Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain

Identifieur interne : 002696 ( Istex/Corpus ); précédent : 002695; suivant : 002697

Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain

Auteurs : Shabir Najmudin ; Marie L. Coté ; Dunming Sun ; Sarah Yohannan ; Sherwin P. Montano ; Jun Gu ; Millie M. Georgiadis

Source :

RBID : ISTEX:B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8

English descriptors

Abstract

Abstract: Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 Å resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 Å resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3′-OH group from the primer strand and minor groove base atoms and sugar atoms from the n−2 and n−3 positions of the template strand, where n is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the β4-β5 loop (β3-β4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.

Url:
DOI: 10.1006/jmbi.1999.3477

Links to Exploration step

ISTEX:B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
<author>
<name sortKey="Najmudin, Shabir" sort="Najmudin, Shabir" uniqKey="Najmudin S" first="Shabir" last="Najmudin">Shabir Najmudin</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cote, Marie L" sort="Cote, Marie L" uniqKey="Cote M" first="Marie L." last="Coté">Marie L. Coté</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Dunming" sort="Sun, Dunming" uniqKey="Sun D" first="Dunming" last="Sun">Dunming Sun</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yohannan, Sarah" sort="Yohannan, Sarah" uniqKey="Yohannan S" first="Sarah" last="Yohannan">Sarah Yohannan</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montano, Sherwin P" sort="Montano, Sherwin P" uniqKey="Montano S" first="Sherwin P." last="Montano">Sherwin P. Montano</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gu, Jun" sort="Gu, Jun" uniqKey="Gu J" first="Jun" last="Gu">Jun Gu</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Georgiadis, Millie M" sort="Georgiadis, Millie M" uniqKey="Georgiadis M" first="Millie M." last="Georgiadis">Millie M. Georgiadis</name>
<affiliation>
<mods:affiliation>E-mail: georgiadis@mbcl.rutgers.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1006/jmbi.1999.3477</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-57XBTDFP-8/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002696</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002696</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
<author>
<name sortKey="Najmudin, Shabir" sort="Najmudin, Shabir" uniqKey="Najmudin S" first="Shabir" last="Najmudin">Shabir Najmudin</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cote, Marie L" sort="Cote, Marie L" uniqKey="Cote M" first="Marie L." last="Coté">Marie L. Coté</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sun, Dunming" sort="Sun, Dunming" uniqKey="Sun D" first="Dunming" last="Sun">Dunming Sun</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yohannan, Sarah" sort="Yohannan, Sarah" uniqKey="Yohannan S" first="Sarah" last="Yohannan">Sarah Yohannan</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Montano, Sherwin P" sort="Montano, Sherwin P" uniqKey="Montano S" first="Sherwin P." last="Montano">Sherwin P. Montano</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gu, Jun" sort="Gu, Jun" uniqKey="Gu J" first="Jun" last="Gu">Jun Gu</name>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Georgiadis, Millie M" sort="Georgiadis, Millie M" uniqKey="Georgiadis M" first="Millie M." last="Georgiadis">Millie M. Georgiadis</name>
<affiliation>
<mods:affiliation>E-mail: georgiadis@mbcl.rutgers.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">296</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="613">613</biblScope>
<biblScope unit="page" to="632">632</biblScope>
</imprint>
<idno type="ISSN">0022-2836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>HIV-1</term>
<term>MMLV</term>
<term>Moloney murine leukemia virus</term>
<term>PEG</term>
<term>RSV</term>
<term>RT</term>
<term>crystal structure</term>
<term>processivity</term>
<term>protein-DNA complex</term>
<term>reverse transcriptase</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>1rtd</term>
<term>2hmi</term>
<term>Acid complexes</term>
<term>Acid complexes figure</term>
<term>Acta crystallog</term>
<term>Assay</term>
<term>Asymmetric</term>
<term>Asymmetric unit</term>
<term>Binding site</term>
<term>Binding sites</term>
<term>Biol</term>
<term>Complex structures</term>
<term>Complexed</term>
<term>Conformation</term>
<term>Conformational changes</term>
<term>Crystal structure</term>
<term>Crystal structures</term>
<term>Crystallog</term>
<term>Different conformations</term>
<term>Ding</term>
<term>Domain</term>
<term>Duplex</term>
<term>Electron density</term>
<term>Enzyme</term>
<term>Equivalent residues</term>
<term>Fragment</term>
<term>Fragment complexed</term>
<term>Fragment molecule</term>
<term>Fragment molecules</term>
<term>Fragment structure</term>
<term>Georgiadis</term>
<term>Goff</term>
<term>Huang</term>
<term>Human virus type</term>
<term>Hydrogen bond</term>
<term>Hydrogen bonds</term>
<term>Incoming nucleotide</term>
<term>Leukemia</term>
<term>Leukemia virus</term>
<term>Mercuric acetate</term>
<term>Minor groove base atoms</term>
<term>Mmlv</term>
<term>Molecular replacement</term>
<term>Molecule</term>
<term>Moloney</term>
<term>Moloney murine leukemia virus</term>
<term>Mrna</term>
<term>Mrna template</term>
<term>Mrna template assay</term>
<term>Murine</term>
<term>Mutagenesis</term>
<term>Nacl</term>
<term>Ngers</term>
<term>Ngers domain</term>
<term>Ngers domain binding site</term>
<term>Nucleic</term>
<term>Nucleic acid</term>
<term>Nucleotide</term>
<term>Overhang</term>
<term>Palm domain</term>
<term>Palm domains</term>
<term>Polymerase</term>
<term>Primer</term>
<term>Primer strand</term>
<term>Processive</term>
<term>Processive synthesis</term>
<term>Protein molecules</term>
<term>Regions residues</term>
<term>Relative positions</term>
<term>Residue</term>
<term>Retroviral</term>
<term>Search model</term>
<term>Sequence alignments</term>
<term>Singlestranded overhangs</term>
<term>Space group</term>
<term>Standard assay</term>
<term>Standard assays</term>
<term>Substitution</term>
<term>Sugar atoms</term>
<term>Sulfur atoms</term>
<term>Template</term>
<term>Template base</term>
<term>Template overhang</term>
<term>Template strand</term>
<term>Thumb domains</term>
<term>Transcriptase</term>
<term>Transcriptase complexed</term>
<term>Uncomplexed</term>
<term>Uncomplexed fragment</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 Å resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 Å resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3′-OH group from the primer strand and minor groove base atoms and sugar atoms from the n−2 and n−3 positions of the template strand, where n is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the β4-β5 loop (β3-β4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>ngers</json:string>
<json:string>polymerase</json:string>
<json:string>mmlv</json:string>
<json:string>crystal structures</json:string>
<json:string>transcriptase</json:string>
<json:string>ngers domain</json:string>
<json:string>mrna</json:string>
<json:string>hydrogen bond</json:string>
<json:string>primer</json:string>
<json:string>hydrogen bonds</json:string>
<json:string>overhang</json:string>
<json:string>assay</json:string>
<json:string>complexed</json:string>
<json:string>murine</json:string>
<json:string>1rtd</json:string>
<json:string>ding</json:string>
<json:string>moloney</json:string>
<json:string>moloney murine leukemia virus</json:string>
<json:string>uncomplexed</json:string>
<json:string>palm domains</json:string>
<json:string>ngers domain binding site</json:string>
<json:string>georgiadis</json:string>
<json:string>crystal structure</json:string>
<json:string>asymmetric unit</json:string>
<json:string>processive</json:string>
<json:string>nucleic acid</json:string>
<json:string>nucleic</json:string>
<json:string>huang</json:string>
<json:string>template strand</json:string>
<json:string>goff</json:string>
<json:string>biol</json:string>
<json:string>incoming nucleotide</json:string>
<json:string>nacl</json:string>
<json:string>acid complexes</json:string>
<json:string>standard assay</json:string>
<json:string>mutagenesis</json:string>
<json:string>retroviral</json:string>
<json:string>crystallog</json:string>
<json:string>binding site</json:string>
<json:string>2hmi</json:string>
<json:string>fragment</json:string>
<json:string>acid complexes figure</json:string>
<json:string>fragment molecules</json:string>
<json:string>primer strand</json:string>
<json:string>search model</json:string>
<json:string>molecule</json:string>
<json:string>duplex</json:string>
<json:string>nucleotide</json:string>
<json:string>substitution</json:string>
<json:string>template overhang</json:string>
<json:string>equivalent residues</json:string>
<json:string>acta crystallog</json:string>
<json:string>fragment complexed</json:string>
<json:string>human virus type</json:string>
<json:string>minor groove base atoms</json:string>
<json:string>mrna template assay</json:string>
<json:string>fragment molecule</json:string>
<json:string>protein molecules</json:string>
<json:string>mrna template</json:string>
<json:string>enzyme</json:string>
<json:string>template</json:string>
<json:string>residue</json:string>
<json:string>conformation</json:string>
<json:string>relative positions</json:string>
<json:string>transcriptase complexed</json:string>
<json:string>space group</json:string>
<json:string>singlestranded overhangs</json:string>
<json:string>thumb domains</json:string>
<json:string>binding sites</json:string>
<json:string>electron density</json:string>
<json:string>processive synthesis</json:string>
<json:string>mercuric acetate</json:string>
<json:string>domain</json:string>
<json:string>leukemia virus</json:string>
<json:string>complex structures</json:string>
<json:string>regions residues</json:string>
<json:string>fragment structure</json:string>
<json:string>different conformations</json:string>
<json:string>standard assays</json:string>
<json:string>palm domain</json:string>
<json:string>sugar atoms</json:string>
<json:string>template base</json:string>
<json:string>sequence alignments</json:string>
<json:string>sulfur atoms</json:string>
<json:string>uncomplexed fragment</json:string>
<json:string>molecular replacement</json:string>
<json:string>conformational changes</json:string>
<json:string>leukemia</json:string>
<json:string>asymmetric</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Shabir Najmudin</name>
<affiliations>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marie L. Coté</name>
<affiliations>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dunming Sun</name>
<affiliations>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sarah Yohannan</name>
<affiliations>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Sherwin P. Montano</name>
<affiliations>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jun Gu</name>
<affiliations>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Millie M. Georgiadis</name>
<affiliations>
<json:string>E-mail: georgiadis@mbcl.rutgers.edu</json:string>
<json:string>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Regular article</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>crystal structure</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Moloney murine leukemia virus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>reverse transcriptase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>protein-DNA complex</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>processivity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>RT : reverse transcriptase</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>MMLV : Moloney murine leukemia virus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>RSV : Rous sarcoma virus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PEG : polyethylene glycol</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>HIV-1 : human immunodeficiency virus-type 1</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-57XBTDFP-8</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 Å resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 Å resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3′-OH group from the primer strand and minor groove base atoms and sugar atoms from the n−2 and n−3 positions of the template strand, where n is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the β4-β5 loop (β3-β4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>10940</pdfWordCount>
<pdfCharCount>65962</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>20</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>317</abstractWordCount>
<abstractCharCount>2109</abstractCharCount>
<keywordCount>11</keywordCount>
</qualityIndicators>
<title>Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
<pmid>
<json:string>10669612</json:string>
</pmid>
<pii>
<json:string>S0022-2836(99)93477-0</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Molecular Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0022-2836</json:string>
</issn>
<pii>
<json:string>S0022-2836(00)X0180-5</json:string>
</pii>
<volume>296</volume>
<issue>2</issue>
<pages>
<first>613</first>
<last>632</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Molecular Biology Institute, UCLA, Los Angeles, CA, USA</json:string>
<json:string>Columbia University</json:string>
<json:string>Biotech</json:string>
<json:string>Department of Chemistry and Biochemistry</json:string>
<json:string>National Synchrotron Light Source, HHMI</json:string>
<json:string>National Institutes of Health</json:string>
<json:string>Calbiochem</json:string>
<json:string>Brookhaven National Labs</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Wayne Hendrickson</json:string>
<json:string>Mechanisms</json:string>
<json:string>Sherwin P. Montano</json:string>
<json:string>Millie M. Georgiadis</json:string>
<json:string>J. Pfeiffer</json:string>
<json:string>U. Mich</json:string>
<json:string>Eddy Arnold</json:string>
<json:string>Greg Listner</json:string>
<json:string>Monica Roth</json:string>
<json:string>Bases</json:string>
<json:string>Marie L. Cote</json:string>
<json:string>Jun Gu</json:string>
<json:string>B. Interactions</json:string>
<json:string>Julie Pfeiffer</json:string>
<json:string>Sarah Yohannan</json:string>
<json:string>Alice Telesnitsky</json:string>
<json:string>Dick Leidich</json:string>
<json:string>A. Telesnitsky</json:string>
<json:string>A. Substitution</json:string>
<json:string>Crystal Structures</json:string>
<json:string>Shabir Najmudin</json:string>
<json:string>A. Accumulation</json:string>
<json:string>Richard Ebright</json:string>
<json:string>Helen Berman</json:string>
</persName>
<placeName></placeName>
<ref_url>
<json:string>http://www.idealibrary.com</json:string>
</ref_url>
<ref_bibl>
<json:string>Roth et al., 1985</json:string>
<json:string>Laskowski, 1993</json:string>
<json:string>Gilboa et al., 1979</json:string>
<json:string>Moelling, 1974</json:string>
<json:string>Navaza, 1994</json:string>
<json:string>Ren et al., 1995</json:string>
<json:string>Georgiadis et al., 1995</json:string>
<json:string>Goff, 1990</json:string>
<json:string>Otwinowski, 1993</json:string>
<json:string>Poch et al., 1989</json:string>
<json:string>Murshudov et al., 1997</json:string>
<json:string>Basu et al., 1990</json:string>
<json:string>Sun et al., 1998</json:string>
<json:string>Xiong & Eickbush, 1990</json:string>
<json:string>Leis et al., 1983</json:string>
<json:string>Chowdhury et al., 1996</json:string>
<json:string>Brunger, 1992</json:string>
<json:string>Nicholls et al., 1991</json:string>
<json:string>Merritt & Bacon, 1997</json:string>
<json:string>Hsiou et al., 1996</json:string>
<json:string>Laskowski et al., 1993</json:string>
<json:string>Li et al., 1998</json:string>
<json:string>Ding et al., 1998</json:string>
<json:string>Boyer et al., 1992</json:string>
<json:string>Georgiadis et al. (1995)</json:string>
<json:string>Pelletier et al., 1994</json:string>
<json:string>CCP4, 1994</json:string>
<json:string>Jacobo-Molina et al., 1993</json:string>
<json:string>Bebenek et al., 1997</json:string>
<json:string>Eom et al., 1996</json:string>
<json:string>LeGrice, 1993</json:string>
<json:string>Brunger et al., 1998</json:string>
<json:string>Carson, 1997</json:string>
<json:string>Huang et al., 1998</json:string>
<json:string>Patel et al., 1995</json:string>
<json:string>Kraulis, 1991</json:string>
<json:string>Doublie et al., 1998</json:string>
<json:string>Jones et al., 1991</json:string>
<json:string>Keifer et al., 1998</json:string>
<json:string>Jones et al.</json:string>
<json:string>Kohlstaedt et al., 1992</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-57XBTDFP-8</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1006/jmbi.1999.3477</json:string>
</doi>
<id>B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-57XBTDFP-8/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-57XBTDFP-8/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-57XBTDFP-8/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2000 Academic Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>Edited by D. C. Rees</note>
<note type="content">Section title: Regular article</note>
<note type="content">Figure 1: Overall structures of forms IIa, IIb, I, and IV MMLV RT fragment complexed with DNA. All views present ribbon diagrams for the protein molecules and stick models for the DNA molecules. The proteins are shown with green β-strands, off-white coils, and yellow α-helices, with the exception of the αD helix, which is shown in white. Two MMLV RT fragment molecules and one bound DNA molecule in the asymmetric units of form (a) IIa, (b) IIb, and (c) I are shown in addition to a second symmetry-equivalent DNA molecule (red stick figures). (d) The form IV MMLV RT fragment with its bound DNA and the (−x−1, −y, z) symmetry-related species, forming a pseudo-hexadecamer DNA molecule (depicted in both red and yellow stick models for emphasis). Tyr64, Asp114, Leu115, Arg116, and Gly191, five principal residues comprising the DNA binding site, are emphasized with dark ball-and-stick models. Note that two conformations of Tyr64 in form IV shown in (d). Figures 1, 2(a), 3, 4(b), 5and 7, were generated using MOLSCRIPT (Kraulis, 1991) and rendered with RASTER3D (Merritt & Bacon, 1997).</note>
<note type="content">Figure 2: Comparison of the protein molecules of the different crystal forms of MMLV RT fragment. (a) Superpositioning of the fragment molecules was done using O (Jones et al., 1991) and was based upon the overall 160 best-defined Cα atoms (i.e. for residues 27-61, 78-97, 112-125, 147-171, 182-212, 218-230 and 235-256). Molecules A and B of form I are shown in aqua and yellow, respectively, as trace renderings. Molecules A and B of form IIa are shown in white and pale green, respectively. Dark blue represents form IV, and the uncomplexed MMLV RT fragment is magenta. The highly variable β4-β5 loop is labeled, as well as the moderately variable β8-β9 loop. The region labeled 126-142 also varies among the forms and is thus noted. The amino and carboxy termini are designated with N and C, respectively. (b) A B-factor plot for main-chain protein atoms, emphasizing the more disordered regions in the protein, is shown. The plot is for the A molecule of form IIa, but is highly representative of all of the crystal forms.</note>
<note type="content">Figure 3: Stereodiagrams of DNA bound to the fingers domain of the N-terminal fragment of MMLV RT in form IIa and form IIb crystal structures. The DNA is shown with red stick models. White broken lines indicate hydrogen bonds ranging from 2.3-3.4 Å. (a) A close-up of the hydrogen bonding interactions in the fingers domain binding site of the A molecule of form IIa. Shown are the specific contacts to the DNA made by Arg116, the ion-pair formed between Asp114 and Arg116, the hydrogen bond between Leu115 N and the 3′-OH group of G8, the hydrogen bond between Gly191 O and the same 3′-OH group of G8, the hydrogen bond between Tyr64 OH group and Asp114 Oδ2 atom, and the hydrogen bond between Asp114 Oδ1 and Arg116 N atom. (b) Similar contacts for the A molecule of form IIb are shown with the addition of contacts from Ser67 Oγ2 to N3 and O4 of T3∗. A black line is drawn from the Gly191 label to its main-chain O atom. (c) The single-stranded overhang from the B molecule of form IIb is shown with the DNA-binding region of the fingers domain. The ion-pair between Asp114 and Arg116 is not shown in (c), since the distance from Oδ1 to Nε is 3.5 Å. The alternate conformation of the single-stranded overhang is apparent in that T3∗ makes no contacts with Ser67; however, its O4 atom makes a 3.2 Å hydrogen bond with Nζ of Lys102. (b) A black line is drawn from the Gly191 label to its main-chain O atom. (d) A diagram of the hydrogen bonding interactions of the protein and DNA atoms is shown for the form IIa model with the 8/8-mer DNA. Short dashes and long dashes indicate interactions between atoms that are 2.4-3.4 Å or 3.5-3.8 Å apart, respectively.</note>
<note type="content">Figure 4: Sequence alignments of retroviral reverse transcriptases including conserved residues from the fingers domain that bind DNA in the complexes with the N-terminal fragment from MMLV RT. (a) Sequence alignments were done using GCG for 251 residues from the fingers and palm domains of the different RTs. Sequence identities with the Moloney murine leukemia virus RT varied from 29 % for HIV-1 RT to 77 % for gibbon ape leukemia virus RT. Residues 112-121 and 187-196 (numbering is from MMLV RT) are shown for 25 different retroviral RTs. The conserved residues are boxed and include Asp114, Arg116, Asn119 and Gly191. Analogous residues in the HIV-1 RT include Asp76, Arg78, Asn81 and Gly152. Box colors correspond to stick model colors used in (b). The sequence codes from the SwissProt database all include the prefix POL for the retroviral pol gene and an extension, which is an abbreviation for the viral source. The viral sources include MLVMO, Moloney murine leukemia virus; GALV, gibbon ape leukemia virus; HV1B1, human immunodeficiency virus type 1 (BH10 isolate); HV1Y2, human immunodeficiency virus type 1 (YU-2 isolate); HV2KR, human immundodeficiency virus type 2 (isolate KR); BAEVM, baboon endogenous virus (strain M7); FENV1, feline endogenous virus ECE1; HTLV2, human T-cell leukemia virus type II; SMRVH, squirrel monkey retrovirus; IPMA, mouse intracisternal A-particle; SFV3L, simian foamy virus type 3/strain LK3; RSVP, Rouse sarcoma virus strain Prague C; BIV27, bovine immunodeficiency virus (isolate 127); MPMV, simian Mason-Pfizer virus; SRV2, simian retrovirus; JSRV, sheep pulmonary adenomatosis virus; BLVJ, bovine leukemia virus (Japanese isolate BLV-1); SIVM1, simian immunodeficiency virus (MM142-83 isolate); EIAVY, equine infectious anemia virus (isolate Syoming); FIVSD, feline imunodeficiency virus (isolate San Diego); CAEV, caprine arthritis encephalitis virus; FOAMV, human spumaretrovirus; OMVVS ovine lentivirus (strain SA-OMVV); VILV1, Visna lentivirus (strain 1514). (b) A ribbon rendering is shown highlighting the conserved residues in stick models with the hydrogen-bonding interactions from the structure of the A molecule from form IIa crystals. Asp114 is shown in red, Arg116 in blue, and Asn119 and Gly191 in gray.</note>
<note type="content">Figure 5: Superpositionings of the higher-resolution structures at the DNA binding site. In both views the backgrounded DNA molecule is that of form IV, and the ion-pair formed between Asp114 and Arg116 in form IV is shown with black dashes. Both views also show smaller bonds and atoms for the dual conformations of Tyr64 of form IV. Superpositionings were done using the same subset of alpha-carbon atoms listed for Figure 2. (a) The superpositioning of the A and B protein molecules of form I onto that of form IV. The main-chains and side-chains nearly superimpose with the exception of the main-chain of the form I B molecule in the region of Tyr64. (b) Superpositioning of the A and B protein molecules of form IIa onto that of form IV. The main and side-chain superpositionings are nearly identical for the residues shown, and there is an exact mapping of the Asp114 side-chain of the form IIa A molecule and that of form IV.</note>
<note type="content">Figure 7: Stereodiagrams of DNA bound to the fingers domain of the MMLV RT fragment as modeled in the previously defined binding cleft in HIV-1 RT. (a) A trace rendering shows the fragment of MMLV RT in blue including the fingers and palm domains superimposed on the fingers, palm, and thumb domains from HIV-1 RT (2hmi structure) (Ding et al., 1998). DNA as bound to the fingers domain in form IIb crystals is shown as a stick model in red. The superpositioning of the fingers and palm domains from MMLV RT and HIV-1 RT is based on the 160 most similar residues as reported by Georgiadis et al. (1995) and listed in the legend in Figure 2. (b) The same molecules are superimposed as in (a). The DNA shown in red from the HIV-1 RT-DNA-Fab complex structure (2hmi) is shown for comparison in a similar view along the cleft formed by the fingers, palm, and thumb domains.</note>
<note type="content">Figure 6: Comparison of DNA bound to the MMLV RT fragment, HIV-1 RT, and Taq polymerase. Superimposed DNA molecules bound to the fragment from MMLV RT (form IIb), HIV-1 RT (1rtd), and Taq DNA polymerase (1tau) were rendered in Ribbons (Carson, 1997). Superimpositioning of the palm domains including residues 145-152, 196-212, 217-231 and 233-249 from MMLV RT and equivalent residues from HIV-1 RT and Taq polymerase was done in O (Jones et al., 1991) to obtain the positions of the DNA molecules shown in white for 1rtd, red for 1tau, and green for the form IIb fragment structure. (a) A direct comparison is shown of the positions of the 3′ ends of the primers in each DNA molecule. The 3′ end of the template-primer from 1rtd has been trapped in the polymerase active site poised for a phosphonucleotidyl transfer reaction and is therefore bound to the palm domain. The 3′ ends of template-primers bound in 1tau and in form IIb are captured in the absence of nucleotide and may represent alternate binding sites for template-primer on the respective polymerases. (b) A view rotated approximately 90 ° from that in (a), the differing conformations of the single-stranded overhangs from form IIb (green) and 1rtd (white) are shown as well as the relative positions of each template-primer. A comparison of template-primer bound to the polymerase active site of (c) HIV-1 RT and the fingers domain binding site of (d) the N-terminal fragment of MMLV RT. (c) and (d) The electrostatic potential surfaces created in GRASP (Nicholls et al., 1991) of the fingers and palm domains from the HIV-1 RT-DNA-TTP crystal structure (1rtd) and form IIb MMLV RT fragment structure are shown, respectively, in approximately equivalent orientations. A stick rendering of the bound template-primer is shown in green for the HIV-1 RT structure and gray for the fragment structure. The relative positions of the template-primer and single-stranded overhangs are shown with respect to Arg116 in MMLV RT or Arg78 in HIV-1 RT and the conserved catalytic Asp residues of the polymerase active site (PAS). The conformation of the fingers domain near the polymerase active site in HIV-1 RT is different from that in MMLV RT due to the presence of nucleotide.</note>
<note type="content">Figure 8: Comparison of the enzymatic properties of substituted MMLV RT enzymes using a mRNA template assay. An analysis of products for the mRNA template assay by gel electrophoresis is shown for RT24, D114N, R116K, DNRK (D114N R116K) and E117A enzymes. The conservative substitutions of Asn for Asp114 or Lys for Arg116 affect the abilities of the substituted enzymes to synthesize full-length products. The wedges indicate increments in time of 15, 30 and 60 minutes for each of the three lanes for products separated on a 2 % agarose gel and visualized following exposure and processing on a Molecular Dynamics phosphorimager. Size markers are 1 kb and 50 bp ladders in lanes 1 and 2, respectively. Full-length products ranging from 600-650 bases from the gel are shown. The full-length products appear to be slightly shorter at longer time points potentially due to degradation of the mRNA template over time.</note>
<note type="content">Table 1: Summary of crystallographic and refinement data</note>
<note type="content">Table 2: Interactions of the N-terminal fragment with DNA</note>
<note type="content">Table 3: Comparative nucleic acid interactions with the fingers domain of MMLV RT and HIV-1 RT</note>
<note type="content">Table 4: Enzymatic characterizations of substituted enzymes</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Shabir</forename>
<surname>Najmudin</surname>
</persName>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Marie L.</forename>
<surname>Coté</surname>
</persName>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Dunming</forename>
<surname>Sun</surname>
</persName>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Sarah</forename>
<surname>Yohannan</surname>
</persName>
<note type="biography">Present address: Sarah Yohannan, Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA.</note>
<affiliation>Present address: Sarah Yohannan, Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA.</affiliation>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Sherwin P.</forename>
<surname>Montano</surname>
</persName>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Jun</forename>
<surname>Gu</surname>
</persName>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Millie M.</forename>
<surname>Georgiadis</surname>
</persName>
<email>georgiadis@mbcl.rutgers.edu</email>
<note type="correspondence">
<p>Corresponding author</p>
</note>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
</author>
<idno type="istex">B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8</idno>
<idno type="ark">ark:/67375/6H6-57XBTDFP-8</idno>
<idno type="DOI">10.1006/jmbi.1999.3477</idno>
<idno type="PII">S0022-2836(99)93477-0</idno>
</analytic>
<monogr>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="pISSN">0022-2836</idno>
<idno type="PII">S0022-2836(00)X0180-5</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">296</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="613">613</biblScope>
<biblScope unit="page" to="632">632</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 Å resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 Å resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3′-OH group from the primer strand and minor groove base atoms and sugar atoms from the n−2 and n−3 positions of the template strand, where n is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the β4-β5 loop (β3-β4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>article-category</head>
<item>
<term>Regular article</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>crystal structure</term>
</item>
<item>
<term>Moloney murine leukemia virus</term>
</item>
<item>
<term>reverse transcriptase</term>
</item>
<item>
<term>protein-DNA complex</term>
</item>
<item>
<term>processivity</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Abbreviations</head>
<item>
<term>RT</term>
<term>reverse transcriptase</term>
</item>
<item>
<term>MMLV</term>
<term>Moloney murine leukemia virus</term>
</item>
<item>
<term>RSV</term>
<term>Rous sarcoma virus</term>
</item>
<item>
<term>PEG</term>
<term>polyethylene glycol</term>
</item>
<item>
<term>HIV-1</term>
<term>human immunodeficiency virus-type 1</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1999-12-16">Modified</change>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-57XBTDFP-8/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="GR1"></istex:entity>
<istex:entity SYSTEM="gr2a" NDATA="IMAGE" name="GR2a"></istex:entity>
<istex:entity SYSTEM="gr2b" NDATA="IMAGE" name="GR2b"></istex:entity>
<istex:entity SYSTEM="gr3a" NDATA="IMAGE" name="GR3a"></istex:entity>
<istex:entity SYSTEM="gr3b" NDATA="IMAGE" name="GR3b"></istex:entity>
<istex:entity SYSTEM="gr4a" NDATA="IMAGE" name="GR4a"></istex:entity>
<istex:entity SYSTEM="gr4b" NDATA="IMAGE" name="GR4b"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="GR5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="GR6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="GR7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="GR8"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YJMBI</jid>
<aid>93477</aid>
<ce:pii>S0022-2836(99)93477-0</ce:pii>
<ce:doi>10.1006/jmbi.1999.3477</ce:doi>
<ce:copyright type="full-transfer" year="2000">Academic Press</ce:copyright>
<ce:doctopics>
<ce:doctopic>
<ce:text>Regular article</ce:text>
</ce:doctopic>
</ce:doctopics>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Regular article</ce:textfn>
</ce:dochead>
<ce:title>Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>
<ce:bold>
<ce:italic>Edited by D. C. Rees</ce:italic>
</ce:bold>
</ce:note-para>
</ce:footnote>
</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Shabir</ce:given-name>
<ce:surname>Najmudin</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:indexed-name>Cote</ce:indexed-name>
<ce:given-name>Marie L.</ce:given-name>
<ce:surname>Coté</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Dunming</ce:given-name>
<ce:surname>Sun</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Sarah</ce:given-name>
<ce:surname>Yohannan</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="FN2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Sherwin P.</ce:given-name>
<ce:surname>Montano</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Jun</ce:given-name>
<ce:surname>Gu</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Millie M.</ce:given-name>
<ce:surname>Georgiadis</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:cross-ref refid="COR1">*</ce:cross-ref>
<ce:e-address>georgiadis@mbcl.rutgers.edu</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</ce:textfn>
</ce:affiliation>
<ce:correspondence id="COR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author</ce:text>
</ce:correspondence>
<ce:footnote id="FN2">
<ce:label>2</ce:label>
<ce:note-para>Present address: Sarah Yohannan, Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="27" month="9" year="1999"></ce:date-received>
<ce:date-revised day="16" month="12" year="1999"></ce:date-revised>
<ce:date-accepted day="20" month="12" year="1999"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 Å resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 Å resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3′-OH group from the primer strand and minor groove base atoms and sugar atoms from the
<ce:italic>n</ce:italic>
−2 and
<ce:italic>n</ce:italic>
−3 positions of the template strand, where
<ce:italic>n</ce:italic>
is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the β4-β5 loop (β3-β4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords>
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>crystal structure</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Moloney murine leukemia virus</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>reverse transcriptase</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>protein-DNA complex</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>processivity</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="abr">
<ce:section-title>Abbreviations</ce:section-title>
<ce:keyword>
<ce:text>RT</ce:text>
<ce:keyword>
<ce:text>reverse transcriptase</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>MMLV</ce:text>
<ce:keyword>
<ce:text>Moloney murine leukemia virus</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>RSV</ce:text>
<ce:keyword>
<ce:text>Rous sarcoma virus</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>PEG</ce:text>
<ce:keyword>
<ce:text>polyethylene glycol</ce:text>
</ce:keyword>
</ce:keyword>
<ce:keyword>
<ce:text>HIV-1</ce:text>
<ce:keyword>
<ce:text>human immunodeficiency virus-type 1</ce:text>
</ce:keyword>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabir</namePart>
<namePart type="family">Najmudin</namePart>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie L.</namePart>
<namePart type="family">Coté</namePart>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dunming</namePart>
<namePart type="family">Sun</namePart>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sarah</namePart>
<namePart type="family">Yohannan</namePart>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<description>Present address: Sarah Yohannan, Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sherwin P.</namePart>
<namePart type="family">Montano</namePart>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun</namePart>
<namePart type="family">Gu</namePart>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Millie M.</namePart>
<namePart type="family">Georgiadis</namePart>
<affiliation>E-mail: georgiadis@mbcl.rutgers.edu</affiliation>
<affiliation>Waksman Institute and Department of Chemistry Rutgers University Piscataway, NJ 08854, USA</affiliation>
<description>Corresponding author</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<dateModified encoding="w3cdtf">1999-12-16</dateModified>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Reverse transcriptase (RT) serves as the replicative polymerase for retroviruses by using RNA and DNA-directed DNA polymerase activities coupled with a ribonuclease H activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. In an effort to obtain detailed structural information about nucleic acid interactions with reverse transcriptase, we have determined crystal structures at 2.3 Å resolution of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed to blunt-ended DNA in three distinct lattices. This fragment includes the fingers and palm domains from Moloney murine leukemia virus reverse transcriptase. We have also determined the crystal structure at 3.0 Å resolution of the fragment complexed to DNA with a single-stranded template overhang resembling a template-primer substrate. Protein-DNA interactions, which are nearly identical in each of the three lattices, involve four conserved residues in the fingers domain, Asp114, Arg116, Asn119 and Gly191. DNA atoms involved in the interactions include the 3′-OH group from the primer strand and minor groove base atoms and sugar atoms from the n−2 and n−3 positions of the template strand, where n is the template base that would pair with an incoming nucleotide. The single-stranded template overhang adopts two different conformations in the asymmetric unit interacting with residues in the β4-β5 loop (β3-β4 in HIV-1 RT). Our fragment-DNA complexes are distinct from previously reported complexes of DNA bound to HIV-1 RT but related in the types of interactions formed between protein and DNA. In addition, the DNA in all of these complexes is bound in the same cleft of the enzyme. Through site-directed mutagenesis, we have substituted residues that are involved in binding DNA in our crystal structures and have characterized the resulting enzymes. We now propose that nucleic acid binding to the fingers domain may play a role in translocation of nucleic acid during processive DNA synthesis and suggest that our complex may represent an intermediate in this process.</abstract>
<note type="footnote">Edited by D. C. Rees</note>
<note type="content">Section title: Regular article</note>
<note type="content">Figure 1: Overall structures of forms IIa, IIb, I, and IV MMLV RT fragment complexed with DNA. All views present ribbon diagrams for the protein molecules and stick models for the DNA molecules. The proteins are shown with green β-strands, off-white coils, and yellow α-helices, with the exception of the αD helix, which is shown in white. Two MMLV RT fragment molecules and one bound DNA molecule in the asymmetric units of form (a) IIa, (b) IIb, and (c) I are shown in addition to a second symmetry-equivalent DNA molecule (red stick figures). (d) The form IV MMLV RT fragment with its bound DNA and the (−x−1, −y, z) symmetry-related species, forming a pseudo-hexadecamer DNA molecule (depicted in both red and yellow stick models for emphasis). Tyr64, Asp114, Leu115, Arg116, and Gly191, five principal residues comprising the DNA binding site, are emphasized with dark ball-and-stick models. Note that two conformations of Tyr64 in form IV shown in (d). Figures 1, 2(a), 3, 4(b), 5and 7, were generated using MOLSCRIPT (Kraulis, 1991) and rendered with RASTER3D (Merritt & Bacon, 1997).</note>
<note type="content">Figure 2: Comparison of the protein molecules of the different crystal forms of MMLV RT fragment. (a) Superpositioning of the fragment molecules was done using O (Jones et al., 1991) and was based upon the overall 160 best-defined Cα atoms (i.e. for residues 27-61, 78-97, 112-125, 147-171, 182-212, 218-230 and 235-256). Molecules A and B of form I are shown in aqua and yellow, respectively, as trace renderings. Molecules A and B of form IIa are shown in white and pale green, respectively. Dark blue represents form IV, and the uncomplexed MMLV RT fragment is magenta. The highly variable β4-β5 loop is labeled, as well as the moderately variable β8-β9 loop. The region labeled 126-142 also varies among the forms and is thus noted. The amino and carboxy termini are designated with N and C, respectively. (b) A B-factor plot for main-chain protein atoms, emphasizing the more disordered regions in the protein, is shown. The plot is for the A molecule of form IIa, but is highly representative of all of the crystal forms.</note>
<note type="content">Figure 3: Stereodiagrams of DNA bound to the fingers domain of the N-terminal fragment of MMLV RT in form IIa and form IIb crystal structures. The DNA is shown with red stick models. White broken lines indicate hydrogen bonds ranging from 2.3-3.4 Å. (a) A close-up of the hydrogen bonding interactions in the fingers domain binding site of the A molecule of form IIa. Shown are the specific contacts to the DNA made by Arg116, the ion-pair formed between Asp114 and Arg116, the hydrogen bond between Leu115 N and the 3′-OH group of G8, the hydrogen bond between Gly191 O and the same 3′-OH group of G8, the hydrogen bond between Tyr64 OH group and Asp114 Oδ2 atom, and the hydrogen bond between Asp114 Oδ1 and Arg116 N atom. (b) Similar contacts for the A molecule of form IIb are shown with the addition of contacts from Ser67 Oγ2 to N3 and O4 of T3∗. A black line is drawn from the Gly191 label to its main-chain O atom. (c) The single-stranded overhang from the B molecule of form IIb is shown with the DNA-binding region of the fingers domain. The ion-pair between Asp114 and Arg116 is not shown in (c), since the distance from Oδ1 to Nε is 3.5 Å. The alternate conformation of the single-stranded overhang is apparent in that T3∗ makes no contacts with Ser67; however, its O4 atom makes a 3.2 Å hydrogen bond with Nζ of Lys102. (b) A black line is drawn from the Gly191 label to its main-chain O atom. (d) A diagram of the hydrogen bonding interactions of the protein and DNA atoms is shown for the form IIa model with the 8/8-mer DNA. Short dashes and long dashes indicate interactions between atoms that are 2.4-3.4 Å or 3.5-3.8 Å apart, respectively.</note>
<note type="content">Figure 4: Sequence alignments of retroviral reverse transcriptases including conserved residues from the fingers domain that bind DNA in the complexes with the N-terminal fragment from MMLV RT. (a) Sequence alignments were done using GCG for 251 residues from the fingers and palm domains of the different RTs. Sequence identities with the Moloney murine leukemia virus RT varied from 29 % for HIV-1 RT to 77 % for gibbon ape leukemia virus RT. Residues 112-121 and 187-196 (numbering is from MMLV RT) are shown for 25 different retroviral RTs. The conserved residues are boxed and include Asp114, Arg116, Asn119 and Gly191. Analogous residues in the HIV-1 RT include Asp76, Arg78, Asn81 and Gly152. Box colors correspond to stick model colors used in (b). The sequence codes from the SwissProt database all include the prefix POL for the retroviral pol gene and an extension, which is an abbreviation for the viral source. The viral sources include MLVMO, Moloney murine leukemia virus; GALV, gibbon ape leukemia virus; HV1B1, human immunodeficiency virus type 1 (BH10 isolate); HV1Y2, human immunodeficiency virus type 1 (YU-2 isolate); HV2KR, human immundodeficiency virus type 2 (isolate KR); BAEVM, baboon endogenous virus (strain M7); FENV1, feline endogenous virus ECE1; HTLV2, human T-cell leukemia virus type II; SMRVH, squirrel monkey retrovirus; IPMA, mouse intracisternal A-particle; SFV3L, simian foamy virus type 3/strain LK3; RSVP, Rouse sarcoma virus strain Prague C; BIV27, bovine immunodeficiency virus (isolate 127); MPMV, simian Mason-Pfizer virus; SRV2, simian retrovirus; JSRV, sheep pulmonary adenomatosis virus; BLVJ, bovine leukemia virus (Japanese isolate BLV-1); SIVM1, simian immunodeficiency virus (MM142-83 isolate); EIAVY, equine infectious anemia virus (isolate Syoming); FIVSD, feline imunodeficiency virus (isolate San Diego); CAEV, caprine arthritis encephalitis virus; FOAMV, human spumaretrovirus; OMVVS ovine lentivirus (strain SA-OMVV); VILV1, Visna lentivirus (strain 1514). (b) A ribbon rendering is shown highlighting the conserved residues in stick models with the hydrogen-bonding interactions from the structure of the A molecule from form IIa crystals. Asp114 is shown in red, Arg116 in blue, and Asn119 and Gly191 in gray.</note>
<note type="content">Figure 5: Superpositionings of the higher-resolution structures at the DNA binding site. In both views the backgrounded DNA molecule is that of form IV, and the ion-pair formed between Asp114 and Arg116 in form IV is shown with black dashes. Both views also show smaller bonds and atoms for the dual conformations of Tyr64 of form IV. Superpositionings were done using the same subset of alpha-carbon atoms listed for Figure 2. (a) The superpositioning of the A and B protein molecules of form I onto that of form IV. The main-chains and side-chains nearly superimpose with the exception of the main-chain of the form I B molecule in the region of Tyr64. (b) Superpositioning of the A and B protein molecules of form IIa onto that of form IV. The main and side-chain superpositionings are nearly identical for the residues shown, and there is an exact mapping of the Asp114 side-chain of the form IIa A molecule and that of form IV.</note>
<note type="content">Figure 7: Stereodiagrams of DNA bound to the fingers domain of the MMLV RT fragment as modeled in the previously defined binding cleft in HIV-1 RT. (a) A trace rendering shows the fragment of MMLV RT in blue including the fingers and palm domains superimposed on the fingers, palm, and thumb domains from HIV-1 RT (2hmi structure) (Ding et al., 1998). DNA as bound to the fingers domain in form IIb crystals is shown as a stick model in red. The superpositioning of the fingers and palm domains from MMLV RT and HIV-1 RT is based on the 160 most similar residues as reported by Georgiadis et al. (1995) and listed in the legend in Figure 2. (b) The same molecules are superimposed as in (a). The DNA shown in red from the HIV-1 RT-DNA-Fab complex structure (2hmi) is shown for comparison in a similar view along the cleft formed by the fingers, palm, and thumb domains.</note>
<note type="content">Figure 6: Comparison of DNA bound to the MMLV RT fragment, HIV-1 RT, and Taq polymerase. Superimposed DNA molecules bound to the fragment from MMLV RT (form IIb), HIV-1 RT (1rtd), and Taq DNA polymerase (1tau) were rendered in Ribbons (Carson, 1997). Superimpositioning of the palm domains including residues 145-152, 196-212, 217-231 and 233-249 from MMLV RT and equivalent residues from HIV-1 RT and Taq polymerase was done in O (Jones et al., 1991) to obtain the positions of the DNA molecules shown in white for 1rtd, red for 1tau, and green for the form IIb fragment structure. (a) A direct comparison is shown of the positions of the 3′ ends of the primers in each DNA molecule. The 3′ end of the template-primer from 1rtd has been trapped in the polymerase active site poised for a phosphonucleotidyl transfer reaction and is therefore bound to the palm domain. The 3′ ends of template-primers bound in 1tau and in form IIb are captured in the absence of nucleotide and may represent alternate binding sites for template-primer on the respective polymerases. (b) A view rotated approximately 90 ° from that in (a), the differing conformations of the single-stranded overhangs from form IIb (green) and 1rtd (white) are shown as well as the relative positions of each template-primer. A comparison of template-primer bound to the polymerase active site of (c) HIV-1 RT and the fingers domain binding site of (d) the N-terminal fragment of MMLV RT. (c) and (d) The electrostatic potential surfaces created in GRASP (Nicholls et al., 1991) of the fingers and palm domains from the HIV-1 RT-DNA-TTP crystal structure (1rtd) and form IIb MMLV RT fragment structure are shown, respectively, in approximately equivalent orientations. A stick rendering of the bound template-primer is shown in green for the HIV-1 RT structure and gray for the fragment structure. The relative positions of the template-primer and single-stranded overhangs are shown with respect to Arg116 in MMLV RT or Arg78 in HIV-1 RT and the conserved catalytic Asp residues of the polymerase active site (PAS). The conformation of the fingers domain near the polymerase active site in HIV-1 RT is different from that in MMLV RT due to the presence of nucleotide.</note>
<note type="content">Figure 8: Comparison of the enzymatic properties of substituted MMLV RT enzymes using a mRNA template assay. An analysis of products for the mRNA template assay by gel electrophoresis is shown for RT24, D114N, R116K, DNRK (D114N R116K) and E117A enzymes. The conservative substitutions of Asn for Asp114 or Lys for Arg116 affect the abilities of the substituted enzymes to synthesize full-length products. The wedges indicate increments in time of 15, 30 and 60 minutes for each of the three lanes for products separated on a 2 % agarose gel and visualized following exposure and processing on a Molecular Dynamics phosphorimager. Size markers are 1 kb and 50 bp ladders in lanes 1 and 2, respectively. Full-length products ranging from 600-650 bases from the gel are shown. The full-length products appear to be slightly shorter at longer time points potentially due to degradation of the mRNA template over time.</note>
<note type="content">Table 1: Summary of crystallographic and refinement data</note>
<note type="content">Table 2: Interactions of the N-terminal fragment with DNA</note>
<note type="content">Table 3: Comparative nucleic acid interactions with the fingers domain of MMLV RT and HIV-1 RT</note>
<note type="content">Table 4: Enzymatic characterizations of substituted enzymes</note>
<subject>
<genre>article-category</genre>
<topic>Regular article</topic>
</subject>
<subject lang="en">
<genre>Keywords</genre>
<topic>crystal structure</topic>
<topic>Moloney murine leukemia virus</topic>
<topic>reverse transcriptase</topic>
<topic>protein-DNA complex</topic>
<topic>processivity</topic>
</subject>
<subject lang="en">
<genre>Abbreviations</genre>
<topic>RT : reverse transcriptase</topic>
<topic>MMLV : Moloney murine leukemia virus</topic>
<topic>RSV : Rous sarcoma virus</topic>
<topic>PEG : polyethylene glycol</topic>
<topic>HIV-1 : human immunodeficiency virus-type 1</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Molecular Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YJMBI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
</originInfo>
<identifier type="ISSN">0022-2836</identifier>
<identifier type="PII">S0022-2836(00)X0180-5</identifier>
<part>
<date>2000</date>
<detail type="volume">
<number>296</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>325</start>
<end>735</end>
</extent>
<extent unit="pages">
<start>613</start>
<end>632</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8</identifier>
<identifier type="ark">ark:/67375/6H6-57XBTDFP-8</identifier>
<identifier type="DOI">10.1006/jmbi.1999.3477</identifier>
<identifier type="PII">S0022-2836(99)93477-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Academic Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Academic Press, ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-57XBTDFP-8/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002696 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002696 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:B4B1037C3EA4FFE597E7FD5BD7DBC0E6AB0887B8
   |texte=   Crystal structures of an N-terminal fragment from moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021