="page" to="11887">11887</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The 52 kDa protein referred to as P52
<hi rend="superscript">rIPK</hi>
was first identified as a regulator of P58
<hi rend="superscript">IPK</hi>
, a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52
<hi rend="superscript">rIPK</hi>
and P58
<hi rend="superscript">IPK</hi>
each possess structural domains implicated in stress signaling, including the charged domain of P52
<hi rend="superscript">rIPK</hi>
and the tetratricopeptide repeat (TPR) and DnaJ domains of P58
<hi rend="superscript">IPK</hi>
. The P52
<hi rend="superscript">rIPK</hi>
charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52
<hi rend="superscript">rIPK</hi>
function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58
<hi rend="superscript">IPK</hi>
. This domain bound specifically to P58
<hi rend="superscript">IPK</hi>
TPR domain 7, the domain adjacent to the TPR motif required for P58
<hi rend="superscript">IPK</hi>
interaction with PKR, thus providing a mechanism for P52
<hi rend="superscript">rIPK</hi>
inhibition of P58
<hi rend="superscript">IPK</hi>
function. Both the charged domain of P52
<hi rend="superscript">rIPK</hi>
and the TPR 7 domain of P58
<hi rend="superscript">IPK</hi>
were required for P52
<hi rend="superscript">rIPK</hi>
to mediate downstream control of PKR activity, eIF2α phosphorylation, and cell growth. Furthermore, we found that P52
<hi rend="superscript">rIPK</hi>
and P58
<hi rend="superscript">IPK</hi>
formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52
<hi rend="superscript">rIPK</hi>
charged domain functions as a TPR-specific signaling motif to directly regulate P58
<hi rend="superscript">IPK</hi>
within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bi</journal-id>
<journal-id journal-id-type="coden">bichaw</journal-id>
<journal-title-group>
<journal-title>Biochemistry</journal-title>
<abbrev-journal-title>Biochemistry</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">0006-2960</issn>
<issn pub-type="epub">1520-4995</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/biochemistry</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bi020397e</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>P52
<sup>rIPK</sup>
Regulates the Molecular Cochaperone P58
<sup>IPK</sup>
To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress
<xref rid="bi020397eAF2">
<sup></sup>
</xref>
</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Gale,</surname>
<given-names>Michael</given-names>
</name>
<xref rid="bi020397eAF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Blakely</surname>
<given-names>Collin M.</given-names>
</name>
<xref rid="bi020397eAF4">
<sup>§</sup>
</xref>
<xref rid="bi020397eAF5">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Darveau</surname>
<given-names>André</given-names>
</name>
<xref rid="bi020397eAF6">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Romano</surname>
<given-names>Patrick R.</given-names>
</name>
<xref rid="bi020397eAF10">
<sup>#</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Korth</surname>
<given-names>Marcus J.</given-names>
</name>
<xref rid="bi020397eAF4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Katze</surname>
<given-names>Michael G.</given-names>
</name>
<xref rid="bi020397eAF1">*</xref>
<xref rid="bi020397eAF4">
<sup>§</sup>
</xref>
</contrib>
<aff>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195, Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and the Jefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901 </aff>
</contrib-group>
<author-notes>
<fn id="bi020397eAF3">
<label></label>
<p>  University of Texas Southwestern Medical Center.</p>
</fn>
<fn id="bi020397eAF4">
<label>§</label>
<p>  University of Washington.</p>
</fn>
<fn id="bi020397eAF5">
<label></label>
<p>  Current address:  University of Pennsylvania School of Medicine, Philadelphia, PA.</p>
</fn>
<fn id="bi020397eAF6">
<label></label>
<p>  Université Laval.</p>
</fn>
<fn id="bi020397eAF10">
<label>#</label>
<p>  Thomas Jefferson University.</p>
</fn>
<corresp id="bi020397eAF1">  To whom correspondence should be addressed. Tel:  206-732-6136. Fax:  206-732-6056. E-mail:  honey@u.washington.edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>20</day>
<month>08</month>
<year>2002</year>
</pub-date>
<pub-date pub-type="ppub">
<day>01</day>
<month>10</month>
<year>2002</year>
</pub-date>
<volume>41</volume>
<issue>39</issue>
<fpage>11878</fpage>
<lpage>11887</lpage>
<history>
<date date-type="received">
<day>03</day>
<month>06</month>
<year>2002</year>
</date>
<date date-type="rev-recd">
<day>19</day>
<month>07</month>
<year>2002</year>
</date>
<date date-type="asap">
<day>20</day>
<month>08</month>
<year>2002</year>
</date>
<date date-type="issue-pub">
<day>01</day>
<month>10</month>
<year>2002</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2002 American Chemical Society</copyright-statement>
<copyright-year>2002</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>The 52 kDa protein referred to as P52
<sup>rIPK</sup>
was first identified as a regulator of P58
<sup>IPK</sup>
, a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
each possess structural domains implicated in stress signaling, including the charged domain of P52
<sup>rIPK</sup>
and the tetratricopeptide repeat (TPR) and DnaJ domains of P58
<sup>IPK</sup>
. The P52
<sup>rIPK</sup>
charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52
<sup>rIPK</sup>
function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58
<sup>IPK</sup>
. This domain bound specifically to P58
<sup>IPK</sup>
TPR domain 7, the domain adjacent to the TPR motif required for P58
<sup>IPK</sup>
interaction with PKR, thus providing a mechanism for P52
<sup>rIPK</sup>
inhibition of P58
<sup>IPK</sup>
function. Both the charged domain of P52
<sup>rIPK</sup>
and the TPR 7 domain of P58
<sup>IPK</sup>
were required for P52
<sup>rIPK</sup>
to mediate downstream control of PKR activity, eIF2α phosphorylation, and cell growth. Furthermore, we found that P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52
<sup>rIPK</sup>
charged domain functions as a TPR-specific signaling motif to directly regulate P58
<sup>IPK</sup>
within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bi020397e</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bi020397eAF2">
<label></label>
<p>  Financial support was provided by National Institutes of Health Grants AI22646 (to M.G.K.) and AI48235 (to M.G.). M.G. also received support from the Helen Hay Whitney Foundation and the State of Texas Applied Research Program (no. 0138-1999).</p>
</notes>
</front>
<body>
<sec id="d7e251">
<title></title>
<p>Stress-induced translational control pathways provide the cell with a rapid mechanism by which to alter gene expression in response to a wide spectrum of signals, including heat and chemical stressors, osmotic shock, ultraviolet radiation, nutrient deprivation, and virus infection (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00001" ref-type="bibr"></xref>
<xref rid="bi020397eb00002" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi020397eb00003" ref-type="bibr"></xref>
</named-content>
</italic>
). A key feature of these pathways is the reversible phosphorylation of translation factors, which enforces translational control programs by modifying translation factor function (
<italic toggle="yes">
<xref rid="bi020397eb00004" ref-type="bibr"></xref>
</italic>
). The major points of translational control reside within the processes of translation initiation. In this often rate-limiting step, the initiator Met-tRNA
<sub>i</sub>
is delivered to the 40S ribosome preinitiation complex by eukaryotic initiation factor 2 (eIF2)
<xref rid="bi020397eb00001" ref-type="bibr"></xref>
(
<italic toggle="yes">
<xref rid="bi020397eb00005" ref-type="bibr"></xref>
</italic>
). In mammalian cells, eIF2 function is regulated through phosphorylation of its α subunit (eIF2α) by the actions of a family of eIF2α protein kinases that includes HRI, GCN2, PERK/PEK, and PKR (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00006" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00007" ref-type="bibr"></xref>
</named-content>
</italic>
). Phosphorylation of eIF2α blocks a critical guanine nucleotide exchange reaction, leaving eIF2 in an inactive GDP-bound form that is unavailable for initiation of mRNA translation (
<italic toggle="yes">
<xref rid="bi020397eb00008" ref-type="bibr"></xref>
</italic>
). </p>
<p>The eIF2α protein kinases possess common structural features within their catalytic domains that direct substrate specificity for eIF2α (
<italic toggle="yes">
<xref rid="bi020397eb00007" ref-type="bibr"></xref>
</italic>
). However, these kinases exhibit significant sequence divergence within their regulatory domains, which likely contributes to the differing array of signals to which each kinase responds. In erythroid cells, HRI regulates protein synthesis in response to hemin levels and is activated by heme deprivation (
<italic toggle="yes">
<xref rid="bi020397eb00009" ref-type="bibr"></xref>
</italic>
). In
<italic toggle="yes">Saccharomyces cerevisiae,</italic>
GCN2 is activated in response to nutrient deprivation that leads to amino acid (aa) limitation. By phosphorylating eIF2α, GCN2 stimulates the translation of
<italic toggle="yes">GCN4</italic>
mRNA to induce aa biosynthesis (
<italic toggle="yes">
<xref rid="bi020397eb00010" ref-type="bibr"></xref>
</italic>
). GCN2 homologues have also been identified in mammalian and insect tissues (
<italic toggle="yes">8</italic>
,
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00011" ref-type="bibr"></xref>
<xref rid="bi020397eb00012" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi020397eb00013" ref-type="bibr"></xref>
</named-content>
</italic>
; however, the extent to which the metazoan GCN2 homologues regulate aa biosynthesis, and their role in translational signaling, remains to be determined. The PERK/PEK eIF2α kinase is localized to the endoplasmic reticulum (ER) membrane and is activated in response to ER stress (
<italic toggle="yes">
<xref rid="bi020397eb00014" ref-type="bibr"></xref>
</italic>
). PERK/PEK participates in the unfolded protein response by phosphorylating eIF2α to limit local mRNA translation (
<italic toggle="yes">
<xref rid="bi020397eb00015" ref-type="bibr"></xref>
</italic>
), which is thought to relieve ER stress by reducing the de novo synthesis of proteins destined for the ER. </p>
<p>PKR is a cytoplasmic protein present in most mammalian tissues and is activated upon binding to double-stranded RNA (dsRNA) or by interacting with specific protein activators (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00016" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00017" ref-type="bibr"></xref>
</named-content>
</italic>
). PKR levels increase approximately 3−10-fold in response to interferons (IFNs), whereupon the kinase plays a prominent role in mediating the antiviral and antiproliferative actions of these cytokines (
<italic toggle="yes">
<xref rid="bi020397eb00018" ref-type="bibr"></xref>
</italic>
). PKR also mediates the response to dsRNA signals that stimulate apoptosis and that activate NFκB and IRF-1 (
<italic toggle="yes">
<xref rid="bi020397eb00019" ref-type="bibr"></xref>
</italic>
). During virus infection, activation of PKR by dsRNA leads to a suppression of mRNA translation that serves to limit virus replication (
<italic toggle="yes">
<xref rid="bi020397eb00020" ref-type="bibr"></xref>
</italic>
). Many viruses have therefore evolved mechanisms to inhibit PKR (
<italic toggle="yes">
<xref rid="bi020397eb00018" ref-type="bibr"></xref>
</italic>
), including influenza virus, which activates P58
<sup>IPK</sup>
, a cellular PKR inhibitor (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00021" ref-type="bibr"></xref>
<xref rid="bi020397eb00022" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi020397eb00023" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>P58
<sup>IPK</sup>
is a member of the tetratricopeptide repeat (TPR) domain protein family and encodes nine tandemly arranged TPR domains. Like other TPR proteins, the TPR domains of P58
<sup>IPK</sup>
are important for directing protein interactions, which in the case of P58
<sup>IPK</sup>
includes self-association. P58
<sup>IPK</sup>
binds to PKR through TPR domain 6 (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
) and inhibits PKR by disrupting the process of kinase dimerization that is required for catalytic function (
<italic toggle="yes">
<xref rid="bi020397eb00022" ref-type="bibr"></xref>
</italic>
). In addition, P58
<sup>IPK</sup>
possesses a C-terminal DnaJ domain that formally classifies it as a member of the stress-response protein superfamily (
<italic toggle="yes">21</italic>
,
<italic toggle="yes"> 25</italic>
,
<italic toggle="yes"> 26</italic>
). We have also shown that P58
<sup>IPK</sup>
undergoes regulatory interactions with heat shock protein (Hsp) 40 that result in stimulation of Hsp70 function during the heat shock response (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00023" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00027" ref-type="bibr"></xref>
</named-content>
</italic>
). These results define P58
<sup>IPK</sup>
as a protein cochaperone that inhibits PKR, possibly by directing Hsp-dependent protein refolding or kinase denaturation. The inhibition of PKR by P58
<sup>IPK</sup>
can stimulate cell growth by disrupting PKR-dependent control of mRNA translation and by blocking PKR-dependent apoptosis (
<italic toggle="yes">25</italic>
,
<italic toggle="yes"> 28</italic>
,
<italic toggle="yes"> 29</italic>
). </p>
<p>P58
<sup>IPK</sup>
is also regulated through interaction with P52
<sup>rIPK</sup>
, a protein with limited homology to the charged domains of Hsp90 (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). We found that P52
<sup>rIPK</sup>
binds to P58
<sup>IPK</sup>
in vivo and in vitro and that this interaction blocks the PKR regulatory function of P58
<sup>IPK</sup>
. Moreover, when these components are coexpressed in yeast, P52
<sup>rIPK</sup>
removes the block to PKR function imposed by P58
<sup>IPK</sup>
, resulting in restoration of eIF2α phosphorylation (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). These studies indicate that P52
<sup>rIPK</sup>
functions as an upstream regulator of PKR, eIF2, and mRNA translation through its ability to interact with and inhibit P58
<sup>IPK</sup>
, though the mechanisms of this regulation have not been defined. In the present report, we describe the domains of P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
that are responsible for the interaction of these proteins and present evidence that P52
<sup>rIPK</sup>
functions as an upstream signal transducer to regulate P58
<sup>IPK</sup>
in response to cytoplasmic stress. </p>
</sec>
<sec id="d7e467">
<title>Experimental Procedures</title>
<p>
<italic toggle="yes">Plasmids and Recombinant DNA Construction.</italic>
The GAL4 DNA-binding domain (BD) or activation domain (AD) fusion constructs pBD-P58
<sup>IPK</sup>
wt, pBD-P58
<sup>IPK</sup>
ΔTPR6, pBD-P58
<sup>IPK</sup>
8−1, pBD-P58
<sup>IPK</sup>
8−2, pBD-P58
<sup>IPK</sup>
9−1, pAD-PKR K296R, and pAD-P52
<sub>rIPK</sub>
wt were described previously (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</named-content>
</italic>
). Plasmids pBD-P58
<sup>IPK</sup>
ΔTPR5 and pBD-P58
<sup>IPK</sup>
ΔTPR7 were constructed by recovering the respective internal
<italic toggle="yes">Bst</italic>
XI/
<italic toggle="yes">Bam</italic>
HI fragments from pCDNA1neo-P58
<sup>IPK</sup>
ΔTPR5 and ΔTPR7, respectively (
<italic toggle="yes">
<xref rid="bi020397eb00029" ref-type="bibr"></xref>
</italic>
), and cloning them into
<italic toggle="yes">Bst</italic>
XI/
<italic toggle="yes">Bam</italic>
HI-digested pBD-P58
<sup>IPK</sup>
wt. The pBD-P58
<sup>IPK</sup>
constructs 8−4, 10−1, and TPR7, encode P58
<sup>IPK</sup>
aa 1−302, 154−267, and 268−302, respectively, and were cloned from PCR products into the
<italic toggle="yes">Eco</italic>
RI/
<italic toggle="yes">Bam</italic>
HI sites of pGBT9 to yield in-frame fusion proteins with the GAL4 DNA-binding domain. The pAD-P52
<sup>rIPK</sup>
deletion constructs were cloned from PCR products derived from pAD-P52
<sup>rIPK</sup>
wt using restriction site-linked oligonucleotide primer pairs. PCR products were first subcloned into pCR2.1 (Invitrogen). Insert DNA encoding P52
<sup>rIPK</sup>
aa 1−243, 237−492, 1−203, 1−84, or 86−203 was released from pCR2.1 by
<italic toggle="yes">Eco</italic>
RI/
<italic toggle="yes">Bam</italic>
HI digestion, and the gel-purified fragments were cloned into the corresponding sites of pGAD424 (Clontech) to yield pAD-P52
<sup>rIPK</sup>
deletion constructs fused in-frame to the GAL4 activation domain. DNA encoding P52
<sup>rIPK</sup>
aa 201−492 was released from pCR2.1 by
<italic toggle="yes">Bam</italic>
HI cleavage and subsequently cloned into
<italic toggle="yes">Bam</italic>
HI-digested pAD-P52
<sup>rIPK</sup>
1−84 to yield pAD-P52
<sup>rIPK</sup>
Δ85−200. Plasmids pGex2T-P58
<sup>IPK</sup>
and pBSK-P52 encode full-length P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
, respectively (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). Inducible expression of P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
in yeast cells was achieved by utilizing the galactose-inducible 2 μm yeast expression vectors pEMBLyex4 (pYex4, encodes uracil selection) (
<italic toggle="yes">
<xref rid="bi020397eb00031" ref-type="bibr"></xref>
</italic>
) and pYX233 (pYX, encodes tryptophan selection) (Novagen), respectively. Construction of pYex4-P58
<sup>IPK</sup>
wt and pYX-P52
<sup>rIPK</sup>
wt was described previously (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). Plasmids pYX-P52
<sup>rIPK</sup>
86−200 and pYX-P52
<sup>rIPK</sup>
Δ86−200 were constructed by cloning the
<italic toggle="yes">Eco</italic>
RI/
<italic toggle="yes">Bam</italic>
HI fragments from the respective pAD constructs into the
<italic toggle="yes">Eco</italic>
RI/
<italic toggle="yes">Bam</italic>
HI sites of pYX233. Plasmid pYex4-P58
<sup>IPK</sup>
ΔTPR7 was derived by cloning the
<italic toggle="yes">Sma</italic>
I/
<italic toggle="yes">Xba</italic>
I fragment from pCDNA1neo- P58
<sup>IPK</sup>
ΔTPR7 into
<italic toggle="yes">Eco</italic>
RV/
<italic toggle="yes">Xba</italic>
I-digested pYex4. All cloning products were sequenced by the dye termination method with an Applied Biosystems automated DNA sequencer to ensure that no mutations were introduced during PCR amplification or cloning. </p>
<p>
<italic toggle="yes">Cell Culture.</italic>
HeLa, 293, NIH3T3, Cos1 monkey kidney cells, and Madin Darby bovine kidney cells (MDBK) were obtained from ATCC. Cells were cultured in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), antibiotics, and 200 μM
<sc>l</sc>
-glutamine. For stress induction experiments, cultured monolayers (at approximately 60% confluency) were rinsed twice with sterile PBS and cultured for the indicated time in media containing 150 μM sodium arsenite (Sigma), 6 mM tunicamycin, or 0.2 mM thapsigargin. For heat shock experiments, media were removed from HeLa cell monolayers and replaced with media prewarmed to 42 °C, after which cells were incubated for a total of 30 min at 42 °C prior to harvesting. For serum deprivation experiments, HeLa cell monolayers were rinsed twice with sterile PBS and incubated for 4 h in media lacking FBS. Control cultures were similarly rinsed with PBS but were incubated for 4 h in media containing 10% FBS. </p>
<p>
<italic toggle="yes">Protein Analysis.</italic>
Yeast extracts were prepared from 20 mL liquid cultures (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
), and mammalian cell protein extracts were prepared in lysis buffer as described previously (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). Total protein concentration in cell extracts was determined using the Bio-Rad protein assay. Immunoblot analyses of proteins separated by SDS−PAGE, or single-dimension isoelectric focusing, were conducted as described (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). PKR or P58
<sup>IPK</sup>
expression was detected using monoclonal antibody (Mab) 71/10 (
<italic toggle="yes">
<xref rid="bi020397eb00032" ref-type="bibr"></xref>
</italic>
) or 9F10, respectively (
<italic toggle="yes">
<xref rid="bi020397eb00028" ref-type="bibr"></xref>
</italic>
). P52
<sup>rIPK</sup>
expression was detected using anti-P52
<sup>rIPK</sup>
polyclonal rabbit serum (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
) or the 5D12 Mab described below. BD- and AD-fused proteins were detected using anti-GAL4 BD and anti-GAL4 AD Mab, respectively (Clontech). </p>
<p>For production of 5D12 Mab specific to human P52
<sup>rIPK</sup>
, mice were immunized with recombinant GST-P52
<sup>rIPK</sup>
as described (
<italic toggle="yes">
<xref rid="bi020397eb00028" ref-type="bibr"></xref>
</italic>
). Immune serum was screened for reactivity to GST-P52
<sup>rIPK</sup>
or GST alone, and mice with specific reactivity to P52
<sup>rIPK</sup>
were selected and euthanized, and their splenocytes were prepared for hybridoma production using standard procedures (
<italic toggle="yes">
<xref rid="bi020397eb00033" ref-type="bibr"></xref>
</italic>
). Hybridoma culture supernatants were screened by immunoblot analysis for the presence of antibodies specific for recombinant P52
<sup>rIPK</sup>
. Cells from positive cultures were cloned by limiting dilution, and the resulting culture supernatants were rescreened for P52
<sup>rIPK</sup>
-specific antibodies (IgG
<sub>1</sub>
subtype). </p>
<p>For immunoprecipitation reactions, 1 × 10
<sup>5</sup>
cpm of [
<sup>35</sup>
S]methionine-labeled in vitro translation products, or unlabeled cell extract (400 or 600 μg), was mixed with the indicated amount of Mab or polyclonal antiserum for 1 h at 4 °C. After the addition of protein G−agarose beads, mixtures were incubated for an additional 1 h at 4 °C. Immunocomplexes were recovered by centrifugation at 12000
<italic toggle="yes">g</italic>
and washed four times in lysis buffer (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
) containing an additional 200 mM NaCl (for a final NaCl concentration of 350 mM). After the final wash, bead-bound immunocomplexes were released by the addition of 50 μL of SDS sample buffer, incubated in a 100 °C bath, and placed on ice prior to loading on gels. Eluted proteins were resolved by 10% or 12.5% SDS−PAGE, and in some experiments, the resolved proteins were blotted to nitrocellulose membranes and subjected to immunoblot analysis. </p>
<p>
<italic toggle="yes">In Vitro Translation Reactions and GST Pull-Down Assay.</italic>
Full-length and truncated P52
<sup>rIPK</sup>
constructs were transcribed from the T7 promoter of pBSK-P52
<sup>rIPK</sup>
and translated in vitro in the presence of [
<sup>35</sup>
S]methionine using the TNT reaction system (Promega). To generate P52
<sup>rIPK</sup>
aa 1−384 or 1−239, we digested pBSK-P52
<sup>IPK</sup>
with
<italic toggle="yes">Mun</italic>
I and
<italic toggle="yes">Bgl</italic>
II restriction enzymes, respectively, and gel purified the linear plasmids prior to the TNT reaction. Radiolabel incorporation of in vitro translated products was quantified by scintillation counting of trichloroacetic acid-precipitable material. Expression of GST and GST-P58
<sup>IPK</sup>
in
<italic toggle="yes">Escherichia coli</italic>
and GST pull-down assays were carried out as previously described (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
). GST pull-down assays using glutathione−Sepharose-bound GST or GST-P58
<sup>IPK</sup>
, and 1 × 10
<sup>5</sup>
cpm of radiolabeled P52
<sup>rIPK</sup>
translation products, were conducted and analyzed exactly as described (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Yeast Methods. </italic>
The yeast two-hybrid assay was used to identify in vivo protein−protein interactions as described previously (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</named-content>
</italic>
). Plasmids encoding GAL4 AD or BD fusion proteins were introduced into
<italic toggle="yes">S. cerevisiae </italic>
Hf7c [
<italic toggle="yes">MATa ura3-52 hi3-200 lys2-801 ade2-101 trp1-901 leu2-3, 112 gal4-542 gal80-538 LYS2::GAL1-HIS3 URA3(GAL4 17-mers)
<sub>3</sub>
</italic>
<italic toggle="yes">-CYC-lacZ</italic>
; Clontech]. Transformants were plated onto synthetic defined (SD) medium supplemented with histidine (His
<sup>+</sup>
), but lacking leucine and tryptophan, to select for the retention of the pAD and pBD plasmids. Colonies were subsequently streaked onto SD medium lacking His, Trp, and Leu (His
<sup>-</sup>
) and grown at 30 °C for 3 days to deplete endogenous histidine stores. Colonies were then replica printed onto His
<sup>+</sup>
and His
<sup>-</sup>
medium and incubated at 30 °C for 2−4 days. Colonies were scored positive for a two-hybrid protein interaction if they exhibited growth on both His
<sup>-</sup>
and His
<sup>+</sup>
medium. Liquid β-Gal assays, using the fluorogenic substrate 4-methylumbelliferyl β-
<sc>d</sc>
-galactoside (MUG; Sigma), were conducted on yeast two-hybrid strains as previously reported (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
). </p>
<p>To assess protein function in vivo, pYex4-P58
<sup>IPK</sup>
and pYX-P52
<sup>rIPK</sup>
wild-type and mutant constructs were introduced into
<italic toggle="yes">S. cerevisiae </italic>
RY1-1 [
<italic toggle="yes">MATa ura3-52 leu2-3 leu2-112 gcn2Δ trp1-Δ63 LEU2::(GAL-CYC1-PKR</italic>
)
<sub>2</sub>
] (
<italic toggle="yes">
<xref rid="bi020397eb00034" ref-type="bibr"></xref>
</italic>
). This strain lacks the endogneous yeast eIF2α kinase, GCN2, but contains two copies of human
<italic toggle="yes">PKR</italic>
integrated into the
<italic toggle="yes">LEU2 </italic>
locus under control of the galactose-inducible
<italic toggle="yes">GAL</italic>
/
<italic toggle="yes">CYC1</italic>
hybrid promoter. In the presence of galactose, PKR is expressed and phosphorylates eIF2α, resulting in suppression of cell growth. However, the coexpression of PKR regulatory proteins results in modulation of PKR function, which can be scored by the amount of galactose-specific growth and by analysis of eIF2α phosphorylation (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00034" ref-type="bibr"></xref>
</named-content>
</italic>
). RY1-1 transformants were plated onto SD medium lacking uracil and tryptophan and incubated at 30 °C for 2−4 days. Resultant colonies were plated onto synthetic defined galactose (SGal) medium (containing 2% galactose as the sole carbon source), incubated for 5−9 days at 30 °C, and scored for growth as described previously (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">Isoelectric Focusing Analysis.</italic>
Isoelectric focusing (IEF) analysis to determine the phosphorylation state of yeast eIF2α was carried out essentially as described (
<italic toggle="yes">
<xref rid="bi020397eb00035" ref-type="bibr"></xref>
</italic>
). Approximately 20 μg of total protein from each extract was separated by single-dimension IEF and blotted to nitrocellulose membranes. Blots were probed with rabbit polyclonal antiserum specific to yeast eIF2α. </p>
</sec>
<sec id="d7e884">
<title>Results</title>
<p>
<italic toggle="yes">The Charged Domain of P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Is Necessary and Sufficient for Interaction with P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes">. </italic>
The charged domain of P52
<sup>rIPK</sup>
exhibits homology to the charged domains of Hsp90, which include an N-terminal geldanamycin-binding domain and a region located at the C terminus of the protein (
<italic toggle="yes">30</italic>
,
<italic toggle="yes"> 36</italic>
,
<italic toggle="yes"> 37</italic>
). Both Hsp90 and P52
<sup>rIPK</sup>
bind to TPR proteins, and in the case of Hsp90, the charged domains appear to be TPR domain acceptor sites that mediate protein−protein interactions (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00038" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00039" ref-type="bibr"></xref>
</named-content>
</italic>
). In previous work, we demonstrated that P52
<sup>rIPK</sup>
binds P58
<sup>IPK</sup>
and inhibits the PKR regulatory properties of P58
<sup>IPK</sup>
in vitro and in vivo (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). To understand the mechanism by which P52
<sup>rIPK</sup>
regulates P58
<sup>IPK</sup>
and PKR function, we conducted detailed structure−function analyses of the P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
interaction. We hypothesized that the P52
<sup>rIPK</sup>
charged domain might directly bind to P58
<sup>IPK</sup>
, possibly in a TPR domain-dependent fashion. </p>
<p>In initial experiments, we measured the relative binding of in vitro translated wild-type P52
<sup>rIPK</sup>
, and progressive C-terminal P52
<sup>rIPK</sup>
truncation products, to GST-P58
<sup>IPK</sup>
in a cell-free GST pull-down assay. As shown in Figure
<xref rid="bi020397ef00001"></xref>
A, full-length P52
<sup>rIPK</sup>
, and P52
<sup>rIPK</sup>
aa 1−384 in vitro translation products, bound efficiently in a dose-dependent manner to immobilized GST-P58
<sup>IPK</sup>
but not to immobilized GST alone. P52
<sup>rIPK</sup>
aa 1−239 translation products retained the ability to specifically bind to GST-P58
<sup>IPK</sup>
, albeit at a reduced level (Figure
<xref rid="bi020397ef00001"></xref>
A, lanes 9−12). These results indicate that the P58
<sup>IPK</sup>
-binding activity resides within the N-terminal region of P52
<sup>rIPK</sup>
and that aa 1−239, which include the charged domain, are sufficient to mediate interaction with P58
<sup>IPK</sup>
in vitro. Variations in the ability of the different P52
<sup>rIPK</sup>
deletion constructs to bind to P58
<sup>IPK</sup>
could be due to conformation changes resulting from protein truncation.
<fig id="bi020397ef00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Mapping the P58
<sup>IPK</sup>
interactive domain of P52
<sup>rIPK</sup>
. (A) GST pull-down assay. Equal molar amounts of GST or GST-P58
<sup>IPK</sup>
were immobilized on glutathione−Sepharose beads, and increasing amounts of bead-bound complexes were mixed with 1 × 10
<sup>5</sup>
cpm of
<sup>35</sup>
S-labeled in vitro translation products corresponding to full-length P52
<sup>rIPK</sup>
(aa 1−492; lanes 1−4), P52
<sup>rIPK</sup>
aa 1−384 (lanes 5−8), or P52
<sup>rIPK</sup>
aa 1−239 (lanes 9−12). After the beads were washed, protein complexes were eluted and then separated by SDS−PAGE. An autoradiogram of the dried gel is shown. The arrow points to the 1−239 translation product. The positions of protein standards are indicated in kDa on the left. The lower panel shows the amount of input P52
<sup>rIPk</sup>
translation products used in the binding assays. (B) Schematic representation of wild-type P52
<sup>rIPK</sup>
(top) and P52
<sup>rIPK</sup>
deletion mutants used in mapping the P58
<sup>IPK</sup>
interactive domain by yeast two-hybrid analysis. Each construct was expressed in
<italic toggle="yes"> S. cerevisiae</italic>
Hf7c as a GAL4 activation domain fusion and is identified by the encoded aa residues shown on the left. The dark region denotes the 114 aa charged domain of P52
<sup>rIPK</sup>
that exhibits homology to Hsp90 (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). This region is deleted from the Δ85−200 construct. The results from P58
<sup>IPK</sup>
interaction studies are summarized on the right. (C) Expression of AD-P52
<sup>rIPK</sup>
fusion proteins in yeast. Extracts from yeast coexpressing BD-P58
<sup>IPK</sup>
and the indicated AD constructs were subjected to immunoblot analysis using an antibody specific to the GAL4 activation domain. Lane 1 shows an extract from yeast coexpressing the AD vector. Lanes 2−8 show extracts from yeast coexpressing AD fusion proteins corresponding to P52
<sup>rIPK</sup>
aa 1−492 (wild type, lane 2), 237−492 (lane 3), 1−243 (lane 4), 1−84 (lane 5), 86−203 (lane 6), 1−203 (lane 7), and Δ85−200 (lane 8). The positions of protein standards are shown on the left. (D) Yeast two-hybrid assay. Hf7c yeast cells coexpressing the indicated AD fusion proteins with the GAL4 DNA-binding domain alone (BD vector), or BD-P58
<sup>IPK</sup>
, were replica printed onto medium in the presence (+HIS, left panel) or absence (−HIS, right panel) of histidine and incubated at 30 °C for 4 days. In this assay, growth on both His
<sup>+</sup>
and His
<sup>-</sup>
medium is indicative of a two-hybrid protein interaction (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
). To confirm the growth phenotype, we conducted liquid β-Gal assays of the encoded β-Gal reporter using the MUG substrate. Results are shown to the right of each panel and are the average of three separate experiments. Numbers shown were rounded to the nearest whole value.</p>
</caption>
<graphic xlink:href="bi020397ef00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To verify the in vitro binding data, and to test the role of the 114 aa charged domain in mediating interaction with P58
<sup>IPK</sup>
, we constructed a series of P52
<sup>rIPK</sup>
deletion mutants for use in a yeast two-hybrid in vivo interaction assay (Figure
<xref rid="bi020397ef00001"></xref>
B). Each construct was coexpressed as a GAL4 activation domain (AD) fusion protein in
<italic toggle="yes">S. cerevisiae</italic>
strains expressing the GAL4 DNA-binding domain (BD) or a BD-P58
<sup>IPK</sup>
fusion protein. Each AD-P52
<sup>rIPK</sup>
construct was efficiently expressed (Figure
<xref rid="bi020397ef00001"></xref>
C) and was scored for its ability to specifically bind to BD-P58
<sup>IPK</sup>
by its ability to promote the growth of each yeast strain on His
<sup>-</sup>
medium. Whereas all stains grew equally well on His
<sup>+</sup>
medium (Figure
<xref rid="bi020397ef00001"></xref>
D, left panel), exclusion of the P52
<sup>rIPK</sup>
charged domain resulted in abrogation of P58
<sup>IPK</sup>
interaction and a lack of growth on His
<sup>-</sup>
medium (Figure
<xref rid="bi020397ef00001"></xref>
D, right panel). In particular, P52
<sup>rIPK</sup>
aa 86−203 were sufficient to mediate interaction with P58
<sup>IPK</sup>
, since yeast cells expressing this construct maintained robust growth on His
<sup>-</sup>
medium. Conversely, the P52
<sup>rIPK</sup>
Δ85−200 construct, which lacks the charged domain, failed to confer growth on selective medium, even though this construct was efficiently expressed (see Figure
<xref rid="bi020397ef00001"></xref>
C,D). Analysis of the encoded β-Gal activity (MUG units in Figure
<xref rid="bi020397ef00001"></xref>
D) within each strain confirmed the growth assay data and indicated that P52
<sup>rIPK</sup>
aa 86−203 bound to P58
<sup>IPK</sup>
at a relative strength approximating or slightly surpassing that of the wild-type protein. Taken together, these studies demonstrate that the charged domain of P52
<sup>rIPK</sup>
is both necessary and sufficient for interaction with P58
<sup>IPK</sup>
. The localization of P58
<sup>IPK</sup>
-binding activity to within the charged domain of P52
<sup>rIPK</sup>
is of interest, since the charged acidic domains in the N- and C-terminal regions of Hsp90 also interact with TPR proteins (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00038" ref-type="bibr"></xref>
<xref rid="bi020397eb00039" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi020397eb00040" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>
<italic toggle="yes">P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> TPR Domain 7 Is Necessary and Sufficient for Interaction with P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes">.</italic>
TPR domains are modular protein interaction motifs that are present in a diverse family of proteins that includes many cell-signaling effectors (
<italic toggle="yes">
<xref rid="bi020397eb00041" ref-type="bibr"></xref>
</italic>
). As shown in Figure
<xref rid="bi020397ef00002"></xref>
, P58
<sup>IPK</sup>
contains nine tandemly arranged TPR motifs (
<italic toggle="yes">
<xref rid="bi020397eb00021" ref-type="bibr"></xref>
</italic>
). We previously demonstrated that TPR domain 6 directs the interaction between P58
<sup>IPK</sup>
and PKR (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
). To determine if the interaction with P52
<sup>rIPK</sup>
was similarly TPR domain dependent, we conducted a series of protein interaction studies using the yeast two-hybrid system to score for protein interaction in vivo. GAL4 DNA-binding domain fusion proteins of wild-type P58
<sup>IPK</sup>
, or various P58
<sup>IPK</sup>
deletion constructs, were coexpressed with the GAL4 activation domain or the AD-P52
<sup>rIPK</sup>
wild-type fusion protein, and each strain was scored for growth on His
<sup>-</sup>
medium. The relative strength of the two-hybrid protein interactions was scored by β-Gal assay (MUG units). In initial experiments, we tested a series of P58
<sup>IPK</sup>
N- and C-terminal deletion constructs for their ability to bind P52
<sup>rIPK</sup>
. Expression of BD fusion proteins P58
<sup>IPK</sup>
8−4 or 9−1, which respectively encode P58
<sup>IPK</sup>
aa 1−302 or 168−504, was sufficient for interaction with AD-P52
<sup>rIPK</sup>
, as determined by growth of the corresponding strains on His
<sup>-</sup>
medium (Figure
<xref rid="bi020397ef00002"></xref>
). In contrast, P58
<sup>IPK</sup>
aa 1−166, encoded by the BD-P58
<sup>IPK</sup>
8−1 protein, failed to mediate interaction with AD-P52
<sup>rIPK</sup>
. From these initial studies, we preliminarily mapped the P52
<sup>rIPK</sup>
interactive domain of P58
<sup>IPK</sup>
to within aa 168−302, which extends from midway within TPR domain 4 through TPR domain 7 (Figure
<xref rid="bi020397ef00002"></xref>
A).
<fig id="bi020397ef00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Mapping the P52
<sup>rIPK</sup>
interacting domain of P58
<sup>IPK</sup>
. (A) Structural representation of P58
<sup>IPK</sup>
and TPR domain deletion constructs. TPR domains are indicated by number in gray-shaded squares, and aa positions defining TPR domain 7 are indicated. Amino acid positions are shown to denote full-length P58
<sup>IPK</sup>
, the terminal aa positions within the P58
<sup>IPK</sup>
8−1, 8−4, 9−1, 10−1, and TPR7 truncation mutants, and the positions of deleted TPR domain 5 (ΔTPR5), 6 (ΔTPR6), and 7 (ΔTPR7). The results from protein interaction studies with P52
<sup>rIPK</sup>
are summarized on the right, together with β-Gal assay results (in MUG units). Values shown are the average of two independent experiments and are rounded to the nearest whole number. (B) Analysis of BD-P58
<sup>IPK</sup>
and TPR deletion mutants in the yeast two-hybrid assay. Hf7c yeast cells coexpressing the indicated BD-P58
<sup>IPK</sup>
fusion proteins and AD-P52
<sup>rIPK</sup>
or the GAL4 activation domain alone (AD vector) were streaked onto His
<sup>-</sup>
medium, and plates were incubated for 4 days at 30 °C. Growth is indicative of a two-hybrid protein interaction. All AD and BD fusion proteins were expressed in each strain, and all strains grew efficiently on control His
<sup>+</sup>
medium (data not shown).</p>
</caption>
<graphic xlink:href="bi020397ef00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To further define the P52
<sup>rIPK</sup>
interactive domain of P58
<sup>IPK</sup>
, we tested the ability of P58
<sup>IPK</sup>
TPR domain deletion mutants, lacking either TPR domains 5, 6, or 7 (encoded in the BD-P58
<sup>IPK</sup>
ΔTPR 5, ΔTPR6, and ΔTPR 7 fusion constructs, respectively), to interact with P52
<sup>rIPK</sup>
. Each construct was coexpressed in yeast with either the GAL4 activation domain or AD-P52
<sup>rIPK</sup>
. Deletion of TPR domain 6 did not affect P58
<sup>IPK</sup>
binding to P52
<sup>rIPK</sup>
. Indeed, yeast cells coexpressing AD-P52
<sup>rIPK</sup>
with wild-type P58
<sup>IPK</sup>
, ΔTPR 5, or ΔTPR 6 BD fusion proteins exhibited robust growth on His
<sup>-</sup>
medium, and the encoded β-Gal activity approximated that of the wild-type P58
<sup>IPK</sup>
protein. In contrast, the 10−1 construct (encoding TPR domains 4−6 and the flanking 12 aa) failed to interact with P52
<sup>rIPK</sup>
. Similarly, deletion of TPR domain 7 ablated the ability of P58
<sup>IPK</sup>
to bind P52
<sup>rIPK</sup>
in this assay (Figure
<xref rid="bi020397ef00002"></xref>
). The 34 -aa TPR domain 7 was sufficient to mediate an interaction with P52
<sup>rIPK</sup>
that was equivalent in strength (MUG units) to the wild-type protein. We confirmed that all BD and AD constructs were efficiently expressed in the corresponding yeast cells (data not shown). The ΔTPR 5 and ΔTPR 7 constructs retained their ability to bind PKR in parallel yeast two-hybrid studies (data not shown), indicating that deletion of each TPR domain had little impact on overall protein conformation. These results demonstrate that P58
<sup>IPK</sup>
TPR domain 7 is both necessary and sufficient for interaction with P52
<sup>rIPK</sup>
in vivo. </p>
<p>
<italic toggle="yes">P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> TPR Domain 7 Is Required for P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes">-Dependent Regulation of PKR. </italic>
Our results demonstrate that P58
<sup>IPK</sup>
binds to PKR and P52
<sup>rIPK</sup>
at independent, but adjacent, sites within TPR domains 6 and 7, respectively. We previously showed that P58
<sup>IPK</sup>
inhibition of PKR requires TPR domain 6 (
<italic toggle="yes">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
</italic>
) and that this likely occurs through formation of a TPR 6-mediated P58
<sup>IPK</sup>
-PKR inhibitory complex in vivo (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00022" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00025" ref-type="bibr"></xref>
</named-content>
</italic>
). We sought to determine if P52
<sup>rIPK</sup>
control of P58
<sup>IPK</sup>
was similarly a TPR-dependent event, possibly mediated by the P52
<sup>rIPK</sup>
interaction with P58
<sup>IPK</sup>
TPR domain 7. For these experiments, we utilized a yeast genetic system to assess the role of P52
<sup>rIPK</sup>
in the P58
<sup>IPK</sup>
-dependent regulation of PKR and eIF2α phosphorylation (
<italic toggle="yes">
<xref rid="bi020397eb00034" ref-type="bibr"></xref>
</italic>
). This experimental system is based upon the observation that PKR is growth suppressive when expressed in yeast, due to high levels of PKR-mediated eIF2α phosphorylation (
<italic toggle="yes">
<xref rid="bi020397eb00035" ref-type="bibr"></xref>
</italic>
). We employed the gcn2Δ yeast strain RY1-1, which lacks the endogenous yeast eIF2α kinase but harbors two integrated copies of human PKR placed under the transcriptional control of a galactose-inducible promoter (
<italic toggle="yes">
<xref rid="bi020397eb00034" ref-type="bibr"></xref>
</italic>
). This strain grows well when streaked onto noninducing dextrose medium but exhibits a slow growth phenotype when streaked onto galactose medium, due to induced expression and activity of PKR. </p>
<p>We previously demonstrated that, when expressed in RY1-1, P58
<sup>IPK</sup>
represses PKR-mediated eIF2α phosphorylation and relieves PKR-mediated growth suppression (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00022" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</named-content>
</italic>
). However, the introduction of P52
<sup>rIPK</sup>
into RY1-1 expressing both PKR and P58
<sup>IPK</sup>
results in restoration of PKR activity and eIF2α phosphorylation, concomitant with growth suppression due to inhibition of P58
<sup>IPK</sup>
function (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
). The effects of this reconstituted PKR regulatory pathway on yeast growth are shown in Figure
<xref rid="bi020397ef00003"></xref>
A. RY1-1 harboring vectors alone (V/V), or in combination with P52
<sup>rIPK</sup>
(V/P52
<sup>rIPK</sup>
), failed to grow when streaked onto galactose medium. Expression of P58
<sup>IPK</sup>
was sufficient to reverse PKR-mediated growth suppression (Figure
<xref rid="bi020397ef00003"></xref>
A, P58
<sup>IPK</sup>
/V), confirming that P58
<sup>IPK</sup>
can repress PKR function in yeast (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00022" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</named-content>
</italic>
). In comparison, the introduction of P52
<sup>rIPK</sup>
into this strain restored the slow growth phenotype (Figure
<xref rid="bi020397ef00003"></xref>
A, compare P58
<sup>IPK</sup>
/V and P58
<sup>IPK</sup>
/P52
<sup>rIPK</sup>
strains), again demonstrating that P52
<sup>rIPK</sup>
can inhibit P58
<sup>IPK</sup>
function to restore PKR activity in vivo. RY1-1 expressing P58
<sup>IPK</sup>
that lacked TPR domain 7 (P58
<sup>IPK</sup>
Δ7/V) exhibited growth on galactose medium, indicating that deletion of TPR domain 7 does not hinder the PKR regulatory properties of P58
<sup>IPK</sup>
. P52
<sup>rIPK</sup>
coexpression had no effect on the growth of this strain on galactose medium (compare P58
<sup>IPK</sup>
Δ7/V with P58
<sup>IPK</sup>
Δ7/P52
<sup>rIPK</sup>
, Figure
<xref rid="bi020397ef00003"></xref>
A). Examination of protein expression in these cells revealed that each expression construct, and PKR, was efficiently expressed when the cells were grown on galactose medium (Figure
<xref rid="bi020397ef00003"></xref>
B). It is important to note that P52
<sup>rIPK</sup>
itself is not toxic when expressed in yeast (
<italic toggle="yes">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
</italic>
), and this observation was confirmed using RY1-1 coexpressing P58
<sup>IPK</sup>
Δ7 with P52
<sup>rIPK</sup>
. Our results therefore demonstrate that TPR domain 7 of P58
<sup>IPK</sup>
is required for control of P58
<sup>IPK</sup>
function by P52
<sup>rIPK</sup>
. When taken together with our protein interaction data, these studies indicate that P52
<sup>rIPK</sup>
mediates control of P58
<sup>IPK</sup>
, and thereby regulation of PKR, by binding to P58
<sup>IPK</sup>
TPR domain 7. In this manner, P52
<sup>rIPK</sup>
releases the block to PKR activity imposed by P58
<sup>IPK</sup>
, resulting in inhibition of growth on galactose medium (Figure
<xref rid="bi020397ef00003"></xref>
A).
<fig id="bi020397ef00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>P52
<sup>rIPK</sup>
mediates control of P58
<sup>IPK</sup>
and PKR through P58
<sup>IPK</sup>
TPR domain 7. (A) Yeast growth assay for the analysis of PKR regulation in vivo. RY1-1 yeast cells were streaked onto selective SGal medium to induce coexpression of PKR and the indicated P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
alleles. The plate shown was incubated for 6 days at 30 °C. In this assay, yeast growth is indicative of PKR inhibition. Growth suppression indicates that PKR is active. All strains exhibited efficient growth on SD medium (not shown). V denotes the empty expression vector in place of P58
<sup>IPK</sup>
or P52
<sup>rIPK</sup>
. (B) Protein expression in RY1-1 yeast cells. Extracts from the yeast cells shown in panel A were subjected to immunoblot analysis with antibodies specific to human PKR (top panel), P58
<sup>IPK</sup>
(second panel from top), P52
<sup>rIPK</sup>
(third panel from top), or actin (lower panel). Results were reproducible over three experiments and are shown from a single blot that was first probed with antiserum to P52
<sup>rIPK</sup>
, stripped, and then sequentially reprobed with each individual antibody. Lanes show protein expression in extracts prepared from yeast cells coexpressing PKR with P58
<sup>IPK</sup>
Δ7 (lane 1), P58
<sup>IPK</sup>
Δ7 and P52
<sup>rIPK</sup>
(lane 2), vectors only (V/V, lane 3), P52
<sup>rIPK</sup>
(lane 4), P58
<sup>IPK</sup>
(lane 5), or P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
(lane 6). Arrowheads at right indicate the positions of wild-type P58
<sup>IPK</sup>
, P58
<sup>IPK</sup>
Δ7, and P52
<sup>rIPK</sup>
. </p>
</caption>
<graphic xlink:href="bi020397ef00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">The Charged Domain of P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Is Necessary and Sufficient for Control of P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Function in Vivo.</italic>
Our protein interaction data demonstrated that the charged domain of P52
<sup>rIPK</sup>
, encoding aa 86−200, was both necessary and sufficient to mediate interaction with P58
<sup>IPK</sup>
in vivo (see Figure
<xref rid="bi020397ef00001"></xref>
). We therefore sought to determine if this region of P52
<sup>rIPK</sup>
was similarly required for protein function. When coexpressed with P58
<sup>IPK</sup>
in RY1-1, a P52
<sup>rIPK</sup>
mutant lacking the entire 114 aa charged domain (P52
<sup>rIPK</sup>
Δ85−200) failed to inhibit P58
<sup>IPK</sup>
function, as demonstrated by growth on galactose medium (Figure
<xref rid="bi020397ef00004"></xref>
, P58
<sup>IPK</sup>
/P52
<sup>rIPK</sup>
Δ85−200). This is in stark contrast to the ability of wild-type P52
<sup>rIPK</sup>
to inhibit P58
<sup>IPK</sup>
function and restore the PKR growth-suppressive phenotype (Figure
<xref rid="bi020397ef00004"></xref>
, compare P58
<sup>IPK</sup>
/P52
<sup>rIPK</sup>
to P58
<sup>IPK</sup>
/P52
<sup>rIPK</sup>
Δ85−200). As a control for potential construct toxicity, we confirmed that P52
<sup>rIPK</sup>
Δ85−200 had no effect on P58
<sup>IPK</sup>
Δ7-dependent growth rescue (P58
<sup>IPK</sup>
Δ7/P52
<sup>rIPK</sup>
Δ85−200). Similarly, RY1-1 expressing either P58
<sup>IPK</sup>
or P58
<sup>IPK</sup>
Δ7 exhibited growth on galactose, indicative of P58
<sup>IPK</sup>
repression of PKR (Figure
<xref rid="bi020397ef00004"></xref>
). Coexpression of P52
<sup>rIPK</sup>
aa 86−200 was sufficient to block the PKR inhibitory function of wild-type P58
<sup>IPK</sup>
but not of the P58
<sup>IPK</sup>
ΔTPR7 mutant (Figure
<xref rid="bi020397ef00004"></xref>
, lower panel). We again confirmed that all constructs were efficiently expressed (data not shown). Thus, P52
<sup>rIPK</sup>
aa 86−200 are both necessary and sufficient to suppress the PKR regulatory function of P58
<sup>IPK</sup>
, demonstrating that the charged domain of P52
<sup>rIPK</sup>
is required for inhibition of P58
<sup>IPK</sup>
in vivo.
<fig id="bi020397ef00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>The charged domain of P52
<sup>rIPK</sup>
is necessary and sufficient for the control of P58
<sup>IPK</sup>
and regulation of PKR function in vivo. RY1-1 yeast cells were streaked onto selective SGal medium to induce coexpression of PKR with the indicated P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
alleles. The panels shown are of plates that were incubated at 30 °C for 7 days. V denotes the empty expression vector in place of P58
<sup>IPK</sup>
or P52
<sup>rIPK</sup>
. Growth is indicative of PKR inhibition by P58
<sup>IPK</sup>
. All strains exhibited efficient growth on SD medium (data not shown).</p>
</caption>
<graphic xlink:href="bi020397ef00004.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> TPR Domain 7 and the Charged Domain of P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Are Required To Control eIF2α Phosphorylation by PKR.</italic>
As upstream regulators of PKR function, P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
are proposed to modulate the phosphorylation of PKR substrates, including eIF2α. To determine how the P58
<sup>IPK</sup>
−P52
<sup>rIPK</sup>
interaction may influence eIF2α phosphorylation, we examined the levels of endogenous eIF2α in yeast cells coexpressing PKR and various forms of P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
. We used a sensitive IEF procedure to separate the PKR phosphorylated isoform of eIF2α (phosphorylated on serine 51) from the non-PKR phosphorylated eIF2α isoform in strains grown in liquid SGal media. Induction of PKR expression resulted in high levels of eIF2α phosphorylation (Figure
<xref rid="bi020397ef00005"></xref>
, compare lanes 1 and 2) and was not significantly affected by expression of P52
<sup>rIPK</sup>
(lane 8) or P52
<sup>rIPK</sup>
Δ85−200 (lane 3). In contrast, expression of P58
<sup>IPK</sup>
resulted in an accumulation of the hypophosphorylated eIF2α species. Although the majority of eIF2α remained phosphorylated in the presence of P58
<sup>IPK</sup>
, we have observed that relatively small changes in the overall level of eIF2α phosphorylation can have a significant effect on cell growth (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00030" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00042" ref-type="bibr"></xref>
</named-content>
</italic>
). The coexpression of wild-type P52
<sup>rIPK</sup>
blocked the P58
<sup>IPK</sup>
-mediated reduction of eIF2α phosphorylation (Figure
<xref rid="bi020397ef00005"></xref>
, compare lanes 4 and 5), whereas coexpression of P52
<sup>rIPK</sup>
lacking the charged domain had no effect on P58
<sup>IPK</sup>
function (lane 7). This result confirms that the 114 aa charged domain is responsible for the downstream regulation of P58
<sup>IPK</sup>
and PKR. When compared to cells expressing wild-type P58
<sup>IPK</sup>
, cells expressing P58
<sup>IPK</sup>
Δ7 exhibited a marked increase in the accumulation of hypophosphorylated eIF2α. Moreover, this reduction in eIF2α phosphorylation was maintained even in the presence of P52
<sup>rIPK</sup>
(Figure
<xref rid="bi020397ef00005"></xref>
, lane 6). In general, we found that cells expressing P58
<sup>IPK</sup>
Δ7 exhibited significantly shorter doubling times when grown in the presence of galactose (data not shown). These results suggest that TPR domain 7 confers negative regulation to P58
<sup>IPK</sup>
and that deletion of this domain results in hyperactive protein function. When taken together with the protein interaction and cell growth data, our analysis of eIF2α phosphorylation demonstrates that the 114 aa charged domain of P52
<sup>rIPK</sup>
regulates P58
<sup>IPK</sup>
through an interaction with P58
<sup>IPK</sup>
TPR domain 7 and that this interaction modulates PKR-mediated eIF2α phosphorylation.
<fig id="bi020397ef00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>eIF2α phosphorylation analysis. Yeast extracts were separated by single-dimension IEF and blotted to nitrocellulose, and eIF2α was detected by immunoblot analysis. This procedure allows for the discrimination and detection of the serine 51 phosphorylated eIF2α isoform (phosphorylated by PKR) from the less acidic, basely phosphorylated eIF2α isoform (
<italic toggle="yes">
<xref rid="bi020397eb00035" ref-type="bibr"></xref>
</italic>
). Lanes 1 and 2 correspond to extracts from RY1-1 control cells harboring the expression plasmids alone and grown in SGal or SD medium to induce (+PKR) or suppress PKR expression (−PKR). Lanes 3−8 correspond to extracts prepared from RY1-1 cells grown in SGal medium and coexpressing PKR with P52
<sup>rIPK</sup>
Δ85−200 (lane 3), P58
<sup>IPK</sup>
(lane 4), P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
(lane 5), P58
<sup>IPK</sup>
Δ7 and P52
<sup>rIPK</sup>
(lane 6), P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
Δ85−200 (lane 7), or P52
<sup>rIPK</sup>
(lane 8). Arrows at the right denote the positions of basely phosphorylated eIF2α and the serine 51 phosphorylated eIF2α isoforms.</p>
</caption>
<graphic xlink:href="bi020397ef00005.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<italic toggle="yes">Regulation of the P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes">−P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Complex in HeLa Cells.</italic>
Our results indicate that P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
mediate a regulatory pathway that responds to stress-induced signals. This notion is supported by our previous work that defined P58
<sup>IPK</sup>
as a stress-activated cochaperone and regulator of PKR (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00023" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00027" ref-type="bibr"></xref>
</named-content>
</italic>
). We therefore sought to determine if the formation of a P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
complex was regulated in response to cellular stress. We began by analyzing this interaction in HeLa cells that were deprived of serum for a period of 4 h in order to induce an acute stress response. Cell extracts prepared from serum-starved and control cultures were then subjected to immunoprecipitation analysis to assess endogenous complex formation between P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
. To detect complex formation, anti-P52
<sup>rIPK</sup>
immunoprecipitation products were recovered and subjected to immunoblot analysis with a Mab specific to P58
<sup>IPK</sup>
. As shown in Figure
<xref rid="bi020397ef00006"></xref>
A, we failed to detect significant complex formation between P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
within control HeLa cells cultured in complete medium. However, removal of serum from the growth media induced the association of P58
<sup>IPK</sup>
with P52
<sup>rIPK</sup>
, and P58
<sup>IPK</sup>
was recovered within anti-P52
<sup>rIPK</sup>
immunoprecipitation reactions (Figure
<xref rid="bi020397ef00006"></xref>
A, compare lanes 2 and 3). No detectable changes in the level of P52
<sup>rIPK</sup>
protein were observed between control and serum-starved cultures (data not shown). Importantly, P58
<sup>IPK</sup>
was not present in control immunoprecipitation products recovered from serum-starved cells using preimmune rabbit control serum (Figure
<xref rid="bi020397ef00006"></xref>
A, lane 1). These results demonstrate that P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
form a stable complex in cells stressed by serum deprivation.
<fig id="bi020397ef00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>Stress-regulated complex formation of P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
in HeLa cells. (A) HeLa cells were cultured for 4 h in the presence (lanes 2 and 5) or absence of serum (lanes 1, 3, and 4). Extracts were prepared, and 600 μg of protein was subjected to immunoprecipitation with normal (preimmune) rabbit serum (nrs, lane 1) or anti-P52
<sup>rIPK</sup>
rabbit serum (lanes 2 and 3). After washing, the immunoprecipitation products were resolved by electrophoresis in a 10% acrylamide gel and subjected to immunoblot analysis with a P58
<sup>IPK</sup>
-specific Mab. To adequately separate the immunoglobulin heavy chain (dark smear) from the P58
<sup>IPK</sup>
band, the electrophoresis was conducted such that the 55 kDa standard was resolved to very near the bottom of the gel. The positions of the 68 and 55 kDa protein standards are shown on the left. Lanes 4 and 5 show P58
<sup>IPK</sup>
and P52
<sup>rIPK</sup>
(arrowheads, upper and lower panels, respectively) in 50 μg of the input extract that was used in the immunoprecipitation reactions. (B) Cells were untreated (lane 1), serum starved for 4 h (lane 2), heat shocked (lane 3), or cultured with sodium arsenite for 2 h (lane 4), thapsigargin for 4 h (lane 5), or tunicamycin for 4 h (lane 6), and harvested, and 400 μg of each extract was subjected to immunoprecipitation with α-P52
<sup>rIPK</sup>
serum as described above. P58
<sup>IPK</sup>
was identified in the immunocomplexes by Western blot analysis (upper panel), and arrows point to the positions of the recovered P58
<sup>IPK</sup>
or immunoglobulin (Ig) heavy chain. The lower panels show P52
<sup>rIPK</sup>
and P58
<sup>IPK</sup>
protein levels in 50 μg of the input extract from each immunoprecipitation reaction.</p>
</caption>
<graphic xlink:href="bi020397ef00006.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>We next examined P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
complex formation in response to heat shock, or treatment with sodium arsenite, thapsigargin, or tunicamycin. As shown in Figure
<xref rid="bi020397ef00006"></xref>
B, serum withdrawal, heat shock, and treatment with sodium arsenite all resulted in the induction of a stable P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
complex. In contrast, we were unable to detect significant levels of the P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
complex in cells treated with thapsigargin or tunicamycin. Serum withdrawal, heat shock, and sodium arsenite treatment each trigger cytoplasmic stress-response programs, whereas thapsigargin and tunicamycin are specific inducers of ER stress (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00001" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00043" ref-type="bibr"></xref>
</named-content>
</italic>
). The induction of the P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
interaction only in response to inducers of cytoplasmic stress suggests that P52
<sup>rIPK</sup>
regulation of P58
<sup>IPK</sup>
is specific to cytoplasmic stress-response pathways. </p>
</sec>
<sec id="d7e2035">
<title>Discussion</title>
<p>
<italic toggle="yes">The P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Charged Domain and Regulation of P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes">.</italic>
It has become increasingly clear that TPR proteins participate in a diverse range of signaling processes, including protein kinase regulation and stress-signaling cascades (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00044" ref-type="bibr"></xref>
<xref rid="bi020397eb00045" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi020397eb00046" ref-type="bibr"></xref>
</named-content>
</italic>
). Here we have shown that P52
<sup>rIPK</sup>
binds to P58
<sup>IPK</sup>
and inhibits its function in vivo in a TPR domain 7-dependent manner. TPR domain 7 is separated from TPR domain 6, which mediates binding to PKR, by only 12 aa. The close proximity of binding sites for P52
<sup>rIPK</sup>
and PKR raises the possibility that the binding of these proteins to P58
<sup>IPK</sup>
is mutually exclusive. Thus, P52
<sup>rIPK</sup>
may inhibit the PKR regulatory function of P58
<sup>IPK</sup>
by acting as a noncompetitive inhibitor, binding P58
<sup>IPK</sup>
and excluding the PKR−P58
<sup>IPK</sup>
interaction. </p>
<p>We have also shown that the 114 aa charged domain of P52
<sup>rIPK</sup>
is necessary and sufficient for interaction with P58
<sup>IPK</sup>
and that this region is required for the regulation of P58
<sup>IPK</sup>
in vivo. This region of P52
<sup>rIPK</sup>
is similar to the charged domains of Hsp90, which act as protein interaction motifs. In particular, there is evidence that the C-terminal charged domain of Hsp90 binds to the TPR proteins Hop, FKBP52, FKBP51, Cyp40, and PP5 (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00047" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00048" ref-type="bibr"></xref>
</named-content>
</italic>
). When we used computer-assisted homology search programs to look for sequence similarity between overlapping 5−10 aa regions of the P52
<sup>rIPK</sup>
and Hsp90 charged domains, we found that both proteins contained the 6 aa motif KRIKEL (corresponding to aa 101−106 of P52
<sup>rIPK</sup>
). This motif, or a conserved variant, is also present within the TPR-binding regions of other cellular and viral proteins, including c-Myb (
<italic toggle="yes">
<xref rid="bi020397eb00049" ref-type="bibr"></xref>
</italic>
), human immunodeficiency virus Vpu and Gag (
<italic toggle="yes">
<xref rid="bi020397eb00050" ref-type="bibr"></xref>
</italic>
), and human and murine PKR (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00024" ref-type="bibr"></xref>
,
<xref rid="bi020397eb00025" ref-type="bibr"></xref>
</named-content>
</italic>
). The presence of this motif within a diverse group of cellular and viral TPR-binding proteins suggests that it may participate in binding to the TPR domain. Indeed, mutations that localize very near and around this motif within the C terminus of Hsp90 preclude its ability to interact with PP5, FKBP52, and Hop (
<italic toggle="yes">
<xref rid="bi020397eb00038" ref-type="bibr"></xref>
</italic>
). </p>
<p>
<italic toggle="yes">A Role for P52
<sup>rIPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> Regulation of P58
<sup>IPK</sup>
</italic>
<sup></sup>
<italic toggle="yes"> in Stress-Induced Signaling and Cell Growth Control.</italic>
Serum withdrawal, heat shock, and sodium arsenite treatment all induce the activation and regulation of PKR (
<italic toggle="yes">
<xref rid="bi020397eb00001" ref-type="bibr"></xref>
</italic>
). Each of these regimens also induced the formation of a recoverable P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
complex. Importantly, these treatments all induce cytoplasmic stress-response programs, either through serum-responsive signaling cascades and the direct accumulation of heat shock proteins or, in the case of sodium arsenite, by inducing the inactivation of protein sulfhydryl groups (
<italic toggle="yes">
<xref rid="bi020397eb00001" ref-type="bibr"></xref>
</italic>
). In contrast, thapsigargin or tunicamycin treatment, which indirectly activates PERK by inducing ER stress through the depletion of ER calcium stores or inhibition of N-linked glycosylation, respectively (
<italic toggle="yes">
<xref rid="bi020397eb00015" ref-type="bibr"></xref>
</italic>
), did not induce discernible P52
<sup>rIPK</sup>
−P58
<sup>IPK</sup>
complex formation. These results indicate that P52
<sup>rIPK</sup>
likely mediates control of P58
<sup>IPK</sup>
function and PKR activity in response to cytoplasmic stress signaling. Although we cannot formally exclude a role for P52
<sup>rIPK</sup>
in the response to ER stress, our results imply that P52
<sup>rIPK</sup>
regulates P58
<sup>IPK</sup>
in stress-response pathways that are functionally distinct from those that impact the activity of PERK. This is particularly intriguing since P58
<sup>IPK</sup>
expression is induced during ER stress (
<italic toggle="yes">
<xref rid="bi020397eb00051" ref-type="bibr"></xref>
</italic>
), and the lack of association with P52
<sup>rIPK</sup>
may correlate with a need for increased P58
<sup>IPK</sup>
function. In this regard, we have recently found that P58
<sup>IPK</sup>
interacts with PERK in ER-stressed cells, suggesting that P58
<sup>IPK</sup>
may also function as a regulator of PERK activity (unpublished data). </p>
<p>It is notable that PACT, a protein activator of PKR, is also signaled to bind and activate the kinase in response to a diverse range of stress signals, including serum deprivation (
<italic toggle="yes">
<xref rid="bi020397eb00052" ref-type="bibr"></xref>
</italic>
). In response to cellular stress, PACT stimulates the PKR-dependent phosphorylation of eIF2α, which correlates with PACT phosphorylation. This suggests that PACT is signaled to specifically activate PKR during the cellular stress response. The observation that PACT and P52
<sup>rIPK</sup>
bind PKR and P58
<sup>IPK</sup>
, respectively, in response to serum withdrawal suggests that these proteins participate in a common pathway. Thus, the binding of P52
<sup>rIPK</sup>
to P58
<sup>IPK</sup>
, and the inhibition of P58
<sup>IPK</sup>
function, may potentiate PACT-mediated activation of PKR in response to stress-induced signals. This may provide the cell a rapid mechanism by which to downmodulate gene expression during the stress response. </p>
<p>The cellular response to stress is clearly dependent upon the nature and duration of the stress-induced signals. We previously demonstrated that when cells are subjected to heat shock, the association between P58
<sup>IPK</sup>
and Hsp40 is disrupted during the recovery phase (
<italic toggle="yes">
<xref rid="bi020397eb00023" ref-type="bibr"></xref>
</italic>
). However, the role of P52
<sup>rIPK</sup>
in this process was not addressed. In the present study, we demonstrated the formation of a P52
<sup>rPK</sup>
−P58
<sup>IPK</sup>
complex in heat-shocked cells. It is possible that Hsp40 and P52
<sup>rIPK</sup>
respond to different signals to mediate regulation of P58
<sup>IPK</sup>
at different times and under different circumstances. It will therefore be important to elucidate the signaling mechanisms that lead to activation of P52
<sup>rIPK</sup>
. In this regard, preliminary studies from our laboratory suggest that P52
<sup>rIPK</sup>
is phosphorylated during the stress response induced by serum withdrawal (unpublished data). </p>
<p>Finally, through its ability to inhibit P58
<sup>IPK</sup>
, P52
<sup>rIPK</sup>
may participate in cell growth regulation by acting as an upstream modulator of both PKR-dependent and independent events. Expression of trans-dominant negative PKR mutants induces oncogenic transformation of murine fibroblast cell lines, presumably by disrupting PKR-dependent processes of translational control and apoptotic signaling (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bi020397eb00053" ref-type="bibr"></xref>
<xref rid="bi020397eb00054" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bi020397eb00055" ref-type="bibr"></xref>
</named-content>
</italic>
). Similarly, the overexpression of cellular and viral inhibitors of PKR, including P58
<sup>IPK</sup>
, induces a transformed phenotype in NIH3T3 cells (
<italic toggle="yes">28</italic>
,
<italic toggle="yes">56</italic>
,
<italic toggle="yes">57</italic>
). We also demonstrated that P58
<sup>IPK</sup>
possesses oncogenic properties that are independent of PKR, since the overexpression of P58
<sup>IPK</sup>
ΔTPR6, which fails to interact with or inhibit PKR, also induces a transformed phenotype (
<italic toggle="yes">
<xref rid="bi020397eb00029" ref-type="bibr"></xref>
</italic>
). Taken together, these studies indicate that regulation of PKR and P58
<sup>IPK</sup>
function is critical for maintaining control of cell growth and proliferation. Thus, P52
<sup>rIPK</sup>
may itself possess antiproliferative properties by modulating the oncogenic potential of P58
<sup>IPK</sup>
. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Marlene Wambach and Cecelia Boyer for excellent technical assistance and Drs. Ara Hovanessian and Thomas Dever for anti-PKR 71/10 Mab and rabbit antiserum to yeast eIF2α, respectively. We also thank Michael Bates for assistance in figure preparation and Dr. Brenda Fredericksen for critical review of the manuscript. </p>
</ack>
<ref-list>
<title>References</title>
<ref id="bi020397eb00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brostrom</surname>
<given-names>C. O.</given-names>
</name>
<name name-style="western">
<surname>Brostrom</surname>
<given-names>M. A.</given-names>
</name>
<article-title>Regulation of translational initiation during cellular responses to stress</article-title>
<source>Prog. Nucleic Acid Res. Mol. Biol.</source>
<year>1998</year>
<volume>58</volume>
<fpage>79</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="doi">10.1016/S0079-6603(08)60034-3</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sheikh</surname>
<given-names>M. S.</given-names>
</name>
<name name-style="western">
<surname>Fornance</surname>
<given-names>A. J.</given-names>
<suffix>Jr.</suffix>
</name>
<article-title>Regulation of translation initiation following stress</article-title>
<source>Oncogene</source>
<year>1999</year>
<volume>18</volume>
<fpage>6121</fpage>
<lpage>6128</lpage>
<pub-id pub-id-type="doi">10.1038/sj.onc.1203131</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Tan</surname>
<given-names>S.-L.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Translational control of viral gene expression in eukaryotes</article-title>
<source>Microbiol. Mol. Biol. Rev.</source>
<year>2000</year>
<volume>64</volume>
<fpage>239</fpage>
<lpage>280</lpage>
<pub-id pub-id-type="doi">10.1128/MMBR.64.2.239-280.2000</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Frederickson</surname>
<given-names>R. M.</given-names>
</name>
<name name-style="western">
<surname>Sonenberg</surname>
<given-names>N.</given-names>
</name>
<article-title>Signal transduction and regulation of translation initiation</article-title>
<source>Semin. Cell Biol.</source>
<year>1992</year>
<volume>3</volume>
<fpage>107</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="doi">10.1016/S1043-4682(10)80020-0</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00005">
<mixed-citation>
<name name-style="western">
<surname>Merrick</surname>
<given-names>W. C.</given-names>
</name>
,
<name name-style="western">
<surname>and Hershey</surname>
<given-names>J. W. B.</given-names>
</name>
(1996) The pathway and mechanism of eukaryotic protein synthesis, in
<italic toggle="yes">Translational control</italic>
(
<name name-style="western">
<surname>Hershey</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Mathews</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>and Sonenberg</surname>
<given-names>N.</given-names>
</name>
, Eds.) pp 31−70, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00006">
<mixed-citation>
<name name-style="western">
<surname>Clemens</surname>
<given-names>M. J.</given-names>
</name>
(1996) Protein kinases that phosphorylate eIF-2 and eIF-2B, and their role in eukaryotic cell translational control, in
<italic toggle="yes">Translational control</italic>
(
<name name-style="western">
<surname>Hershey</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Mathews</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>and Sonenberg</surname>
<given-names>N.</given-names>
</name>
, Eds.) pp 139−172, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Silverman</surname>
<given-names>R. H.</given-names>
</name>
<name name-style="western">
<surname>Williams</surname>
<given-names>B. R. G.</given-names>
</name>
<article-title>Translational control perks up</article-title>
<source>Nature</source>
<year>1999</year>
<volume>397</volume>
<fpage>208</fpage>
<lpage>211</lpage>
<pub-id pub-id-type="doi">10.1038/16586</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hinnebusch</surname>
<given-names>A. G.</given-names>
</name>
<article-title>The eIF-2α kinases: regulators of protein synthesis in starvation and stress</article-title>
<source>Semin. Cell Biol.</source>
<year>1994</year>
<volume>5</volume>
<fpage>417</fpage>
<lpage>426</lpage>
<pub-id pub-id-type="doi">10.1006/scel.1994.1049</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00009">
<mixed-citation>
<name name-style="western">
<surname>Chen</surname>
<given-names>J.-J.</given-names>
</name>
(2000) Heme-regulated eIF2α kinase, in
<italic toggle="yes">Translational control of gene expression</italic>
(
<name name-style="western">
<surname>Sonenberg</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Hershey</surname>
<given-names>J. W. B.</given-names>
</name>
,
<name name-style="western">
<surname>and Mathews</surname>
<given-names>M. B.</given-names>
</name>
, Eds.) pp 529−546, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00010">
<mixed-citation>
<name name-style="western">
<surname>Hinnebusch</surname>
<given-names>A. G.</given-names>
</name>
(1996) Translational control of GCN4:  gene-specific regulation by phosphorylation of eIF2, in
<italic toggle="yes">Translational control</italic>
(
<name name-style="western">
<surname>Hershey</surname>
<given-names>J.</given-names>
</name>
,
<name name-style="western">
<surname>Mathews</surname>
<given-names>M.</given-names>
</name>
,
<name name-style="western">
<surname>and Sonenberg</surname>
<given-names>N.</given-names>
</name>
, Eds.) pp 199−244, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sood</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Porter</surname>
<given-names>A. C.</given-names>
</name>
<name name-style="western">
<surname>Olsen</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Cavener</surname>
<given-names>D. R.</given-names>
</name>
<name name-style="western">
<surname>Wek</surname>
<given-names>R. C.</given-names>
</name>
<article-title>A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α</article-title>
<source>Genetics</source>
<year>2000</year>
<volume>154</volume>
<fpage>787</fpage>
<lpage>801</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Olsen</surname>
<given-names>D. S.</given-names>
</name>
<name name-style="western">
<surname>Jordan</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Wek</surname>
<given-names>R. C.</given-names>
</name>
<name name-style="western">
<surname>Cavener</surname>
<given-names>D. R.</given-names>
</name>
<article-title>Isolation of the gene encoding the Drosophila melanogaster homologue of the Saccharomyces cerevisiae GCN2 eIF-2α kinase</article-title>
<source>Genetics</source>
<year>1998</year>
<volume>149</volume>
<fpage>1495</fpage>
<lpage>1509</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Berlanga</surname>
<given-names>J. J.</given-names>
</name>
<name name-style="western">
<surname>Santoyo</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>de Haro</surname>
<given-names>C.</given-names>
</name>
<article-title>Characterization of a mammalian homologue of the GCN2 eukaryotic initiation factor 2α kinase</article-title>
<source>Eur. J. Biochem.</source>
<year>1998</year>
<volume>265</volume>
<fpage>754</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1046/j.1432-1327.1999.00780.x</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00014">
<mixed-citation>
<name name-style="western">
<surname>Ron</surname>
<given-names>D.</given-names>
</name>
,
<name name-style="western">
<surname>and Harding</surname>
<given-names>H. P.</given-names>
</name>
(2000) Perk and translational control by stress in the endoplasmic reticulum, in
<italic toggle="yes">Translational control of gene expression</italic>
(
<name name-style="western">
<surname>Sonenberg</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Hershey</surname>
<given-names>J. W. B.</given-names>
</name>
,
<name name-style="western">
<surname>and Mathews</surname>
<given-names>M. B.</given-names>
</name>
, Eds.) pp 547−560, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Harding</surname>
<given-names>H. P.</given-names>
</name>
<name name-style="western">
<surname>Zhang</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Bertolotti</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Zeng</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Ron</surname>
<given-names>D.</given-names>
</name>
<article-title>Perk is essential for translational regulation and cell survival during the unfolded protein response</article-title>
<source>Mol. Cell</source>
<year>2000</year>
<volume>5</volume>
<fpage>897</fpage>
<lpage>904</lpage>
<pub-id pub-id-type="doi">10.1016/S1097-2765(00)80330-5</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00016">
<mixed-citation>
<name name-style="western">
<surname>Williams</surname>
<given-names>B. R. G.</given-names>
</name>
(1997) Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation,
<italic toggle="yes">Biochem. Soc. Trans. 25</italic>
.</mixed-citation>
</ref>
<ref id="bi020397eb00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Clemens</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Elia</surname>
<given-names>A.</given-names>
</name>
<article-title>The double-stranded RNA-dependent protein kinase PKR: structure and function</article-title>
<source>J. Interferon Cytokine Res.</source>
<year>1997</year>
<volume>17</volume>
<fpage>503</fpage>
<lpage>524</lpage>
<pub-id pub-id-type="doi">10.1089/jir.1997.17.503</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase</article-title>
<source>Pharmacol. Ther.</source>
<year>1998</year>
<volume>78</volume>
<fpage>29</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="doi">10.1016/S0163-7258(97)00165-4</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kumar</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Yang</surname>
<given-names>Y.-L.</given-names>
</name>
<name name-style="western">
<surname>Flati</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Der</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Kadereit</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Deb</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Haque</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Reis</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Weissmann</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Williams</surname>
<given-names>B. R. G.</given-names>
</name>
<article-title>Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-κB</article-title>
<source>EMBO J.</source>
<year>1997</year>
<volume>16</volume>
<fpage>406</fpage>
<lpage>416</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/16.2.406</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00020">
<mixed-citation>
<name name-style="western">
<surname>Kaufman</surname>
<given-names>R. J.</given-names>
</name>
(2000) Double-stranded RNA-activated protein kinase PKR, in
<italic toggle="yes">Translational control of gene expression</italic>
(
<name name-style="western">
<surname>Sonenberg</surname>
<given-names>N.</given-names>
</name>
,
<name name-style="western">
<surname>Hershey</surname>
<given-names>J. W. B.</given-names>
</name>
,
<name name-style="western">
<surname>and Mathews</surname>
<given-names>M. B.</given-names>
</name>
, Eds.) pp 503−528, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lee</surname>
<given-names>T. G.</given-names>
</name>
<name name-style="western">
<surname>Tang</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Thompson</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide repeat family of proteins</article-title>
<source>Mol. Cell. Biol.</source>
<year>1994</year>
<volume>14</volume>
<fpage>2331</fpage>
<lpage>2342</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Tan</surname>
<given-names>S.-L.</given-names>
</name>
<name name-style="western">
<surname>Gale</surname>
<given-names>M. J.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Double-stranded RNA-independent dimerization of interferon-induced protein kinase PKR and inhibition of dimerization by the cellular P58IPK inhibitor</article-title>
<source>Mol. Cell. Biol.</source>
<year>1998</year>
<volume>18</volume>
<fpage>2431</fpage>
<lpage>2443</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Melville</surname>
<given-names>M. W.</given-names>
</name>
<name name-style="western">
<surname>Tan</surname>
<given-names>S.-L.</given-names>
</name>
<name name-style="western">
<surname>Wambach</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Song</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Morimoto</surname>
<given-names>R. I.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>The cellular inhibitor of the PKR protein kinase, P58IPK, is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>3797</fpage>
<lpage>3803</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.6.3797</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Tan</surname>
<given-names>S.-L.</given-names>
</name>
<name name-style="western">
<surname>Wambach</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Interaction of the interferon-induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by 11887 unique domains: implications for kinase regulation</article-title>
<source>Mol. Cell. Biol.</source>
<year>1996</year>
<volume>16</volume>
<fpage>4172</fpage>
<lpage>4181</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Tang</surname>
<given-names>N. M.</given-names>
</name>
<name name-style="western">
<surname>Ho</surname>
<given-names>C. Y.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>The 58-kDa cellular inhibitor of the double stranded RNA-dependent protein kinase requires the tetratricopeptide repeat 6 and DnaJ motifs to stimulate protein synthesis in vivo</article-title>
<source>J. Biol. Chem.</source>
<year>1996</year>
<volume>271</volume>
<fpage>28660</fpage>
<lpage>28666</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.271.45.28660</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Yan</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Gale</surname>
<given-names>M. J.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Tan</surname>
<given-names>S.-L.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58IPK does not require J-domain function</article-title>
<source>Biochemistry</source>
<year>2002</year>
<volume>41</volume>
<fpage>4938</fpage>
<lpage>4945</lpage>
<pub-id pub-id-type="doi">10.1021/bi0121499</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Melville</surname>
<given-names>M. W.</given-names>
</name>
<name name-style="western">
<surname>Hansen</surname>
<given-names>W. J.</given-names>
</name>
<name name-style="western">
<surname>Freeman</surname>
<given-names>B. C.</given-names>
</name>
<name name-style="western">
<surname>Welch</surname>
<given-names>W. J.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>The molecular chaperone hsp40 regulates the activity of P58IPK, the cellular inhibitor of PKR</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1997</year>
<volume>94</volume>
<fpage>97</fpage>
<lpage>102</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.94.1.97</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Barber</surname>
<given-names>G. N.</given-names>
</name>
<name name-style="western">
<surname>Thompson</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Lee</surname>
<given-names>T. G.</given-names>
</name>
<name name-style="western">
<surname>Strom</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Jagus</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Darveau</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1994</year>
<volume>91</volume>
<fpage>4278</fpage>
<lpage>4282</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.91.10.4278</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Tang</surname>
<given-names>N. M.</given-names>
</name>
<name name-style="western">
<surname>Korth</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Wambach</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Der</surname>
<given-names>S. D.</given-names>
</name>
<name name-style="western">
<surname>Bandyopadhyay</surname>
<given-names>S. K.</given-names>
</name>
<name name-style="western">
<surname>Williams</surname>
<given-names>B. R. G.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Inhibition of double-stranded RNA- and tumor necrosis factor alpha-mediated apoptosis by tetratricopeptide repeat protein and cochaperone, P58IPK</article-title>
<source>Mol. Cell. Biol.</source>
<year>1999</year>
<volume>19</volume>
<fpage>4757</fpage>
<lpage>4765</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00030">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Blakely</surname>
<given-names>C. M.</given-names>
</name>
<name name-style="western">
<surname>Hopkins</surname>
<given-names>D. A.</given-names>
</name>
<name name-style="western">
<surname>Melville</surname>
<given-names>M. W.</given-names>
</name>
<name name-style="western">
<surname>Wambach</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Romano</surname>
<given-names>P. R.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK</article-title>
<source>Mol. Cell. Biol.</source>
<year>1998</year>
<volume>18</volume>
<fpage>859</fpage>
<lpage>871</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00031">
<mixed-citation>
<name name-style="western">
<surname>Cesareni</surname>
<given-names>G.</given-names>
</name>
,
<name name-style="western">
<surname>and Murray</surname>
<given-names>J. A. H.</given-names>
</name>
(1987) Plasmid vectors carrying the replication origin of filamentous single-stranded phages, in
<italic toggle="yes">Genetic engineering:  principles and methods</italic>
(
<name name-style="western">
<surname>Setlow</surname>
<given-names>J.</given-names>
</name>
, Ed.) 1st ed., pp 135−154, Plenum Publishing Corp., New York.</mixed-citation>
</ref>
<ref id="bi020397eb00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Laurent</surname>
<given-names>A. G.</given-names>
</name>
<name name-style="western">
<surname>Krust</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Galabru</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Svab</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Hovanessian</surname>
<given-names>A. G.</given-names>
</name>
<article-title>Monoclonal antibodies to interferon induced 68,000 Mr protein and their use for the detection of double-stranded RNA dependent protein kinase in human cells</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1985</year>
<volume>82</volume>
<fpage>4341</fpage>
<lpage>4345</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.82.13.4341</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00033">
<mixed-citation>
<name name-style="western">
<surname>Harlow</surname>
<given-names>E.</given-names>
</name>
,
<name name-style="western">
<surname>and Lane</surname>
<given-names>D.</given-names>
</name>
(1988)
<italic toggle="yes">Antibodies:  a laboratory manual</italic>
, pp 310−310, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</mixed-citation>
</ref>
<ref id="bi020397eb00034">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Romano</surname>
<given-names>P. R.</given-names>
</name>
<name name-style="western">
<surname>Green</surname>
<given-names>S. R.</given-names>
</name>
<name name-style="western">
<surname>Barber</surname>
<given-names>G. N.</given-names>
</name>
<name name-style="western">
<surname>Mathews</surname>
<given-names>M. B.</given-names>
</name>
<name name-style="western">
<surname>Hinnebusch</surname>
<given-names>A. G.</given-names>
</name>
<article-title>Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI, in Saccharomyces cerevisiae</article-title>
<source>Mol. Cell. Biol.</source>
<year>1995</year>
<volume>15</volume>
<fpage>365</fpage>
<lpage>378</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Dever</surname>
<given-names>T. E.</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>J.-J.</given-names>
</name>
<name name-style="western">
<surname>Barber</surname>
<given-names>G. N.</given-names>
</name>
<name name-style="western">
<surname>Cigan</surname>
<given-names>A. M.</given-names>
</name>
<name name-style="western">
<surname>Feng</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Donahue</surname>
<given-names>T. F.</given-names>
</name>
<name name-style="western">
<surname>London</surname>
<given-names>I. M.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<name name-style="western">
<surname>Hinnebusch</surname>
<given-names>A. G.</given-names>
</name>
<article-title>Mammalian eukaryotic initiation factor elF2α kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1993</year>
<volume>90</volume>
<fpage>4616</fpage>
<lpage>4620</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.90.10.4616</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hickey</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Brandon</surname>
<given-names>S. E.</given-names>
</name>
<name name-style="western">
<surname>Smale</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Lloyd</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Weber</surname>
<given-names>L. A.</given-names>
</name>
<article-title>Sequence and regulation of a gene encoding a human 89 kilodalton heat shock protein</article-title>
<source>Mol. Cell. Biol.</source>
<year>1989</year>
<volume>9</volume>
<fpage>2615</fpage>
<lpage>2626</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00037">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stebbins</surname>
<given-names>C. E.</given-names>
</name>
<name name-style="western">
<surname>Russo</surname>
<given-names>A. A.</given-names>
</name>
<name name-style="western">
<surname>Schneider</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Rosen</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Hartl</surname>
<given-names>F. U.</given-names>
</name>
<name name-style="western">
<surname>Pavletich</surname>
<given-names>N. P.</given-names>
</name>
<article-title>Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent</article-title>
<source>Cell</source>
<year>1997</year>
<volume>89</volume>
<fpage>239</fpage>
<lpage>250</lpage>
<pub-id pub-id-type="doi">10.1016/S0092-8674(00)80203-2</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ramsey</surname>
<given-names>A. J.</given-names>
</name>
<name name-style="western">
<surname>Russell</surname>
<given-names>L. C.</given-names>
</name>
<name name-style="western">
<surname>Whitt</surname>
<given-names>S. R.</given-names>
</name>
<name name-style="western">
<surname>Chinkers</surname>
<given-names>M.</given-names>
</name>
<article-title>Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>17857</fpage>
<lpage>17862</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M001625200</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00039">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Russell</surname>
<given-names>L. C.</given-names>
</name>
<name name-style="western">
<surname>Whitt</surname>
<given-names>S. R.</given-names>
</name>
<name name-style="western">
<surname>Chen</surname>
<given-names>M. S.</given-names>
</name>
<name name-style="western">
<surname>Chinkers</surname>
<given-names>M.</given-names>
</name>
<article-title>Identification of conserved residues required for the binding of tetratricopeptide repeat domain to heat shock protein 90</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>20060</fpage>
<lpage>20063</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.29.20060</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00040">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Chen</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Sullivan</surname>
<given-names>W. P.</given-names>
</name>
<name name-style="western">
<surname>Toft</surname>
<given-names>D. O.</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>D. F.</given-names>
</name>
<article-title>Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52, and FKBP51 with Hsp90 mutants</article-title>
<source>Cell Stress Chaperones</source>
<year>2000</year>
<volume>3</volume>
<fpage>118</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="doi">10.1379/1466-1268(1998)003%3C0118:DIOPAT%3E2.3.CO;2</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00041">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Blatch</surname>
<given-names>G. L.</given-names>
</name>
<name name-style="western">
<surname>Lässle</surname>
<given-names>M.</given-names>
</name>
<article-title>The tetratricopeptide repeat: a structural motif mediating protein-protein interactions</article-title>
<source>BioEssays</source>
<year>1999</year>
<volume>21</volume>
<fpage>932</fpage>
<lpage>939</lpage>
<pub-id pub-id-type="doi">10.1002/(SICI)1521-1878(199911)21:11%3C932::AID-BIES5%3E3.0.CO;2-N</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00042">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Korth</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Tang</surname>
<given-names>N. M.</given-names>
</name>
<name name-style="western">
<surname>Tan</surname>
<given-names>S.-L.</given-names>
</name>
<name name-style="western">
<surname>Hopkins</surname>
<given-names>D. A.</given-names>
</name>
<name name-style="western">
<surname>Dever</surname>
<given-names>T. E.</given-names>
</name>
<name name-style="western">
<surname>Polyak</surname>
<given-names>S. J.</given-names>
</name>
<name name-style="western">
<surname>Gretch</surname>
<given-names>D. R.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein</article-title>
<source>Virology</source>
<year>1997</year>
<volume>230</volume>
<fpage>217</fpage>
<lpage>227</lpage>
<pub-id pub-id-type="doi">10.1006/viro.1997.8493</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00043">
<element-citation publication-type="journal">
<name name-style="western">
<surname>McLauchlan</surname>
<given-names>J.</given-names>
</name>
<article-title>Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes</article-title>
<source>J. Viral Hepatitis</source>
<year>2000</year>
<volume>7</volume>
<fpage>2</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="doi">10.1046/j.1365-2893.2000.00201.x</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00044">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sikorski</surname>
<given-names>R. S.</given-names>
</name>
<name name-style="western">
<surname>Michaud</surname>
<given-names>W. A.</given-names>
</name>
<name name-style="western">
<surname>Wootton</surname>
<given-names>J. C.</given-names>
</name>
<name name-style="western">
<surname>Boguski</surname>
<given-names>M. S.</given-names>
</name>
<name name-style="western">
<surname>Connelly</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Hieter</surname>
<given-names>P.</given-names>
</name>
<article-title>TPR proteins as essential components of the yeast cell cycle</article-title>
<source>Cold Spring Harbor Symp. Quant. Biol.</source>
<year>1991</year>
<volume>56</volume>
<fpage>663</fpage>
<lpage>673</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00045">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stepanova</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Leng</surname>
<given-names>X.</given-names>
</name>
<name name-style="western">
<surname>Harper</surname>
<given-names>J. W.</given-names>
</name>
<article-title>Analysis of mammalian Cdc37, a protein kinase targeting subunit of heat shock protein 90</article-title>
<source>Methods Enzymol.</source>
<year>1997</year>
<volume>283</volume>
<fpage>220</fpage>
<lpage>229</lpage>
<pub-id pub-id-type="doi">10.1016/S0076-6879(97)83018-2</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00046">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Prodromou</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Siligardi</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>O'Brien</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Woolfson</surname>
<given-names>D. N.</given-names>
</name>
<name name-style="western">
<surname>Regan</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Panaretou</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Ladbury</surname>
<given-names>J. E.</given-names>
</name>
<name name-style="western">
<surname>Piper</surname>
<given-names>P. W.</given-names>
</name>
<name name-style="western">
<surname>Pearl</surname>
<given-names>L. H.</given-names>
</name>
<article-title>Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones</article-title>
<source>EMBO J.</source>
<year>1999</year>
<volume>18</volume>
<fpage>754</fpage>
<lpage>762</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/18.3.754</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00047">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Carrello</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Ingley</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Minchin</surname>
<given-names>R. F.</given-names>
</name>
<name name-style="western">
<surname>Tsai</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Ratajczak</surname>
<given-names>T.</given-names>
</name>
<article-title>The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90</article-title>
<source>J. Biol. Chem.</source>
<year>1999</year>
<volume>274</volume>
<fpage>2682</fpage>
<lpage>2689</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.274.5.2682</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00048">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Young</surname>
<given-names>J. C.</given-names>
</name>
<name name-style="western">
<surname>Oberman</surname>
<given-names>W. M. J.</given-names>
</name>
<name name-style="western">
<surname>Hartl</surname>
<given-names>F. U.</given-names>
</name>
<article-title>Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90</article-title>
<source>J. Biol. Chem.</source>
<year>1998</year>
<volume>273</volume>
<fpage>18007</fpage>
<lpage>18010</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.273.29.18007</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00049">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Leverson</surname>
<given-names>J. D.</given-names>
</name>
<name name-style="western">
<surname>Ness</surname>
<given-names>S. A.</given-names>
</name>
<article-title>Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism</article-title>
<source>Mol. Cell</source>
<year>1998</year>
<volume>1</volume>
<fpage>203</fpage>
<lpage>211</lpage>
<pub-id pub-id-type="doi">10.1016/S1097-2765(00)80021-0</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00050">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Callahan</surname>
<given-names>M. A.</given-names>
</name>
<name name-style="western">
<surname>Handley</surname>
<given-names>M. A.</given-names>
</name>
<name name-style="western">
<surname>Lee</surname>
<given-names>Y. H.</given-names>
</name>
<name name-style="western">
<surname>Talbot</surname>
<given-names>K. J.</given-names>
</name>
<name name-style="western">
<surname>Harper</surname>
<given-names>J. W.</given-names>
</name>
<name name-style="western">
<surname>Panganiban</surname>
<given-names>A. T.</given-names>
</name>
<article-title>Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family</article-title>
<source>J. Virol.</source>
<year>1998</year>
<volume>72</volume>
<fpage>5189</fpage>
<lpage>5197</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00051">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Scheuner</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Song</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>McEwen</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Liu</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Laybutt</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Gillespie</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Saunders</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Bonner-Weir</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Kaufman</surname>
<given-names>R. J.</given-names>
</name>
<article-title>Translational control is required for the unfolded protein response and in vivo glucose homeostasis</article-title>
<source>Mol. Cell</source>
<year>2001</year>
<volume>7</volume>
<fpage>1165</fpage>
<lpage>1176</lpage>
<pub-id pub-id-type="doi">10.1016/S1097-2765(01)00265-9</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00052">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Patel</surname>
<given-names>C. V.</given-names>
</name>
<name name-style="western">
<surname>Handy</surname>
<given-names>I.</given-names>
</name>
<name name-style="western">
<surname>Goldsmith</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Patel</surname>
<given-names>R. C.</given-names>
</name>
<article-title>PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR</article-title>
<source>J. Biol. Chem.</source>
<year>2000</year>
<volume>275</volume>
<fpage>37993</fpage>
<lpage>37998</lpage>
<pub-id pub-id-type="doi">10.1074/jbc.M004762200</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00053">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Koromilas</surname>
<given-names>A. E.</given-names>
</name>
<name name-style="western">
<surname>Roy</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Barber</surname>
<given-names>G. N.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<name name-style="western">
<surname>Sonenberg</surname>
<given-names>N.</given-names>
</name>
<article-title>Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase</article-title>
<source>Science</source>
<year>1992</year>
<volume>257</volume>
<fpage>1685</fpage>
<lpage>1689</lpage>
<pub-id pub-id-type="doi">10.1126/science.1382315</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00054">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Barber</surname>
<given-names>G. N.</given-names>
</name>
<name name-style="western">
<surname>Wambach</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Thompson</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Jagus</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation</article-title>
<source>Mol. Cell. Biol.</source>
<year>1995</year>
<volume>15</volume>
<fpage>3138</fpage>
<lpage>3146</lpage>
</element-citation>
</ref>
<ref id="bi020397eb00055">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Balachandran</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Kim</surname>
<given-names>C. N.</given-names>
</name>
<name name-style="western">
<surname>Yeh</surname>
<given-names>W.-C.</given-names>
</name>
<name name-style="western">
<surname>Mak</surname>
<given-names>T. W.</given-names>
</name>
<name name-style="western">
<surname>Barber</surname>
<given-names>G. N.</given-names>
</name>
<article-title>Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling</article-title>
<source>EMBO J.</source>
<year>1998</year>
<volume>17</volume>
<fpage>6888</fpage>
<lpage>6902</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/17.23.6888</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00056">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Benkirane</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Neuveut</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Chun</surname>
<given-names>R. F.</given-names>
</name>
<name name-style="western">
<surname>Smith</surname>
<given-names>S. M.</given-names>
</name>
<name name-style="western">
<surname>Samuel</surname>
<given-names>C. E.</given-names>
</name>
<name name-style="western">
<surname>Gatignol</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Jeang</surname>
<given-names>K.-T.</given-names>
</name>
<article-title>Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR</article-title>
<source>EMBO J.</source>
<year>1997</year>
<volume>16</volume>
<fpage>611</fpage>
<lpage>624</lpage>
<pub-id pub-id-type="doi">10.1093/emboj/16.3.611</pub-id>
</element-citation>
</ref>
<ref id="bi020397eb00057">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gale</surname>
<given-names>M.</given-names>
<suffix>Jr.</suffix>
</name>
<name name-style="western">
<surname>Kwieciszewski</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Dossett</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Nakao</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Katze</surname>
<given-names>M. G.</given-names>
</name>
<article-title>Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase</article-title>
<source>J. Virol.</source>
<year>1999</year>
<volume>73</volume>
<fpage>6506</fpage>
<lpage>6516</lpage>
</element-citation>
</ref>
<ref id="bi020397en00001">
<mixed-citation>
<comment>Abbreviations:  aa, amino acid; dsRNA, double-stranded RNA; eIF2, eukaryotic initiation factor 2; ER, endoplasmic reticulum; IEF, isoelectric focusing; IFN, interferon; PKR, protein kinase RNA dependent; TPR, tetratricopeptide repeat.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE,</namePart>
<namePart type="given">Michael</namePart>
<affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</affiliation>
<affiliation> University of Texas Southwestern Medical Center.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">BLAKELY</namePart>
<namePart type="given">Collin M.</namePart>
<affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</affiliation>
<affiliation> University of Washington.</affiliation>
<affiliation> Current address:  University of Pennsylvania School of Medicine,Philadelphia, PA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">DARVEAU</namePart>
<namePart type="given">André</namePart>
<affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</affiliation>
<affiliation> Université Laval.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">ROMANO</namePart>
<namePart type="given">Patrick R.</namePart>
<affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</affiliation>
<affiliation> Thomas Jefferson University.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">KORTH</namePart>
<namePart type="given">Marcus J.</namePart>
<affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</affiliation>
<affiliation> University of Washington.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">KATZE</namePart>
<namePart type="given">Michael G.</namePart>
<affiliation>Department of Microbiology and The Simmons Comprehensive Cancer Center, University of Texas SouthwesternMedical Center, Dallas, Texas 75390, Department of Microbiology, University of Washington, Seattle, Washington 98195,Département de Biochimie et Microbiologie, Université Laval, Québec, Canada, and Thomas Jefferson University and theJefferson Center for Biomedical Research, Doylestown, Pennsylvania 18901</affiliation>
<affiliation> University of Washington.</affiliation>
<affiliation> To whom correspondence should be addressed. Tel:  206-732-6136.Fax:  206-732-6056. E-mail:  honey@u.washington.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2002-08-20</dateCreated>
<dateIssued encoding="w3cdtf">2002-10-01</dateIssued>
<copyrightDate encoding="w3cdtf">2002</copyrightDate>
</originInfo>
<note type="footnote" ID="bi020397eAF2"> Financial support was provided by National Institutes of Health Grants AI22646 (to M.G.K.) and AI48235 (to M.G.). M.G. also received support from the Helen Hay Whitney Foundation and the State of Texas Applied Research Program (no. 0138-1999).</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>The 52 kDa protein referred to as P52rIPK was first identified as a regulator of P58IPK, a cellular inhibitor of the RNA-dependent protein kinase (PKR). P52rIPK and P58IPK each possess structural domains implicated in stress signaling, including the charged domain of P52rIPK and the tetratricopeptide repeat (TPR) and DnaJ domains of P58IPK. The P52rIPK charged domain exhibits homology to the charged domains of Hsp90, including the Hsp90 geldanamycin-binding domain. Here we present an in-depth analysis of P52rIPK function and expression, which first revealed that the 114 amino acid charged domain was necessary and sufficient for interaction with P58IPK. This domain bound specifically to P58IPK TPR domain 7, the domain adjacent to the TPR motif required for P58IPK interaction with PKR, thus providing a mechanism for P52rIPK inhibition of P58IPK function. Both the charged domain of P52rIPK and the TPR 7 domain of P58IPK were required for P52rIPK to mediate downstream control of PKR activity, eIF2α phosphorylation, and cell growth. Furthermore, we found that P52rIPK and P58IPK formed a stable intracellular complex during the acute response to cytoplasmic stress induced by a variety of stimuli. We propose a model in which the P52rIPK charged domain functions as a TPR-specific signaling motif to directly regulate P58IPK within a larger cytoplasmic stress signaling cascade culminating in the control of PKR activity and cellular mRNA translation.</abstract>
<note type="footnote" ID="bi020397eAF2"> Financial support was provided by National Institutes of Health Grants AI22646 (to M.G.K.) and AI48235 (to M.G.). M.G. also received support from the Helen Hay Whitney Foundation and the State of Texas Applied Research Program (no. 0138-1999).</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biochemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">0006-2960</identifier>
<identifier type="eISSN">1520-4995</identifier>
<identifier type="acspubs">bi</identifier>
<identifier type="coden">BICHAW</identifier>
<identifier type="uri">pubs.acs.org/biochemistry</identifier>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>11878</start>
<end>11887</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00001" displayLabel="bibbi020397eb00001">
<titleInfo>
<title>Regulation of translational initiation during cellular responses to stress</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Regulation of translational initiation during cellular responses to stress</title>
</titleInfo>
<name type="personal">
<namePart type="family">BROSTROM</namePart>
<namePart type="given">C. O.</namePart>
</name>
<name type="personal">
<namePart type="family">BROSTROM</namePart>
<namePart type="given">M. A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Prog. Nucleic Acid Res. Mol. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<extent unit="pages">
<start>79</start>
<end>125</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00002" displayLabel="bibbi020397eb00002">
<titleInfo>
<title>Regulation of translation initiation following stress</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Regulation of translation initiation following stress</title>
</titleInfo>
<name type="personal">
<namePart type="family">SHEIKH</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">FORNANCE</namePart>
<namePart type="given">A. J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Oncogene</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>6121</start>
<end>6128</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00003" displayLabel="bibbi020397eb00003">
<titleInfo>
<title>Translational control of viral gene expression in eukaryotes</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Translational control of viral gene expression in eukaryotes</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">TAN</namePart>
<namePart type="given">S.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Microbiol. Mol. Biol. Rev.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>64</number>
</detail>
<extent unit="pages">
<start>239</start>
<end>280</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00004" displayLabel="bibbi020397eb00004">
<titleInfo>
<title>Signal transduction and regulation of translation initiation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Signal transduction and regulation of translation initiation</title>
</titleInfo>
<name type="personal">
<namePart type="family">FREDERICKSON</namePart>
<namePart type="given">R. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Semin. Cell Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>107</start>
<end>115</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00005" displayLabel="bibbi020397eb00005">
<name type="personal">
<namePart type="family">MERRICK</namePart>
<namePart type="given">W. C.</namePart>
</name>
<name type="personal">
<namePart type="family">AND HERSHEY</namePart>
<namePart type="given">J. W. B.</namePart>
</name>
<name type="personal">
<namePart type="family">HERSHEY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MATHEWS</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">AND SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<titleInfo>
<title>Translational control</title>
</titleInfo>
<note type="content-in-line">MerrickW. C., and HersheyJ. W. B. (1996) The pathway and mechanism of eukaryotic protein synthesis, in Translational control (HersheyJ., MathewsM., and SonenbergN., Eds.) pp 31−70, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00006" displayLabel="bibbi020397eb00006">
<name type="personal">
<namePart type="family">CLEMENS</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">HERSHEY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MATHEWS</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">AND SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<titleInfo>
<title>Translational control</title>
</titleInfo>
<note type="content-in-line">ClemensM. J. (1996) Protein kinases that phosphorylate eIF-2 and eIF-2B, and their role in eukaryotic cell translational control, in Translational control (HersheyJ., MathewsM., and SonenbergN., Eds.) pp 139−172, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00007" displayLabel="bibbi020397eb00007">
<titleInfo>
<title>Translational control perks up</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Translational control perks up</title>
</titleInfo>
<name type="personal">
<namePart type="family">SILVERMAN</namePart>
<namePart type="given">R. H.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLIAMS</namePart>
<namePart type="given">B. R. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>397</number>
</detail>
<extent unit="pages">
<start>208</start>
<end>211</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00008" displayLabel="bibbi020397eb00008">
<titleInfo>
<title>The eIF-2α kinases: regulators of protein synthesis in starvation and stress</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The eIF-2α kinases: regulators of protein synthesis in starvation and stress</title>
</titleInfo>
<name type="personal">
<namePart type="family">HINNEBUSCH</namePart>
<namePart type="given">A. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Semin. Cell Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>417</start>
<end>426</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00009" displayLabel="bibbi020397eb00009">
<name type="personal">
<namePart type="family">CHEN</namePart>
<namePart type="given">J.-J.</namePart>
</name>
<name type="personal">
<namePart type="family">SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">HERSHEY</namePart>
<namePart type="given">J. W. B.</namePart>
</name>
<name type="personal">
<namePart type="family">AND MATHEWS</namePart>
<namePart type="given">M. B.</namePart>
</name>
<titleInfo>
<title>Translational control of gene expression</title>
</titleInfo>
<note type="content-in-line">ChenJ.-J. (2000) Heme-regulated eIF2α kinase, in Translational control of gene expression (SonenbergN., HersheyJ. W. B., and MathewsM. B., Eds.) pp 529−546, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00010" displayLabel="bibbi020397eb00010">
<name type="personal">
<namePart type="family">HINNEBUSCH</namePart>
<namePart type="given">A. G.</namePart>
</name>
<name type="personal">
<namePart type="family">HERSHEY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MATHEWS</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">AND SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<titleInfo>
<title>Translational control</title>
</titleInfo>
<note type="content-in-line">HinnebuschA. G. (1996) Translational control of GCN4:  gene-specific regulation by phosphorylation of eIF2, in Translational control (HersheyJ., MathewsM., and SonenbergN., Eds.) pp 199−244, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00011" displayLabel="bibbi020397eb00011">
<titleInfo>
<title>A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2α</title>
</titleInfo>
<name type="personal">
<namePart type="family">SOOD</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">PORTER</namePart>
<namePart type="given">A. C.</namePart>
</name>
<name type="personal">
<namePart type="family">OLSEN</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">CAVENER</namePart>
<namePart type="given">D. R.</namePart>
</name>
<name type="personal">
<namePart type="family">WEK</namePart>
<namePart type="given">R. C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Genetics</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>154</number>
</detail>
<extent unit="pages">
<start>787</start>
<end>801</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00012" displayLabel="bibbi020397eb00012">
<titleInfo>
<title>Isolation of the gene encoding the Drosophila melanogaster homologue of the Saccharomyces cerevisiae GCN2 eIF-2α kinase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Isolation of the gene encoding the Drosophila melanogaster homologue of the Saccharomyces cerevisiae GCN2 eIF-2α kinase</title>
</titleInfo>
<name type="personal">
<namePart type="family">OLSEN</namePart>
<namePart type="given">D. S.</namePart>
</name>
<name type="personal">
<namePart type="family">JORDAN</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">CHEN</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">WEK</namePart>
<namePart type="given">R. C.</namePart>
</name>
<name type="personal">
<namePart type="family">CAVENER</namePart>
<namePart type="given">D. R.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Genetics</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>149</number>
</detail>
<extent unit="pages">
<start>1495</start>
<end>1509</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00013" displayLabel="bibbi020397eb00013">
<titleInfo>
<title>Characterization of a mammalian homologue of the GCN2 eukaryotic initiation factor 2α kinase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Characterization of a mammalian homologue of the GCN2 eukaryotic initiation factor 2α kinase</title>
</titleInfo>
<name type="personal">
<namePart type="family">BERLANGA</namePart>
<namePart type="given">J. J.</namePart>
</name>
<name type="personal">
<namePart type="family">SANTOYO</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">DE HARO</namePart>
<namePart type="given">C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Eur. J. Biochem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>265</number>
</detail>
<extent unit="pages">
<start>754</start>
<end>762</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00014" displayLabel="bibbi020397eb00014">
<name type="personal">
<namePart type="family">RON</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">AND HARDING</namePart>
<namePart type="given">H. P.</namePart>
</name>
<name type="personal">
<namePart type="family">SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">HERSHEY</namePart>
<namePart type="given">J. W. B.</namePart>
</name>
<name type="personal">
<namePart type="family">AND MATHEWS</namePart>
<namePart type="given">M. B.</namePart>
</name>
<titleInfo>
<title>Translational control of gene expression</title>
</titleInfo>
<note type="content-in-line">RonD., and HardingH. P. (2000) Perk and translational control by stress in the endoplasmic reticulum, in Translational control of gene expression (SonenbergN., HersheyJ. W. B., and MathewsM. B., Eds.) pp 547−560, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00015" displayLabel="bibbi020397eb00015">
<titleInfo>
<title>Perk is essential for translational regulation and cell survival during the unfolded protein response</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Perk is essential for translational regulation and cell survival during the unfolded protein response</title>
</titleInfo>
<name type="personal">
<namePart type="family">HARDING</namePart>
<namePart type="given">H. P.</namePart>
</name>
<name type="personal">
<namePart type="family">ZHANG</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">BERTOLOTTI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">ZENG</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">RON</namePart>
<namePart type="given">D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>897</start>
<end>904</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00016" displayLabel="bibbi020397eb00016">
<name type="personal">
<namePart type="family">WILLIAMS</namePart>
<namePart type="given">B. R. G.</namePart>
</name>
<titleInfo>
<title>Biochem. Soc. Trans. 25</title>
</titleInfo>
<note type="content-in-line">WilliamsB. R. G.(1997) Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation, Biochem. Soc. Trans. 25.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00017" displayLabel="bibbi020397eb00017">
<titleInfo>
<title>The double-stranded RNA-dependent protein kinase PKR: structure and function</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The double-stranded RNA-dependent protein kinase PKR: structure and function</title>
</titleInfo>
<name type="personal">
<namePart type="family">CLEMENS</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">ELIA</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Interferon Cytokine Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>503</start>
<end>524</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00018" displayLabel="bibbi020397eb00018">
<titleInfo>
<title>Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Pharmacol. Ther.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>78</number>
</detail>
<extent unit="pages">
<start>29</start>
<end>46</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00019" displayLabel="bibbi020397eb00019">
<titleInfo>
<title>Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-κB</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-κB</title>
</titleInfo>
<name type="personal">
<namePart type="family">KUMAR</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">YANG</namePart>
<namePart type="given">Y.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">FLATI</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">DER</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KADEREIT</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">DEB</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">HAQUE</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">REIS</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">WEISSMANN</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLIAMS</namePart>
<namePart type="given">B. R. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>406</start>
<end>416</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00020" displayLabel="bibbi020397eb00020">
<name type="personal">
<namePart type="family">KAUFMAN</namePart>
<namePart type="given">R. J.</namePart>
</name>
<name type="personal">
<namePart type="family">SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">HERSHEY</namePart>
<namePart type="given">J. W. B.</namePart>
</name>
<name type="personal">
<namePart type="family">AND MATHEWS</namePart>
<namePart type="given">M. B.</namePart>
</name>
<titleInfo>
<title>Translational control of gene expression</title>
</titleInfo>
<note type="content-in-line">KaufmanR. J. (2000) Double-stranded RNA-activated protein kinase PKR, in Translational control of gene expression (SonenbergN., HersheyJ. W. B., and MathewsM. B., Eds.) pp 503−528, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00021" displayLabel="bibbi020397eb00021">
<titleInfo>
<title>The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide repeat family of proteins</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the tetratricopeptide repeat family of proteins</title>
</titleInfo>
<name type="personal">
<namePart type="family">LEE</namePart>
<namePart type="given">T. G.</namePart>
</name>
<name type="personal">
<namePart type="family">TANG</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">THOMPSON</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>2331</start>
<end>2342</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00022" displayLabel="bibbi020397eb00022">
<titleInfo>
<title>Double-stranded RNA-independent dimerization of interferon-induced protein kinase PKR and inhibition of dimerization by the cellular P58IPK inhibitor</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Double-stranded RNA-independent dimerization of interferon-induced protein kinase PKR and inhibition of dimerization by the cellular P58IPK inhibitor</title>
</titleInfo>
<name type="personal">
<namePart type="family">TAN</namePart>
<namePart type="given">S.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>2431</start>
<end>2443</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00023" displayLabel="bibbi020397eb00023">
<titleInfo>
<title>The cellular inhibitor of the PKR protein kinase, P58IPK, is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The cellular inhibitor of the PKR protein kinase, P58IPK, is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity</title>
</titleInfo>
<name type="personal">
<namePart type="family">MELVILLE</namePart>
<namePart type="given">M. W.</namePart>
</name>
<name type="personal">
<namePart type="family">TAN</namePart>
<namePart type="given">S.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">WAMBACH</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SONG</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MORIMOTO</namePart>
<namePart type="given">R. I.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>274</number>
</detail>
<extent unit="pages">
<start>3797</start>
<end>3803</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00024" displayLabel="bibbi020397eb00024">
<titleInfo>
<title>Interaction of the interferon-induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by 11887 unique domains: implications for kinase regulation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Interaction of the interferon-induced PKR protein kinase with inhibitory proteins P58IPK and vaccinia virus K3L is mediated by 11887 unique domains: implications for kinase regulation</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">TAN</namePart>
<namePart type="given">S.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">WAMBACH</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>4172</start>
<end>4181</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00025" displayLabel="bibbi020397eb00025">
<titleInfo>
<title>The 58-kDa cellular inhibitor of the double stranded RNA-dependent protein kinase requires the tetratricopeptide repeat 6 and DnaJ motifs to stimulate protein synthesis in vivo</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The 58-kDa cellular inhibitor of the double stranded RNA-dependent protein kinase requires the tetratricopeptide repeat 6 and DnaJ motifs to stimulate protein synthesis in vivo</title>
</titleInfo>
<name type="personal">
<namePart type="family">TANG</namePart>
<namePart type="given">N. M.</namePart>
</name>
<name type="personal">
<namePart type="family">HO</namePart>
<namePart type="given">C. Y.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>271</number>
</detail>
<extent unit="pages">
<start>28660</start>
<end>28666</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00026" displayLabel="bibbi020397eb00026">
<titleInfo>
<title>Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58IPK does not require J-domain function</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Inactivation of the PKR protein kinase and stimulation of mRNA translation by the cellular co-chaperone P58IPK does not require J-domain function</title>
</titleInfo>
<name type="personal">
<namePart type="family">YAN</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">TAN</namePart>
<namePart type="given">S.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>41</number>
</detail>
<extent unit="pages">
<start>4938</start>
<end>4945</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00027" displayLabel="bibbi020397eb00027">
<titleInfo>
<title>The molecular chaperone hsp40 regulates the activity of P58IPK, the cellular inhibitor of PKR</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The molecular chaperone hsp40 regulates the activity of P58IPK, the cellular inhibitor of PKR</title>
</titleInfo>
<name type="personal">
<namePart type="family">MELVILLE</namePart>
<namePart type="given">M. W.</namePart>
</name>
<name type="personal">
<namePart type="family">HANSEN</namePart>
<namePart type="given">W. J.</namePart>
</name>
<name type="personal">
<namePart type="family">FREEMAN</namePart>
<namePart type="given">B. C.</namePart>
</name>
<name type="personal">
<namePart type="family">WELCH</namePart>
<namePart type="given">W. J.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>94</number>
</detail>
<extent unit="pages">
<start>97</start>
<end>102</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00028" displayLabel="bibbi020397eb00028">
<titleInfo>
<title>The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties</title>
</titleInfo>
<name type="personal">
<namePart type="family">BARBER</namePart>
<namePart type="given">G. N.</namePart>
</name>
<name type="personal">
<namePart type="family">THOMPSON</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">LEE</namePart>
<namePart type="given">T. G.</namePart>
</name>
<name type="personal">
<namePart type="family">STROM</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGUS</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">DARVEAU</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>91</number>
</detail>
<extent unit="pages">
<start>4278</start>
<end>4282</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00029" displayLabel="bibbi020397eb00029">
<titleInfo>
<title>Inhibition of double-stranded RNA- and tumor necrosis factor alpha-mediated apoptosis by tetratricopeptide repeat protein and cochaperone, P58IPK</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Inhibition of double-stranded RNA- and tumor necrosis factor alpha-mediated apoptosis by tetratricopeptide repeat protein and cochaperone, P58IPK</title>
</titleInfo>
<name type="personal">
<namePart type="family">TANG</namePart>
<namePart type="given">N. M.</namePart>
</name>
<name type="personal">
<namePart type="family">KORTH</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">WAMBACH</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DER</namePart>
<namePart type="given">S. D.</namePart>
</name>
<name type="personal">
<namePart type="family">BANDYOPADHYAY</namePart>
<namePart type="given">S. K.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLIAMS</namePart>
<namePart type="given">B. R. G.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>4757</start>
<end>4765</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00030" displayLabel="bibbi020397eb00030">
<titleInfo>
<title>Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Regulation of interferon-induced protein kinase PKR: modulation of P58IPK inhibitory function by a novel protein, P52rIPK</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">BLAKELY</namePart>
<namePart type="given">C. M.</namePart>
</name>
<name type="personal">
<namePart type="family">HOPKINS</namePart>
<namePart type="given">D. A.</namePart>
</name>
<name type="personal">
<namePart type="family">MELVILLE</namePart>
<namePart type="given">M. W.</namePart>
</name>
<name type="personal">
<namePart type="family">WAMBACH</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">ROMANO</namePart>
<namePart type="given">P. R.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>859</start>
<end>871</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00031" displayLabel="bibbi020397eb00031">
<name type="personal">
<namePart type="family">CESARENI</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">AND MURRAY</namePart>
<namePart type="given">J. A. H.</namePart>
</name>
<name type="personal">
<namePart type="family">SETLOW</namePart>
<namePart type="given">J.</namePart>
</name>
<titleInfo>
<title>Genetic engineering:  principles and methods</title>
</titleInfo>
<note type="content-in-line">CesareniG., and MurrayJ. A. H. (1987) Plasmid vectors carrying the replication origin of filamentous single-stranded phages, in Genetic engineering:  principles and methods (SetlowJ., Ed.) 1st ed., pp 135−154, Plenum Publishing Corp., New York.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00032" displayLabel="bibbi020397eb00032">
<titleInfo>
<title>Monoclonal antibodies to interferon induced 68,000 Mr protein and their use for the detection of double-stranded RNA dependent protein kinase in human cells</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Monoclonal antibodies to interferon induced 68,000 Mr protein and their use for the detection of double-stranded RNA dependent protein kinase in human cells</title>
</titleInfo>
<name type="personal">
<namePart type="family">LAURENT</namePart>
<namePart type="given">A. G.</namePart>
</name>
<name type="personal">
<namePart type="family">KRUST</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">GALABRU</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">SVAB</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">HOVANESSIAN</namePart>
<namePart type="given">A. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>82</number>
</detail>
<extent unit="pages">
<start>4341</start>
<end>4345</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00033" displayLabel="bibbi020397eb00033">
<name type="personal">
<namePart type="family">HARLOW</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">AND LANE</namePart>
<namePart type="given">D.</namePart>
</name>
<titleInfo>
<title>Antibodies:  a laboratory manual</title>
</titleInfo>
<note type="content-in-line">HarlowE., and LaneD. (1988) Antibodies:  a laboratory manual, pp 310−310, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.</note>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00034" displayLabel="bibbi020397eb00034">
<titleInfo>
<title>Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI, in Saccharomyces cerevisiae</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Structural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI, in Saccharomyces cerevisiae</title>
</titleInfo>
<name type="personal">
<namePart type="family">ROMANO</namePart>
<namePart type="given">P. R.</namePart>
</name>
<name type="personal">
<namePart type="family">GREEN</namePart>
<namePart type="given">S. R.</namePart>
</name>
<name type="personal">
<namePart type="family">BARBER</namePart>
<namePart type="given">G. N.</namePart>
</name>
<name type="personal">
<namePart type="family">MATHEWS</namePart>
<namePart type="given">M. B.</namePart>
</name>
<name type="personal">
<namePart type="family">HINNEBUSCH</namePart>
<namePart type="given">A. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>365</start>
<end>378</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00035" displayLabel="bibbi020397eb00035">
<titleInfo>
<title>Mammalian eukaryotic initiation factor elF2α kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mammalian eukaryotic initiation factor elF2α kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast</title>
</titleInfo>
<name type="personal">
<namePart type="family">DEVER</namePart>
<namePart type="given">T. E.</namePart>
</name>
<name type="personal">
<namePart type="family">CHEN</namePart>
<namePart type="given">J.-J.</namePart>
</name>
<name type="personal">
<namePart type="family">BARBER</namePart>
<namePart type="given">G. N.</namePart>
</name>
<name type="personal">
<namePart type="family">CIGAN</namePart>
<namePart type="given">A. M.</namePart>
</name>
<name type="personal">
<namePart type="family">FENG</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DONAHUE</namePart>
<namePart type="given">T. F.</namePart>
</name>
<name type="personal">
<namePart type="family">LONDON</namePart>
<namePart type="given">I. M.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<name type="personal">
<namePart type="family">HINNEBUSCH</namePart>
<namePart type="given">A. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<extent unit="pages">
<start>4616</start>
<end>4620</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00036" displayLabel="bibbi020397eb00036">
<titleInfo>
<title>Sequence and regulation of a gene encoding a human 89 kilodalton heat shock protein</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Sequence and regulation of a gene encoding a human 89 kilodalton heat shock protein</title>
</titleInfo>
<name type="personal">
<namePart type="family">HICKEY</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">BRANDON</namePart>
<namePart type="given">S. E.</namePart>
</name>
<name type="personal">
<namePart type="family">SMALE</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">LLOYD</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">WEBER</namePart>
<namePart type="given">L. A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>2615</start>
<end>2626</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00037" displayLabel="bibbi020397eb00037">
<titleInfo>
<title>Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent</title>
</titleInfo>
<name type="personal">
<namePart type="family">STEBBINS</namePart>
<namePart type="given">C. E.</namePart>
</name>
<name type="personal">
<namePart type="family">RUSSO</namePart>
<namePart type="given">A. A.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHNEIDER</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">ROSEN</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">HARTL</namePart>
<namePart type="given">F. U.</namePart>
</name>
<name type="personal">
<namePart type="family">PAVLETICH</namePart>
<namePart type="given">N. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>89</number>
</detail>
<extent unit="pages">
<start>239</start>
<end>250</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00038" displayLabel="bibbi020397eb00038">
<titleInfo>
<title>Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90</title>
</titleInfo>
<name type="personal">
<namePart type="family">RAMSEY</namePart>
<namePart type="given">A. J.</namePart>
</name>
<name type="personal">
<namePart type="family">RUSSELL</namePart>
<namePart type="given">L. C.</namePart>
</name>
<name type="personal">
<namePart type="family">WHITT</namePart>
<namePart type="given">S. R.</namePart>
</name>
<name type="personal">
<namePart type="family">CHINKERS</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>275</number>
</detail>
<extent unit="pages">
<start>17857</start>
<end>17862</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00039" displayLabel="bibbi020397eb00039">
<titleInfo>
<title>Identification of conserved residues required for the binding of tetratricopeptide repeat domain to heat shock protein 90</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Identification of conserved residues required for the binding of tetratricopeptide repeat domain to heat shock protein 90</title>
</titleInfo>
<name type="personal">
<namePart type="family">RUSSELL</namePart>
<namePart type="given">L. C.</namePart>
</name>
<name type="personal">
<namePart type="family">WHITT</namePart>
<namePart type="given">S. R.</namePart>
</name>
<name type="personal">
<namePart type="family">CHEN</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">CHINKERS</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>274</number>
</detail>
<extent unit="pages">
<start>20060</start>
<end>20063</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00040" displayLabel="bibbi020397eb00040">
<titleInfo>
<title>Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52, and FKBP51 with Hsp90 mutants</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52, and FKBP51 with Hsp90 mutants</title>
</titleInfo>
<name type="personal">
<namePart type="family">CHEN</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SULLIVAN</namePart>
<namePart type="given">W. P.</namePart>
</name>
<name type="personal">
<namePart type="family">TOFT</namePart>
<namePart type="given">D. O.</namePart>
</name>
<name type="personal">
<namePart type="family">SMITH</namePart>
<namePart type="given">D. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cell Stress Chaperones</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>118</start>
<end>129</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00041" displayLabel="bibbi020397eb00041">
<titleInfo>
<title>The tetratricopeptide repeat: a structural motif mediating protein-protein interactions</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The tetratricopeptide repeat: a structural motif mediating protein-protein interactions</title>
</titleInfo>
<name type="personal">
<namePart type="family">BLATCH</namePart>
<namePart type="given">G. L.</namePart>
</name>
<name type="personal">
<namePart type="family">LäSSLE</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>BioEssays</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>932</start>
<end>939</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00042" displayLabel="bibbi020397eb00042">
<titleInfo>
<title>Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">KORTH</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">TANG</namePart>
<namePart type="given">N. M.</namePart>
</name>
<name type="personal">
<namePart type="family">TAN</namePart>
<namePart type="given">S.-L.</namePart>
</name>
<name type="personal">
<namePart type="family">HOPKINS</namePart>
<namePart type="given">D. A.</namePart>
</name>
<name type="personal">
<namePart type="family">DEVER</namePart>
<namePart type="given">T. E.</namePart>
</name>
<name type="personal">
<namePart type="family">POLYAK</namePart>
<namePart type="given">S. J.</namePart>
</name>
<name type="personal">
<namePart type="family">GRETCH</namePart>
<namePart type="given">D. R.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>230</number>
</detail>
<extent unit="pages">
<start>217</start>
<end>227</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00043" displayLabel="bibbi020397eb00043">
<titleInfo>
<title>Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes</title>
</titleInfo>
<name type="personal">
<namePart type="family">MCLAUCHLAN</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Viral Hepatitis</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>2</start>
<end>14</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00044" displayLabel="bibbi020397eb00044">
<titleInfo>
<title>TPR proteins as essential components of the yeast cell cycle</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>TPR proteins as essential components of the yeast cell cycle</title>
</titleInfo>
<name type="personal">
<namePart type="family">SIKORSKI</namePart>
<namePart type="given">R. S.</namePart>
</name>
<name type="personal">
<namePart type="family">MICHAUD</namePart>
<namePart type="given">W. A.</namePart>
</name>
<name type="personal">
<namePart type="family">WOOTTON</namePart>
<namePart type="given">J. C.</namePart>
</name>
<name type="personal">
<namePart type="family">BOGUSKI</namePart>
<namePart type="given">M. S.</namePart>
</name>
<name type="personal">
<namePart type="family">CONNELLY</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">HIETER</namePart>
<namePart type="given">P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cold Spring Harbor Symp. Quant. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>56</number>
</detail>
<extent unit="pages">
<start>663</start>
<end>673</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00045" displayLabel="bibbi020397eb00045">
<titleInfo>
<title>Analysis of mammalian Cdc37, a protein kinase targeting subunit of heat shock protein 90</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Analysis of mammalian Cdc37, a protein kinase targeting subunit of heat shock protein 90</title>
</titleInfo>
<name type="personal">
<namePart type="family">STEPANOVA</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">LENG</namePart>
<namePart type="given">X.</namePart>
</name>
<name type="personal">
<namePart type="family">HARPER</namePart>
<namePart type="given">J. W.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Methods Enzymol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>283</number>
</detail>
<extent unit="pages">
<start>220</start>
<end>229</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00046" displayLabel="bibbi020397eb00046">
<titleInfo>
<title>Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones</title>
</titleInfo>
<name type="personal">
<namePart type="family">PRODROMOU</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">SILIGARDI</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">O'BRIEN</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">WOOLFSON</namePart>
<namePart type="given">D. N.</namePart>
</name>
<name type="personal">
<namePart type="family">REGAN</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">PANARETOU</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">LADBURY</namePart>
<namePart type="given">J. E.</namePart>
</name>
<name type="personal">
<namePart type="family">PIPER</namePart>
<namePart type="given">P. W.</namePart>
</name>
<name type="personal">
<namePart type="family">PEARL</namePart>
<namePart type="given">L. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>754</start>
<end>762</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00047" displayLabel="bibbi020397eb00047">
<titleInfo>
<title>The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The common tetratricopeptide repeat acceptor site for steroid receptor-associated immunophilins and hop is located in the dimerization domain of Hsp90</title>
</titleInfo>
<name type="personal">
<namePart type="family">CARRELLO</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">INGLEY</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">MINCHIN</namePart>
<namePart type="given">R. F.</namePart>
</name>
<name type="personal">
<namePart type="family">TSAI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">RATAJCZAK</namePart>
<namePart type="given">T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>274</number>
</detail>
<extent unit="pages">
<start>2682</start>
<end>2689</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00048" displayLabel="bibbi020397eb00048">
<titleInfo>
<title>Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Specific binding of tetratricopeptide repeat proteins to the C-terminal 12-kDa domain of hsp90</title>
</titleInfo>
<name type="personal">
<namePart type="family">YOUNG</namePart>
<namePart type="given">J. C.</namePart>
</name>
<name type="personal">
<namePart type="family">OBERMAN</namePart>
<namePart type="given">W. M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">HARTL</namePart>
<namePart type="given">F. U.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>273</number>
</detail>
<extent unit="pages">
<start>18007</start>
<end>18010</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00049" displayLabel="bibbi020397eb00049">
<titleInfo>
<title>Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Point mutations in v-Myb disrupt a cyclophilin-catalyzed negative regulatory mechanism</title>
</titleInfo>
<name type="personal">
<namePart type="family">LEVERSON</namePart>
<namePart type="given">J. D.</namePart>
</name>
<name type="personal">
<namePart type="family">NESS</namePart>
<namePart type="given">S. A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>203</start>
<end>211</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00050" displayLabel="bibbi020397eb00050">
<titleInfo>
<title>Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Functional interaction of human immunodeficiency virus type 1 Vpu and Gag with a novel member of the tetratricopeptide repeat protein family</title>
</titleInfo>
<name type="personal">
<namePart type="family">CALLAHAN</namePart>
<namePart type="given">M. A.</namePart>
</name>
<name type="personal">
<namePart type="family">HANDLEY</namePart>
<namePart type="given">M. A.</namePart>
</name>
<name type="personal">
<namePart type="family">LEE</namePart>
<namePart type="given">Y. H.</namePart>
</name>
<name type="personal">
<namePart type="family">TALBOT</namePart>
<namePart type="given">K. J.</namePart>
</name>
<name type="personal">
<namePart type="family">HARPER</namePart>
<namePart type="given">J. W.</namePart>
</name>
<name type="personal">
<namePart type="family">PANGANIBAN</namePart>
<namePart type="given">A. T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>72</number>
</detail>
<extent unit="pages">
<start>5189</start>
<end>5197</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00051" displayLabel="bibbi020397eb00051">
<titleInfo>
<title>Translational control is required for the unfolded protein response and in vivo glucose homeostasis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Translational control is required for the unfolded protein response and in vivo glucose homeostasis</title>
</titleInfo>
<name type="personal">
<namePart type="family">SCHEUNER</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">SONG</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">MCEWEN</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">LIU</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">LAYBUTT</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">GILLESPIE</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">SAUNDERS</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">BONNER-WEIR</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KAUFMAN</namePart>
<namePart type="given">R. J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>1165</start>
<end>1176</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00052" displayLabel="bibbi020397eb00052">
<titleInfo>
<title>PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR</title>
</titleInfo>
<name type="personal">
<namePart type="family">PATEL</namePart>
<namePart type="given">C. V.</namePart>
</name>
<name type="personal">
<namePart type="family">HANDY</namePart>
<namePart type="given">I.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLDSMITH</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">PATEL</namePart>
<namePart type="given">R. C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>275</number>
</detail>
<extent unit="pages">
<start>37993</start>
<end>37998</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00053" displayLabel="bibbi020397eb00053">
<titleInfo>
<title>Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase</title>
</titleInfo>
<name type="personal">
<namePart type="family">KOROMILAS</namePart>
<namePart type="given">A. E.</namePart>
</name>
<name type="personal">
<namePart type="family">ROY</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">BARBER</namePart>
<namePart type="given">G. N.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<name type="personal">
<namePart type="family">SONENBERG</namePart>
<namePart type="given">N.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>257</number>
</detail>
<extent unit="pages">
<start>1685</start>
<end>1689</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00054" displayLabel="bibbi020397eb00054">
<titleInfo>
<title>Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation</title>
</titleInfo>
<name type="personal">
<namePart type="family">BARBER</namePart>
<namePart type="given">G. N.</namePart>
</name>
<name type="personal">
<namePart type="family">WAMBACH</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">THOMPSON</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">JAGUS</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>3138</start>
<end>3146</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00055" displayLabel="bibbi020397eb00055">
<titleInfo>
<title>Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling</title>
</titleInfo>
<name type="personal">
<namePart type="family">BALACHANDRAN</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KIM</namePart>
<namePart type="given">C. N.</namePart>
</name>
<name type="personal">
<namePart type="family">YEH</namePart>
<namePart type="given">W.-C.</namePart>
</name>
<name type="personal">
<namePart type="family">MAK</namePart>
<namePart type="given">T. W.</namePart>
</name>
<name type="personal">
<namePart type="family">BARBER</namePart>
<namePart type="given">G. N.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>6888</start>
<end>6902</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00056" displayLabel="bibbi020397eb00056">
<titleInfo>
<title>Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR</title>
</titleInfo>
<name type="personal">
<namePart type="family">BENKIRANE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">NEUVEUT</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">CHUN</namePart>
<namePart type="given">R. F.</namePart>
</name>
<name type="personal">
<namePart type="family">SMITH</namePart>
<namePart type="given">S. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SAMUEL</namePart>
<namePart type="given">C. E.</namePart>
</name>
<name type="personal">
<namePart type="family">GATIGNOL</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">JEANG</namePart>
<namePart type="given">K.-T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>611</start>
<end>624</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397eb00057" displayLabel="bibbi020397eb00057">
<titleInfo>
<title>Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase</title>
</titleInfo>
<name type="personal">
<namePart type="family">GALE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">KWIECISZEWSKI</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">DOSSETT</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">NAKAO</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">KATZE</namePart>
<namePart type="given">M. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>73</number>
</detail>
<extent unit="pages">
<start>6506</start>
<end>6516</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bi020397en00001" displayLabel="bibbi020397en00001">
<titleInfo>
<title>Abbreviations:  aa, amino acid; dsRNA, double-stranded RNA; eIF2, eukaryotic initiation factor 2; ER, endoplasmic reticulum; IEF, isoelectric focusing; IFN, interferon; PKR, protein kinase RNA dependent; TPR, tetratricopeptide repeat.</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  aa, amino acid; dsRNA, double-stranded RNA; eIF2, eukaryotic initiation factor 2; ER, endoplasmic reticulum; IEF, isoelectric focusing; IFN, interferon; PKR, protein kinase RNA dependent; TPR, tetratricopeptide repeat.</note>
</relatedItem>
<identifier type="istex">496B39CB24F6FA7131E3382C0F0D7617C71A8862</identifier>
<identifier type="ark">ark:/67375/TPS-5VJNB1S2-X</identifier>
<identifier type="DOI">10.1021/bi020397e</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2002 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-5VJNB1S2-X/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/496B39CB24F6FA7131E3382C0F0D7617C71A8862/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:496B39CB24F6FA7131E3382C0F0D7617C71A8862
   |texte=   P52rIPK Regulates the Molecular Cochaperone P58IPK To Mediate Control of the RNA-Dependent Protein Kinase in Response to Cytoplasmic Stress†
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021