Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey

Identifieur interne : 002655 ( Istex/Corpus ); précédent : 002654; suivant : 002656

The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey

Auteurs : Fred L. Brown ; Phillip R. Musich ; Joseph J. Maio

Source :

RBID : ISTEX:0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67

English descriptors

Abstract

Abstract: An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI∗, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI∗ and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI∗ sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI∗ or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI∗, HindIII and HaeIII have been mapped within the repeat unit. Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion. These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).

Url:
DOI: 10.1016/0022-2836(79)90201-8

Links to Exploration step

ISTEX:0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
<author>
<name sortKey="Brown, Fred L" sort="Brown, Fred L" uniqKey="Brown F" first="Fred L." last="Brown">Fred L. Brown</name>
<affiliation>
<mods:affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Musich, Phillip R" sort="Musich, Phillip R" uniqKey="Musich P" first="Phillip R." last="Musich">Phillip R. Musich</name>
<affiliation>
<mods:affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maio, Joseph J" sort="Maio, Joseph J" uniqKey="Maio J" first="Joseph J." last="Maio">Joseph J. Maio</name>
<affiliation>
<mods:affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67</idno>
<date when="1979" year="1979">1979</date>
<idno type="doi">10.1016/0022-2836(79)90201-8</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-398G3DF9-N/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002655</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002655</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
<author>
<name sortKey="Brown, Fred L" sort="Brown, Fred L" uniqKey="Brown F" first="Fred L." last="Brown">Fred L. Brown</name>
<affiliation>
<mods:affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Musich, Phillip R" sort="Musich, Phillip R" uniqKey="Musich P" first="Phillip R." last="Musich">Phillip R. Musich</name>
<affiliation>
<mods:affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Maio, Joseph J" sort="Maio, Joseph J" uniqKey="Maio J" first="Joseph J." last="Maio">Joseph J. Maio</name>
<affiliation>
<mods:affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1979">1979</date>
<biblScope unit="volume">131</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="777">777</biblScope>
<biblScope unit="page" to="799">799</biblScope>
</imprint>
<idno type="ISSN">0022-2836</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0022-2836</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Agarose</term>
<term>Basic periodicity</term>
<term>Biol</term>
<term>Chromatin</term>
<term>Chromatin segments</term>
<term>Cleavage</term>
<term>Component</term>
<term>Digest</term>
<term>Digestion</term>
<term>Distinct subset</term>
<term>Dna</term>
<term>Doublet</term>
<term>Ecori</term>
<term>Ecorl</term>
<term>Ecort</term>
<term>Electrophoresis</term>
<term>Electrophoretic</term>
<term>Enzyme</term>
<term>Genome</term>
<term>Haeiii</term>
<term>Hindiii</term>
<term>Hybridization</term>
<term>Incubation</term>
<term>Incubation conditions</term>
<term>Incubation temperature</term>
<term>Intermediate series</term>
<term>Ionic strength</term>
<term>Jeppesen</term>
<term>Kornberg</term>
<term>Kurnit</term>
<term>Kurnit maio</term>
<term>Large amounts</term>
<term>Limit digests</term>
<term>Maio</term>
<term>Maxam gilbert</term>
<term>Micrococcal</term>
<term>Micrococcal nuclease</term>
<term>Minor segments</term>
<term>Monkey kidney</term>
<term>Monkey kidney cells</term>
<term>Monomer</term>
<term>Monomer segments</term>
<term>Multimeric</term>
<term>Multimeric series</term>
<term>Musich</term>
<term>Nuclear isolation</term>
<term>Nuclease</term>
<term>Nuclease digestions</term>
<term>Nucleosomal</term>
<term>Nucleosomal arrays</term>
<term>Nucleosomal proteins</term>
<term>Nucleosome</term>
<term>Nucleosome structure</term>
<term>Nucleosomes</term>
<term>Partial ecori</term>
<term>Periodicity</term>
<term>Phosphate buffer</term>
<term>Polyacrylamide</term>
<term>Primary sites</term>
<term>Primates</term>
<term>Pure component</term>
<term>Radioactivity measurements</term>
<term>Repetitive</term>
<term>Repetitive dnas</term>
<term>Restriction</term>
<term>Restriction segments</term>
<term>Roman numerals</term>
<term>Room temperature</term>
<term>Secondary ecori</term>
<term>Secondary sites</term>
<term>Segment</term>
<term>Submonomer</term>
<term>Submonomer segments</term>
<term>Subset</term>
<term>Subunit</term>
<term>Subunit structure</term>
<term>Total nucleosome population</term>
<term>Unpublished work</term>
<term>Various restriction enzymes</term>
<term>Weight component</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI∗, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI∗ and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI∗ sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI∗ or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI∗, HindIII and HaeIII have been mapped within the repeat unit. Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion. These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>ecori</json:string>
<json:string>chromatin</json:string>
<json:string>nuclease</json:string>
<json:string>micrococcal</json:string>
<json:string>digestion</json:string>
<json:string>maio</json:string>
<json:string>musich</json:string>
<json:string>nucleosome</json:string>
<json:string>micrococcal nuclease</json:string>
<json:string>agarose</json:string>
<json:string>submonomer</json:string>
<json:string>nucleosomes</json:string>
<json:string>haeiii</json:string>
<json:string>polyacrylamide</json:string>
<json:string>doublet</json:string>
<json:string>nucleosomal</json:string>
<json:string>submonomer segments</json:string>
<json:string>ionic strength</json:string>
<json:string>restriction segments</json:string>
<json:string>cleavage</json:string>
<json:string>biol</json:string>
<json:string>ecorl</json:string>
<json:string>subset</json:string>
<json:string>repetitive</json:string>
<json:string>weight component</json:string>
<json:string>kurnit</json:string>
<json:string>kornberg</json:string>
<json:string>hindiii</json:string>
<json:string>monomer segments</json:string>
<json:string>hybridization</json:string>
<json:string>monomer</json:string>
<json:string>secondary sites</json:string>
<json:string>genome</json:string>
<json:string>subunit</json:string>
<json:string>electrophoretic</json:string>
<json:string>ecort</json:string>
<json:string>segment</json:string>
<json:string>periodicity</json:string>
<json:string>nucleosome structure</json:string>
<json:string>multimeric</json:string>
<json:string>dna</json:string>
<json:string>jeppesen</json:string>
<json:string>kurnit maio</json:string>
<json:string>unpublished work</json:string>
<json:string>digest</json:string>
<json:string>phosphate buffer</json:string>
<json:string>incubation conditions</json:string>
<json:string>nucleosomal proteins</json:string>
<json:string>multimeric series</json:string>
<json:string>nuclear isolation</json:string>
<json:string>repetitive dnas</json:string>
<json:string>nuclease digestions</json:string>
<json:string>large amounts</json:string>
<json:string>radioactivity measurements</json:string>
<json:string>intermediate series</json:string>
<json:string>monkey kidney cells</json:string>
<json:string>nucleosomal arrays</json:string>
<json:string>primary sites</json:string>
<json:string>primates</json:string>
<json:string>roman numerals</json:string>
<json:string>pure component</json:string>
<json:string>limit digests</json:string>
<json:string>various restriction enzymes</json:string>
<json:string>partial ecori</json:string>
<json:string>monkey kidney</json:string>
<json:string>maxam gilbert</json:string>
<json:string>room temperature</json:string>
<json:string>chromatin segments</json:string>
<json:string>minor segments</json:string>
<json:string>basic periodicity</json:string>
<json:string>secondary ecori</json:string>
<json:string>distinct subset</json:string>
<json:string>total nucleosome population</json:string>
<json:string>subunit structure</json:string>
<json:string>incubation temperature</json:string>
<json:string>restriction</json:string>
<json:string>component</json:string>
<json:string>enzyme</json:string>
<json:string>electrophoresis</json:string>
<json:string>incubation</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Fred L. Brown</name>
<affiliations>
<json:string>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Phillip R. Musich</name>
<affiliations>
<json:string>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joseph J. Maio</name>
<affiliations>
<json:string>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-398G3DF9-N</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI∗, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI∗ and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI∗ sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI∗ or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI∗, HindIII and HaeIII have been mapped within the repeat unit. Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion. These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>8134</pdfWordCount>
<pdfCharCount>55872</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>23</pdfPageCount>
<pdfPageSize>468 x 684 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>345</abstractWordCount>
<abstractCharCount>2259</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
<pmid>
<json:string>117111</json:string>
</pmid>
<pii>
<json:string>0022-2836(79)90201-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Molecular Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1979</publicationDate>
<issn>
<json:string>0022-2836</json:string>
</issn>
<pii>
<json:string>S0022-2836(00)X0729-2</json:string>
</pii>
<volume>131</volume>
<issue>4</issue>
<pages>
<first>777</first>
<last>799</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1979</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>National Cancer Institute, National Institute of Health</json:string>
<json:string>Ultra-Violet Products Inc.</json:string>
<json:string>National Institute of General Medical Sciences, National Institutes of Health</json:string>
<json:string>Miles Laboratories</json:string>
<json:string>Beckman Instruments</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>F. L. Rrown</json:string>
<json:string>J. J. Maio</json:string>
<json:string>J. Maio</json:string>
<json:string>R. HoeIll</json:string>
<json:string>Mr G. McKenna</json:string>
<json:string>The</json:string>
<json:string>E. M. Biochemicals</json:string>
<json:string>F. L. Brown</json:string>
<json:string>P. R. Musich</json:string>
<json:string>E. Merck</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
<json:string>Darmstadt</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Sanger et al., 1977</json:string>
<json:string>Fittler, 1977</json:string>
<json:string>for a review see Kornberg, 1977</json:string>
<json:string>Musich et al., 1977a,b</json:string>
<json:string>see Chambon, 1977</json:string>
<json:string>Polisky et al. (1975)</json:string>
<json:string>Rosenberg et al., 1978</json:string>
<json:string>Renz et al., 1977</json:string>
<json:string>see Table 1 of Kornberg, 1977</json:string>
<json:string>Maio, 1971</json:string>
<json:string>Musich et al., 1977b</json:string>
<json:string>Hozier et al., 1977</json:string>
<json:string>?I’-1 nuclear CV-1 nuclei were isolated and treated with graded concentrations of micrococcal nuclease at 2°C and in the presence of 80 mM-Nacl (No11 & Kornberg, 1977</json:string>
<json:string>Varshavsky et al., 1977</json:string>
<json:string>Rrnz et al.. 1977</json:string>
<json:string>Maxam & Gilbert, 1977</json:string>
<json:string>Musich et al., 1977a</json:string>
<json:string>Musich et al., 19776</json:string>
<json:string>Gruss & Sauer, 1975</json:string>
<json:string>Kurnit & Maio, 1973</json:string>
<json:string>Maio et al., 1977</json:string>
<json:string>Schildkraut & Maio, 1968</json:string>
<json:string>Pettersson et al. (1973)</json:string>
<json:string>Weintraub & Groudine, 1976</json:string>
<json:string>Rosenberg et al. (1978)</json:string>
<json:string>Brown et al., 1978</json:string>
<json:string>Garel & Axel, 1976</json:string>
<json:string>Oudet et al., 1977</json:string>
<json:string>Kurnit & Maio, 1973,1974</json:string>
<json:string>Wittig & Wittig, 1977</json:string>
<json:string>Musich et al., 1978</json:string>
<json:string>Zeiger et al.. 1971</json:string>
<json:string>Laskey & Mills, 1975</json:string>
<json:string>Jeppesen et al., 1976</json:string>
<json:string>Rosenberg et al.. (1978)</json:string>
<json:string>Rigby et al., 1977</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-398G3DF9-N</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - immunologie fondamentale</json:string>
</inist>
</categories>
<publicationDate>1979</publicationDate>
<copyrightDate>1979</copyrightDate>
<doi>
<json:string>10.1016/0022-2836(79)90201-8</json:string>
</doi>
<id>0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-398G3DF9-N/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-398G3DF9-N/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-398G3DF9-N/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>elsevier</p>
</licence>
</availability>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M"></p>
<date>1979</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>These studies were supported by a grant (1R01CA16790) from the National Cancer Institute, National Institute of Health, and a grant (GM19100) from the National Institute of General Medical Sciences, National Institutes of Health.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Fred L.</forename>
<surname>Brown</surname>
</persName>
<affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Phillip R.</forename>
<surname>Musich</surname>
</persName>
<affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Joseph J.</forename>
<surname>Maio</surname>
</persName>
<affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</affiliation>
</author>
<idno type="istex">0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67</idno>
<idno type="ark">ark:/67375/6H6-398G3DF9-N</idno>
<idno type="DOI">10.1016/0022-2836(79)90201-8</idno>
<idno type="PII">0022-2836(79)90201-8</idno>
</analytic>
<monogr>
<title level="j">Journal of Molecular Biology</title>
<title level="j" type="abbrev">YJMBI</title>
<idno type="pISSN">0022-2836</idno>
<idno type="PII">S0022-2836(00)X0729-2</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1979"></date>
<biblScope unit="volume">131</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="777">777</biblScope>
<biblScope unit="page" to="799">799</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1979</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI∗, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI∗ and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI∗ sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI∗ or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI∗, HindIII and HaeIII have been mapped within the repeat unit. Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion. These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1979-02-27">Modified</change>
<change when="1979">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-398G3DF9-N/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>YJMBI</jid>
<aid>79902018</aid>
<ce:pii>0022-2836(79)90201-8</ce:pii>
<ce:doi>10.1016/0022-2836(79)90201-8</ce:doi>
<ce:copyright type="unknown" year="1979"></ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>These studies were supported by a grant (1R01CA16790) from the National Cancer Institute, National Institute of Health, and a grant (GM19100) from the National Institute of General Medical Sciences, National Institutes of Health.</ce:note-para>
</ce:article-footnote>
<ce:title>The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Fred L.</ce:given-name>
<ce:surname>Brown</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Phillip R.</ce:given-name>
<ce:surname>Musich</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Joseph J.</ce:given-name>
<ce:surname>Maio</ce:surname>
</ce:author>
<ce:affiliation>
<ce:textfn>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:date-received day="21" month="12" year="1978"></ce:date-received>
<ce:date-revised day="27" month="2" year="1979"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for
<ce:italic>Eco</ce:italic>
RI,
<math altimg="si1.gif">Eco
<rm>RI</rm>
<sup></sup>
</math>
,
<ce:italic>Hind</ce:italic>
III and
<ce:italic>Hae</ce:italic>
III. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary
<math altimg="si2.gif">Eco
<rm>RI</rm>
<sup></sup>
</math>
and
<ce:italic>Hind</ce:italic>
III sites, about 59% of the repeat sequences contain secondary
<math altimg="si3.gif">Eco
<rm>RI</rm>
<sup></sup>
</math>
sites and about 36% of the repeat sequences contain secondary
<ce:italic>Hind</ce:italic>
III sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial
<math altimg="si4.gif">Eco
<rm>RI</rm>
<sup></sup>
</math>
or
<ce:italic>Hind</ce:italic>
III digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for
<ce:italic>Eco</ce:italic>
RI,
<math altimg="si5.gif">Eco
<rm>RI</rm>
<sup></sup>
</math>
,
<ce:italic>Hind</ce:italic>
III and
<ce:italic>Hae</ce:italic>
III have been mapped within the repeat unit.</ce:simple-para>
<ce:simple-para>Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 m
<ce:small-caps>m</ce:small-caps>
-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion.</ce:simple-para>
<ce:simple-para>These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich
<ce:italic>et al.</ce:italic>
, 1977
<ce:italic>b</ce:italic>
). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio
<ce:italic>et al.</ce:italic>
, 1977).</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fred L.</namePart>
<namePart type="family">Brown</namePart>
<affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Phillip R.</namePart>
<namePart type="family">Musich</namePart>
<affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joseph J.</namePart>
<namePart type="family">Maio</namePart>
<affiliation>Albert Einstein College of Medicine Department of Cell Biology 1300 Morris Park Avenue Bronx, N.Y. 10461, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1979</dateIssued>
<dateModified encoding="w3cdtf">1979-02-27</dateModified>
<copyrightDate encoding="w3cdtf">1979</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: An analysis of the repeat structure of the highly repetitive sequence, component α DNA of the African green monkey, shows that the DNA contains restriction sites for EcoRI, EcoRI∗, HindIII and HaeIII. All four restriction enzyme activities indicate a basic repeat length of 176 ± 4 base-pairs. In addition to primary EcoRI∗ and HindIII sites, about 59% of the repeat sequences contain secondary EcoRI∗ sites and about 36% of the repeat sequences contain secondary HindIII sites. The secondary sites are located less than 176 base-pairs from the primary sites and their cleavage yields several complex series of minor, intermediate segments in gels of the partial EcoRI∗ or HindIII digests. Cleavage at the secondary sites yields segments shorter than the unit monomer in the limit digests. The sites for EcoRI, EcoRI∗, HindIII and HaeIII have been mapped within the repeat unit. Treatment of the monkey nuclei with micrococcal nuclease at 2 °C and in the presence of 80 mm-NaCl reveals two distinct populations of nucleosomes. One population contains bulk DNA sequences, and after cleavage with micrococcal nuclease this population yields heterogeneous segments of DNA spanning 180 to 200 base-pairs in length. The other population contains component α sequences and after cleavage with micrococcal nuclease yields homogeneous segments of component α DNA that are exact multiples of the basic sequence repeat unit of 176 base-pairs. Thus, the cleavage by micrococcal nuclease of nucleosomal arrays containing component α sequences is as regular and precise as the cleavage of the purified DNA by the restriction enzymes. The resolution of the two distinct subsets of nucleosomes in the monkey nuclei is dependent upon the conditions of ionic strength and temperature employed during the nuclear isolation and the micrococcal nuclease digestion. These observations are consistent with a phase relation between the component α repeat sequences and the associated nucleosomal proteins (Musich et al., 1977b). They are also in accord with the hypothesis that the subunit structure of constitutive heterochromatin modulates or determines the repeat sequence structure and hence, the evolution of many highly repetitive mammalian DNAs (Maio et al., 1977).</abstract>
<note>These studies were supported by a grant (1R01CA16790) from the National Cancer Institute, National Institute of Health, and a grant (GM19100) from the National Institute of General Medical Sciences, National Institutes of Health.</note>
<relatedItem type="host">
<titleInfo>
<title>Journal of Molecular Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YJMBI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1979</dateIssued>
</originInfo>
<identifier type="ISSN">0022-2836</identifier>
<identifier type="PII">S0022-2836(00)X0729-2</identifier>
<part>
<date>1979</date>
<detail type="volume">
<number>131</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>669</start>
<end>883</end>
</extent>
<extent unit="pages">
<start>777</start>
<end>799</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67</identifier>
<identifier type="ark">ark:/67375/6H6-398G3DF9-N</identifier>
<identifier type="DOI">10.1016/0022-2836(79)90201-8</identifier>
<identifier type="PII">0022-2836(79)90201-8</identifier>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-398G3DF9-N/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002655 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002655 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:0C52EA62FE484632C3FEAD39F8BDA1EED2C57C67
   |texte=   The repetitive sequence structure of component α DNA and its relationship to the nucleosomes of the African green monkey
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021