Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dis-assembly lines: the proteasome and related ATPase-assisted proteases

Identifieur interne : 002601 ( Istex/Corpus ); précédent : 002600; suivant : 002602

Dis-assembly lines: the proteasome and related ATPase-assisted proteases

Auteurs : Peter Zwickl ; Wolfgang Baumeister ; Alasdair Steven

Source :

RBID : ISTEX:6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67

English descriptors

Abstract

Abstract: Self-compartmentalizing proteases, such as the proteasome and several prokaryotic energy-dependent proteases, are designed to act in the crowded environment of the cell. Proteins destined for degradation are recognized and unfolded by regulatory subcomplexes that invariably contain ATPase modules, before being translocated into another subcomplex, the proteolytic core, for degradation. The sequential actions effected on substrates are reflected in the linear arrangement of these subcomplexes; thus, the holocomplexes are organized as molecular disassembly and degradation lines.

Url:
DOI: 10.1016/S0959-440X(00)00075-0

Links to Exploration step

ISTEX:6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
<author>
<name sortKey="Zwickl, Peter" sort="Zwickl, Peter" uniqKey="Zwickl P" first="Peter" last="Zwickl">Peter Zwickl</name>
<affiliation>
<mods:affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baumeister, Wolfgang" sort="Baumeister, Wolfgang" uniqKey="Baumeister W" first="Wolfgang" last="Baumeister">Wolfgang Baumeister</name>
<affiliation>
<mods:affiliation>E-mail: baumeist@biochem.mpg.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steven, Alasdair" sort="Steven, Alasdair" uniqKey="Steven A" first="Alasdair" last="Steven">Alasdair Steven</name>
<affiliation>
<mods:affiliation>Laboratory of Structural Biology, Building 6, Room B2-34, Center Drive, MSC-2717, NIAMS, National Institutes of Health, Bethesda, MD 20892-2717, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67</idno>
<date when="2000" year="2000">2000</date>
<idno type="doi">10.1016/S0959-440X(00)00075-0</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-QCJZB36Q-7/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002601</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002601</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
<author>
<name sortKey="Zwickl, Peter" sort="Zwickl, Peter" uniqKey="Zwickl P" first="Peter" last="Zwickl">Peter Zwickl</name>
<affiliation>
<mods:affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baumeister, Wolfgang" sort="Baumeister, Wolfgang" uniqKey="Baumeister W" first="Wolfgang" last="Baumeister">Wolfgang Baumeister</name>
<affiliation>
<mods:affiliation>E-mail: baumeist@biochem.mpg.de</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Steven, Alasdair" sort="Steven, Alasdair" uniqKey="Steven A" first="Alasdair" last="Steven">Alasdair Steven</name>
<affiliation>
<mods:affiliation>Laboratory of Structural Biology, Building 6, Room B2-34, Center Drive, MSC-2717, NIAMS, National Institutes of Health, Bethesda, MD 20892-2717, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Current Opinion in Structural Biology</title>
<title level="j" type="abbrev">COSTBI</title>
<idno type="ISSN">0959-440X</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000">2000</date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="242">242</biblScope>
<biblScope unit="page" to="250">250</biblScope>
</imprint>
<idno type="ISSN">0959-440X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0959-440X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acad</term>
<term>Acidophilum</term>
<term>Active sites</term>
<term>Atpase</term>
<term>Atpase domains</term>
<term>Atpases</term>
<term>Bacteriophage</term>
<term>Baumeister</term>
<term>Biol</term>
<term>Biol chem</term>
<term>Cell biol</term>
<term>Chaperone</term>
<term>Chem</term>
<term>Clpa</term>
<term>Clpap</term>
<term>Clpap protease</term>
<term>Clpp</term>
<term>Coli</term>
<term>Core particle</term>
<term>Crystal structure</term>
<term>Crystallographic study</term>
<term>Degradation</term>
<term>Electron microscopy</term>
<term>Escherichia</term>
<term>Escherichia coli</term>
<term>Eukaryotic</term>
<term>Febs lett</term>
<term>Huber</term>
<term>Image analysis</term>
<term>Lupas</term>
<term>Maurizi</term>
<term>Mismatch</term>
<term>Module</term>
<term>Mutational</term>
<term>Natl</term>
<term>Ornithine decarboxylase</term>
<term>Other hand</term>
<term>Other proteases</term>
<term>Peptide</term>
<term>Precursor</term>
<term>Proc</term>
<term>Proc natl acad</term>
<term>Processive</term>
<term>Processive degradation</term>
<term>Propeptides</term>
<term>Protease</term>
<term>Proteases zwickl</term>
<term>Proteasomal</term>
<term>Proteasomal atpases</term>
<term>Proteasome</term>
<term>Proteasomes</term>
<term>Protein breakdown</term>
<term>Protein degradation</term>
<term>Protein substrates</term>
<term>Proteolysis</term>
<term>Proteolytic</term>
<term>Regulator</term>
<term>Relative rotation</term>
<term>Sensitive factor</term>
<term>Steven</term>
<term>Struct biol</term>
<term>Structural organization</term>
<term>Subcomplex</term>
<term>Subcomplexes</term>
<term>Substrate binding</term>
<term>Substrate proteins</term>
<term>Subunit</term>
<term>Subunit composition</term>
<term>Symmetry mismatch</term>
<term>Thermoplasma</term>
<term>Thermoplasma acidophilum</term>
<term>Translocation</term>
<term>Type subunits</term>
<term>Yeast</term>
<term>Yeast proteasomes</term>
<term>Zwickl</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Self-compartmentalizing proteases, such as the proteasome and several prokaryotic energy-dependent proteases, are designed to act in the crowded environment of the cell. Proteins destined for degradation are recognized and unfolded by regulatory subcomplexes that invariably contain ATPase modules, before being translocated into another subcomplex, the proteolytic core, for degradation. The sequential actions effected on substrates are reflected in the linear arrangement of these subcomplexes; thus, the holocomplexes are organized as molecular disassembly and degradation lines.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>proteasome</json:string>
<json:string>subunit</json:string>
<json:string>proteasomes</json:string>
<json:string>atpase</json:string>
<json:string>protease</json:string>
<json:string>biol</json:string>
<json:string>baumeister</json:string>
<json:string>clpp</json:string>
<json:string>clpa</json:string>
<json:string>clpap</json:string>
<json:string>mismatch</json:string>
<json:string>atpases</json:string>
<json:string>coli</json:string>
<json:string>propeptides</json:string>
<json:string>proteasomal</json:string>
<json:string>chem</json:string>
<json:string>biol chem</json:string>
<json:string>zwickl</json:string>
<json:string>bacteriophage</json:string>
<json:string>crystal structure</json:string>
<json:string>subcomplexes</json:string>
<json:string>translocation</json:string>
<json:string>eukaryotic</json:string>
<json:string>thermoplasma</json:string>
<json:string>type subunits</json:string>
<json:string>subcomplex</json:string>
<json:string>processive</json:string>
<json:string>huber</json:string>
<json:string>steven</json:string>
<json:string>regulator</json:string>
<json:string>acad</json:string>
<json:string>maurizi</json:string>
<json:string>proc</json:string>
<json:string>natl</json:string>
<json:string>proc natl acad</json:string>
<json:string>module</json:string>
<json:string>acidophilum</json:string>
<json:string>degradation</json:string>
<json:string>escherichia</json:string>
<json:string>active sites</json:string>
<json:string>electron microscopy</json:string>
<json:string>precursor</json:string>
<json:string>lupas</json:string>
<json:string>symmetry mismatch</json:string>
<json:string>febs lett</json:string>
<json:string>atpase domains</json:string>
<json:string>struct biol</json:string>
<json:string>proteolytic</json:string>
<json:string>peptide</json:string>
<json:string>clpap protease</json:string>
<json:string>chaperone</json:string>
<json:string>proteasomal atpases</json:string>
<json:string>relative rotation</json:string>
<json:string>proteases zwickl</json:string>
<json:string>substrate proteins</json:string>
<json:string>cell biol</json:string>
<json:string>protein breakdown</json:string>
<json:string>mutational</json:string>
<json:string>other proteases</json:string>
<json:string>escherichia coli</json:string>
<json:string>ornithine decarboxylase</json:string>
<json:string>other hand</json:string>
<json:string>core particle</json:string>
<json:string>crystallographic study</json:string>
<json:string>subunit composition</json:string>
<json:string>sensitive factor</json:string>
<json:string>processive degradation</json:string>
<json:string>thermoplasma acidophilum</json:string>
<json:string>protein degradation</json:string>
<json:string>image analysis</json:string>
<json:string>structural organization</json:string>
<json:string>protein substrates</json:string>
<json:string>yeast proteasomes</json:string>
<json:string>substrate binding</json:string>
<json:string>yeast</json:string>
<json:string>proteolysis</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Peter Zwickl</name>
<affiliations>
<json:string>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Wolfgang Baumeister</name>
<affiliations>
<json:string>E-mail: baumeist@biochem.mpg.de</json:string>
<json:string>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alasdair Steven</name>
<affiliations>
<json:string>Laboratory of Structural Biology, Building 6, Room B2-34, Center Drive, MSC-2717, NIAMS, National Institutes of Health, Bethesda, MD 20892-2717, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Structural biology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Biochemistry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>AAA ATPases</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ARC</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ClpAP</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ClpXP</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>HslVU</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Lon</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>NSF</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PAN</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Proteasome</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Protein degradation</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-QCJZB36Q-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Review article</json:string>
</originalGenre>
<abstract>Abstract: Self-compartmentalizing proteases, such as the proteasome and several prokaryotic energy-dependent proteases, are designed to act in the crowded environment of the cell. Proteins destined for degradation are recognized and unfolded by regulatory subcomplexes that invariably contain ATPase modules, before being translocated into another subcomplex, the proteolytic core, for degradation. The sequential actions effected on substrates are reflected in the linear arrangement of these subcomplexes; thus, the holocomplexes are organized as molecular disassembly and degradation lines.</abstract>
<qualityIndicators>
<score>7.912</score>
<pdfWordCount>7187</pdfWordCount>
<pdfCharCount>46268</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>612 x 794 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>76</abstractWordCount>
<abstractCharCount>593</abstractCharCount>
<keywordCount>12</keywordCount>
</qualityIndicators>
<title>Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
<pmid>
<json:string>10753810</json:string>
</pmid>
<pii>
<json:string>S0959-440X(00)00075-0</json:string>
</pii>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Current Opinion in Structural Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2000</publicationDate>
<issn>
<json:string>0959-440X</json:string>
</issn>
<pii>
<json:string>S0959-440X(00)X0004-8</json:string>
</pii>
<volume>10</volume>
<issue>2</issue>
<pages>
<first>242</first>
<last>250</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2000</json:string>
<json:string>13S</json:string>
<json:string>20S</json:string>
<json:string>19S</json:string>
<json:string>26S</json:string>
<json:string>03/27/2000</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Laboratory of Structural Biology, Building</json:string>
<json:string>Elsevier Science Ltd.</json:string>
<json:string>National Institutes of Health, Bethesda, MD</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Andreas Ruepp</json:string>
<json:string>Sorel Fitz-Gibbon</json:string>
<json:string>Wolfgang Baumeister</json:string>
<json:string>In</json:string>
<json:string>David Belnap</json:string>
<json:string>Kornelius</json:string>
<json:string>Alasdair Steven</json:string>
</persName>
<placeName>
<json:string>Specificity</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[83]</json:string>
<json:string>[4]</json:string>
<json:string>[43,44]</json:string>
<json:string>[78]</json:string>
<json:string>[1,4,59]</json:string>
<json:string>[82]</json:string>
<json:string>[66]</json:string>
<json:string>[86,87]</json:string>
<json:string>[8]</json:string>
<json:string>[25,26]</json:string>
<json:string>[81]</json:string>
<json:string>[1]</json:string>
<json:string>[3,6,7]</json:string>
<json:string>[65]</json:string>
<json:string>[3]</json:string>
<json:string>[42]</json:string>
<json:string>[90,91]</json:string>
<json:string>[14,65]</json:string>
<json:string>[5]</json:string>
<json:string>Zwickl et al.</json:string>
<json:string>[67,68]</json:string>
<json:string>[85]</json:string>
<json:string>[69]</json:string>
<json:string>[61,62]</json:string>
<json:string>[59,73]</json:string>
<json:string>[9]</json:string>
<json:string>[84]</json:string>
<json:string>[88,89]</json:string>
<json:string>[2]</json:string>
<json:string>[46]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-QCJZB36Q-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - cell biology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biophysics</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Structural Biology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - physiologie vegetale et developpement</json:string>
</inist>
</categories>
<publicationDate>2000</publicationDate>
<copyrightDate>2000</copyrightDate>
<doi>
<json:string>10.1016/S0959-440X(00)00075-0</json:string>
</doi>
<id>6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-QCJZB36Q-7/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-QCJZB36Q-7/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-QCJZB36Q-7/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2000 Elsevier Science Ltd</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2000</date>
</publicationStmt>
<notesStmt>
<note type="review-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Section title: Review</note>
<note type="content">Figure 1: A comparison of the structures of the 26S proteasome and the ClpAP protease. (a) Model of the 26S proteasome obtained after combining the 3D reconstruction of the 19S regulator (blue) — the lid (distal) and base (proximal) subcomplexes are indicated by different shades of blue — from Drosophila [32••] with the crystal structure of the 20S core (yellow) from Thermoplasma [65]. (b) A model of the ClpAP protease from E. coli derived from the combination of the 3D reconstruction of the ClpAP protease (blue) [71••] with the crystal structure of the ClpP protease (yellow) [64]. The scale bar represents 10 nm.</note>
<note type="content">Figure 2: Axial view of the ClpAP complex at 29 Å resolution [71••]. ClpP (yellow) has sevenfold symmetry and ClpA (blue) has sixfold symmetry, so that the interactions between pairs of subunits in the two rings are nonequivalent. Their binding is inferred to be dependent on a key interaction (white asterisk) between one specific subunit in ClpA (red dot) and one ClpP subunit (green dot). Relative rotation by only 8.6° (equivalent to a shift of 4.5 Å at the point of contact) transfers the key relationship to neighboring subunits. Thus, the symmetry mismatch is conducive to relative rotation without disengagement of the two subcomplexes. Such rotation might occur during the processive translocation of substrates into ClpP [71••]. A similar symmetry mismatch occurs in the 26S proteasome and some other energy-dependent proteases (see Table 1).</note>
<note type="content">Table 1: Symmetry in subcomplexes of ATP-dependent proteases</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Peter</forename>
<surname>Zwickl</surname>
</persName>
<affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Wolfgang</forename>
<surname>Baumeister</surname>
</persName>
<email>baumeist@biochem.mpg.de</email>
<affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Alasdair</forename>
<surname>Steven</surname>
</persName>
<affiliation>Laboratory of Structural Biology, Building 6, Room B2-34, Center Drive, MSC-2717, NIAMS, National Institutes of Health, Bethesda, MD 20892-2717, USA</affiliation>
</author>
<idno type="istex">6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67</idno>
<idno type="ark">ark:/67375/6H6-QCJZB36Q-7</idno>
<idno type="DOI">10.1016/S0959-440X(00)00075-0</idno>
<idno type="PII">S0959-440X(00)00075-0</idno>
</analytic>
<monogr>
<title level="j">Current Opinion in Structural Biology</title>
<title level="j" type="abbrev">COSTBI</title>
<idno type="pISSN">0959-440X</idno>
<idno type="PII">S0959-440X(00)X0004-8</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2000"></date>
<biblScope unit="volume">10</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="242">242</biblScope>
<biblScope unit="page" to="250">250</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2000</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Self-compartmentalizing proteases, such as the proteasome and several prokaryotic energy-dependent proteases, are designed to act in the crowded environment of the cell. Proteins destined for degradation are recognized and unfolded by regulatory subcomplexes that invariably contain ATPase modules, before being translocated into another subcomplex, the proteolytic core, for degradation. The sequential actions effected on substrates are reflected in the linear arrangement of these subcomplexes; thus, the holocomplexes are organized as molecular disassembly and degradation lines.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Structural biology</term>
</item>
<item>
<term>Biochemistry</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>AAA ATPases</term>
</item>
<item>
<term>ARC</term>
</item>
<item>
<term>ClpAP</term>
</item>
<item>
<term>ClpXP</term>
</item>
<item>
<term>HslVU</term>
</item>
<item>
<term>Lon</term>
</item>
<item>
<term>NSF</term>
</item>
<item>
<term>PAN</term>
</item>
<item>
<term>Proteasome</term>
</item>
<item>
<term>Protein degradation</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2000">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-QCJZB36Q-7/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="rev">
<item-info>
<jid>COSTBI</jid>
<aid>75</aid>
<ce:pii>S0959-440X(00)00075-0</ce:pii>
<ce:doi>10.1016/S0959-440X(00)00075-0</ce:doi>
<ce:copyright type="full-transfer" year="2000">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Review</ce:textfn>
</ce:dochead>
<ce:title>Dis-assembly lines: the proteasome and related ATPase-assisted proteases</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Peter</ce:given-name>
<ce:surname>Zwickl</ce:surname>
<ce:cross-ref refid="AFFA">
<ce:sup>a</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Wolfgang</ce:given-name>
<ce:surname>Baumeister</ce:surname>
<ce:cross-ref refid="AFFA">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:e-address>baumeist@biochem.mpg.de</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Alasdair</ce:given-name>
<ce:surname>Steven</ce:surname>
<ce:cross-ref refid="AFFB">
<ce:sup>b</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFFA">
<ce:label>a</ce:label>
<ce:textfn>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFFB">
<ce:label>b</ce:label>
<ce:textfn>Laboratory of Structural Biology, Building 6, Room B2-34, Center Drive, MSC-2717, NIAMS, National Institutes of Health, Bethesda, MD 20892-2717, USA</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Self-compartmentalizing proteases, such as the proteasome and several prokaryotic energy-dependent proteases, are designed to act in the crowded environment of the cell. Proteins destined for degradation are recognized and unfolded by regulatory subcomplexes that invariably contain ATPase modules, before being translocated into another subcomplex, the proteolytic core, for degradation. The sequential actions effected on substrates are reflected in the linear arrangement of these subcomplexes; thus, the holocomplexes are organized as molecular disassembly and degradation lines.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="idt">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Structural biology</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Biochemistry</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>AAA ATPases</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>ARC</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>ClpAP</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>ClpXP</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>HslVU</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Lon</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>NSF</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>PAN</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Proteasome</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Protein degradation</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Dis-assembly lines: the proteasome and related ATPase-assisted proteases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Zwickl</namePart>
<affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Baumeister</namePart>
<affiliation>E-mail: baumeist@biochem.mpg.de</affiliation>
<affiliation>Department of Molecular Structural Biology, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alasdair</namePart>
<namePart type="family">Steven</namePart>
<affiliation>Laboratory of Structural Biology, Building 6, Room B2-34, Center Drive, MSC-2717, NIAMS, National Institutes of Health, Bethesda, MD 20892-2717, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
<copyrightDate encoding="w3cdtf">2000</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Self-compartmentalizing proteases, such as the proteasome and several prokaryotic energy-dependent proteases, are designed to act in the crowded environment of the cell. Proteins destined for degradation are recognized and unfolded by regulatory subcomplexes that invariably contain ATPase modules, before being translocated into another subcomplex, the proteolytic core, for degradation. The sequential actions effected on substrates are reflected in the linear arrangement of these subcomplexes; thus, the holocomplexes are organized as molecular disassembly and degradation lines.</abstract>
<note type="content">Section title: Review</note>
<note type="content">Figure 1: A comparison of the structures of the 26S proteasome and the ClpAP protease. (a) Model of the 26S proteasome obtained after combining the 3D reconstruction of the 19S regulator (blue) — the lid (distal) and base (proximal) subcomplexes are indicated by different shades of blue — from Drosophila [32••] with the crystal structure of the 20S core (yellow) from Thermoplasma [65]. (b) A model of the ClpAP protease from E. coli derived from the combination of the 3D reconstruction of the ClpAP protease (blue) [71••] with the crystal structure of the ClpP protease (yellow) [64]. The scale bar represents 10 nm.</note>
<note type="content">Figure 2: Axial view of the ClpAP complex at 29 Å resolution [71••]. ClpP (yellow) has sevenfold symmetry and ClpA (blue) has sixfold symmetry, so that the interactions between pairs of subunits in the two rings are nonequivalent. Their binding is inferred to be dependent on a key interaction (white asterisk) between one specific subunit in ClpA (red dot) and one ClpP subunit (green dot). Relative rotation by only 8.6° (equivalent to a shift of 4.5 Å at the point of contact) transfers the key relationship to neighboring subunits. Thus, the symmetry mismatch is conducive to relative rotation without disengagement of the two subcomplexes. Such rotation might occur during the processive translocation of substrates into ClpP [71••]. A similar symmetry mismatch occurs in the 26S proteasome and some other energy-dependent proteases (see Table 1).</note>
<note type="content">Table 1: Symmetry in subcomplexes of ATP-dependent proteases</note>
<subject>
<genre>Keywords</genre>
<topic>Structural biology</topic>
<topic>Biochemistry</topic>
</subject>
<subject>
<genre>Keywords</genre>
<topic>AAA ATPases</topic>
<topic>ARC</topic>
<topic>ClpAP</topic>
<topic>ClpXP</topic>
<topic>HslVU</topic>
<topic>Lon</topic>
<topic>NSF</topic>
<topic>PAN</topic>
<topic>Proteasome</topic>
<topic>Protein degradation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Current Opinion in Structural Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>COSTBI</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2000</dateIssued>
</originInfo>
<identifier type="ISSN">0959-440X</identifier>
<identifier type="PII">S0959-440X(00)X0004-8</identifier>
<part>
<date>2000</date>
<detail type="volume">
<number>10</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>129</start>
<end>264</end>
</extent>
<extent unit="pages">
<start>242</start>
<end>250</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67</identifier>
<identifier type="ark">ark:/67375/6H6-QCJZB36Q-7</identifier>
<identifier type="DOI">10.1016/S0959-440X(00)00075-0</identifier>
<identifier type="PII">S0959-440X(00)00075-0</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2000 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2000</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-QCJZB36Q-7/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002601 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002601 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:6B1F6DADCCD3763AC2C268DDAC9BE90AE1349E67
   |texte=   Dis-assembly lines: the proteasome and related ATPase-assisted proteases
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021