Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)

Identifieur interne : 002574 ( Istex/Corpus ); précédent : 002573; suivant : 002575

Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)

Auteurs : Xiaoping Guo ; Margaret A. Harmon ; Vincent Laudet ; David J. Mangelsdorf ; Melanie J. Palmer

Source :

RBID : ISTEX:98E65344AFE5B84E505070DD9E8ED920B10A9400

English descriptors

Abstract

Abstract: Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick, Amblyomma americanum (L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the `F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5′ and 3′ termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.

Url:
DOI: 10.1016/S0965-1748(97)00075-1

Links to Exploration step

ISTEX:98E65344AFE5B84E505070DD9E8ED920B10A9400

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)</title>
<author>
<name sortKey="Guo, Xiaoping" sort="Guo, Xiaoping" uniqKey="Guo X" first="Xiaoping" last="Guo">Xiaoping Guo</name>
<affiliation>
<mods:affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harmon, Margaret A" sort="Harmon, Margaret A" uniqKey="Harmon M" first="Margaret A" last="Harmon">Margaret A. Harmon</name>
<affiliation>
<mods:affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Laudet, Vincent" sort="Laudet, Vincent" uniqKey="Laudet V" first="Vincent" last="Laudet">Vincent Laudet</name>
<affiliation>
<mods:affiliation>CNRS UMR 319- Institut Pasteur de Lille, Institut de Biologie de Lille, BP447, 1, rue Calmette, 59021, Lille Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mangelsdorf, David J" sort="Mangelsdorf, David J" uniqKey="Mangelsdorf D" first="David J" last="Mangelsdorf">David J. Mangelsdorf</name>
<affiliation>
<mods:affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="J Palmer, Melanie" sort="J Palmer, Melanie" uniqKey="J Palmer M" first="Melanie" last="J. Palmer">Melanie J. Palmer</name>
<affiliation>
<mods:affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:98E65344AFE5B84E505070DD9E8ED920B10A9400</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0965-1748(97)00075-1</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-GDTXL577-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002574</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002574</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)</title>
<author>
<name sortKey="Guo, Xiaoping" sort="Guo, Xiaoping" uniqKey="Guo X" first="Xiaoping" last="Guo">Xiaoping Guo</name>
<affiliation>
<mods:affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Harmon, Margaret A" sort="Harmon, Margaret A" uniqKey="Harmon M" first="Margaret A" last="Harmon">Margaret A. Harmon</name>
<affiliation>
<mods:affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Laudet, Vincent" sort="Laudet, Vincent" uniqKey="Laudet V" first="Vincent" last="Laudet">Vincent Laudet</name>
<affiliation>
<mods:affiliation>CNRS UMR 319- Institut Pasteur de Lille, Institut de Biologie de Lille, BP447, 1, rue Calmette, 59021, Lille Cedex, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mangelsdorf, David J" sort="Mangelsdorf, David J" uniqKey="Mangelsdorf D" first="David J" last="Mangelsdorf">David J. Mangelsdorf</name>
<affiliation>
<mods:affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="J Palmer, Melanie" sort="J Palmer, Melanie" uniqKey="J Palmer M" first="Melanie" last="J. Palmer">Melanie J. Palmer</name>
<affiliation>
<mods:affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Insect Biochemistry and Molecular Biology</title>
<title level="j" type="abbrev">IB</title>
<idno type="ISSN">0965-1748</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="945">945</biblScope>
<biblScope unit="page" to="962">962</biblScope>
</imprint>
<idno type="ISSN">0965-1748</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0965-1748</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Aamecr</term>
<term>Aamecr clusters</term>
<term>Aamecr gene</term>
<term>Aamecr gene encodes</term>
<term>Aamecr isoform</term>
<term>Aamecr mrnas</term>
<term>Aamecr sequence</term>
<term>Aamecr transcripts</term>
<term>Aamecra1</term>
<term>Aamecra2</term>
<term>Aamecra3</term>
<term>Aamecra3 mrna</term>
<term>Aamecra3 transcripts</term>
<term>Aamrxr</term>
<term>Amblyomma</term>
<term>Amblyomma americanum</term>
<term>Americanum</term>
<term>Amino</term>
<term>Amino acid sequence</term>
<term>Amino acids</term>
<term>Arthropod</term>
<term>Assay</term>
<term>Behavioral biology</term>
<term>Biochemistry</term>
<term>Bottom panel</term>
<term>Cdna</term>
<term>Cdna libraries</term>
<term>Cherbas</term>
<term>Common region</term>
<term>Complex processing</term>
<term>Conservative changes</term>
<term>Diehl</term>
<term>Distance analysis</term>
<term>Drosophila</term>
<term>Ecdysone</term>
<term>Ecdysone receptor</term>
<term>Ecdysteroid</term>
<term>Ecdysteroid receptor</term>
<term>Ecdysteroids</term>
<term>Ecre</term>
<term>Ecrs</term>
<term>Embryo</term>
<term>Encodes</term>
<term>Encoding</term>
<term>Functional ecdysone receptor</term>
<term>Functional ecdysteroid receptor</term>
<term>Gene</term>
<term>Heterogeneous populations</term>
<term>High degree</term>
<term>Homologue</term>
<term>Insect biochemistry</term>
<term>Insect counterparts</term>
<term>Insect ecrs</term>
<term>Isoform</term>
<term>Isoforms</term>
<term>Ixodid</term>
<term>Ixodid ticks</term>
<term>John wiley</term>
<term>Kaufman</term>
<term>Larva</term>
<term>Larval</term>
<term>Life cycle</term>
<term>Ligand</term>
<term>Ligand binding</term>
<term>Linker primer</term>
<term>Mangelsdorf</term>
<term>Methylmercuric hydroxide</term>
<term>Molecular biology</term>
<term>Molecular weight</term>
<term>Mrna</term>
<term>Mrna expression</term>
<term>Multiple cdnas</term>
<term>National academy</term>
<term>Northern blot analysis</term>
<term>Nuclear receptor superfamily</term>
<term>Nucleic acids research</term>
<term>Nucleotide</term>
<term>Nucleotide position</term>
<term>Nymph</term>
<term>Orfs</term>
<term>Other arthropods</term>
<term>Parsimony analysis</term>
<term>Phylogenetic analysis</term>
<term>Plasmid</term>
<term>Primer</term>
<term>Promoter</term>
<term>Putative</term>
<term>Receptor</term>
<term>Retinoic acid</term>
<term>Right panel</term>
<term>Salivary</term>
<term>Salivary gland</term>
<term>Salivary glands</term>
<term>Sauer</term>
<term>Several cdnas</term>
<term>Smaller bands</term>
<term>Sonnenshine</term>
<term>Southern blot analysis</term>
<term>Substitution</term>
<term>Superfamily</term>
<term>Talbot</term>
<term>Terminus</term>
<term>Tick</term>
<term>Tmecr</term>
<term>Topology</term>
<term>Transcript</term>
<term>Vertebrate</term>
<term>Xiaoping</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick, Amblyomma americanum (L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the `F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5′ and 3′ termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>cdna</json:string>
<json:string>aamecr</json:string>
<json:string>receptor</json:string>
<json:string>mrna</json:string>
<json:string>aamecra1</json:string>
<json:string>ecdysone</json:string>
<json:string>americanum</json:string>
<json:string>aamecra2</json:string>
<json:string>ecdysteroid</json:string>
<json:string>aamecra3</json:string>
<json:string>drosophila</json:string>
<json:string>isoforms</json:string>
<json:string>isoform</json:string>
<json:string>encodes</json:string>
<json:string>ecrs</json:string>
<json:string>insect ecrs</json:string>
<json:string>mangelsdorf</json:string>
<json:string>larva</json:string>
<json:string>putative</json:string>
<json:string>biochemistry</json:string>
<json:string>primer</json:string>
<json:string>cherbas</json:string>
<json:string>xiaoping</json:string>
<json:string>amblyomma</json:string>
<json:string>superfamily</json:string>
<json:string>ixodid</json:string>
<json:string>encoding</json:string>
<json:string>aamrxr</json:string>
<json:string>nucleotide</json:string>
<json:string>salivary</json:string>
<json:string>arthropod</json:string>
<json:string>ecre</json:string>
<json:string>sonnenshine</json:string>
<json:string>orfs</json:string>
<json:string>ecdysteroid receptor</json:string>
<json:string>molecular biology</json:string>
<json:string>common region</json:string>
<json:string>salivary glands</json:string>
<json:string>kaufman</json:string>
<json:string>ecdysteroids</json:string>
<json:string>amino</json:string>
<json:string>northern blot analysis</json:string>
<json:string>homologue</json:string>
<json:string>plasmid</json:string>
<json:string>tmecr</json:string>
<json:string>diehl</json:string>
<json:string>talbot</json:string>
<json:string>topology</json:string>
<json:string>insect biochemistry</json:string>
<json:string>sauer</json:string>
<json:string>embryo</json:string>
<json:string>aamecr transcripts</json:string>
<json:string>conservative changes</json:string>
<json:string>high degree</json:string>
<json:string>john wiley</json:string>
<json:string>nucleotide position</json:string>
<json:string>terminus</json:string>
<json:string>tick</json:string>
<json:string>ligand</json:string>
<json:string>promoter</json:string>
<json:string>nucleic acids research</json:string>
<json:string>aamecr gene encodes</json:string>
<json:string>distance analysis</json:string>
<json:string>parsimony analysis</json:string>
<json:string>behavioral biology</json:string>
<json:string>right panel</json:string>
<json:string>aamecr mrnas</json:string>
<json:string>aamecr clusters</json:string>
<json:string>aamecr gene</json:string>
<json:string>bottom panel</json:string>
<json:string>amino acids</json:string>
<json:string>ecdysone receptor</json:string>
<json:string>other arthropods</json:string>
<json:string>national academy</json:string>
<json:string>linker primer</json:string>
<json:string>cdna libraries</json:string>
<json:string>transcript</json:string>
<json:string>vertebrate</json:string>
<json:string>nymph</json:string>
<json:string>assay</json:string>
<json:string>larval</json:string>
<json:string>substitution</json:string>
<json:string>mrna expression</json:string>
<json:string>nuclear receptor superfamily</json:string>
<json:string>aamecr isoform</json:string>
<json:string>multiple cdnas</json:string>
<json:string>phylogenetic analysis</json:string>
<json:string>methylmercuric hydroxide</json:string>
<json:string>aamecr sequence</json:string>
<json:string>several cdnas</json:string>
<json:string>heterogeneous populations</json:string>
<json:string>ligand binding</json:string>
<json:string>insect counterparts</json:string>
<json:string>amino acid sequence</json:string>
<json:string>smaller bands</json:string>
<json:string>aamecra3 mrna</json:string>
<json:string>functional ecdysone receptor</json:string>
<json:string>complex processing</json:string>
<json:string>southern blot analysis</json:string>
<json:string>aamecra3 transcripts</json:string>
<json:string>molecular weight</json:string>
<json:string>life cycle</json:string>
<json:string>ixodid ticks</json:string>
<json:string>functional ecdysteroid receptor</json:string>
<json:string>salivary gland</json:string>
<json:string>amblyomma americanum</json:string>
<json:string>retinoic acid</json:string>
<json:string>gene</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Xiaoping Guo</name>
<affiliations>
<json:string>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Margaret A Harmon</name>
<affiliations>
<json:string>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Vincent Laudet</name>
<affiliations>
<json:string>CNRS UMR 319- Institut Pasteur de Lille, Institut de Biologie de Lille, BP447, 1, rue Calmette, 59021, Lille Cedex, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>David J Mangelsdorf</name>
<affiliations>
<json:string>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Melanie J. Palmer</name>
<affiliations>
<json:string>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Amblyomma americanum</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ecdysteroid receptor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ecdysone</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tick</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-GDTXL577-Z</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick, Amblyomma americanum (L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the `F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5′ and 3′ termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.</abstract>
<qualityIndicators>
<score>9.352</score>
<pdfWordCount>9486</pdfWordCount>
<pdfCharCount>58139</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>18</pdfPageCount>
<pdfPageSize>588 x 798 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>196</abstractWordCount>
<abstractCharCount>1298</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)</title>
<pmid>
<json:string>9501418</json:string>
</pmid>
<pii>
<json:string>S0965-1748(97)00075-1</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Insect Biochemistry and Molecular Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1997</publicationDate>
<issn>
<json:string>0965-1748</json:string>
</issn>
<pii>
<json:string>S0965-1748(00)X0030-6</json:string>
</pii>
<volume>27</volume>
<issue>11</issue>
<pages>
<first>945</first>
<last>962</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>1998</json:string>
<json:string>3218</json:string>
<json:string>1332</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Prime, INC.</json:string>
<json:string>National Center for Biotechnology Information Basic Local Alignment Tool</json:string>
<json:string>Noble Research Center, Oklahoma State University Stillwater, OK</json:string>
<json:string>BLAST</json:string>
<json:string>Promega Corporation</json:string>
<json:string>Department of Entomology</json:string>
<json:string>France Arachnida</json:string>
<json:string>Perkin Elmer</json:string>
<json:string>Elsevier Science Ltd.</json:string>
<json:string>United States Biochemical</json:string>
<json:string>Prime, INC</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>J. F. Mouillet</json:string>
<json:string>J. Delachambre</json:string>
<json:string>de Lille</json:string>
<json:string>EcRs</json:string>
</persName>
<placeName>
<json:string>TX</json:string>
<json:string>Lille</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Sanger et al., 1977</json:string>
<json:string>Kaminura et al., 1996</json:string>
<json:string>Maroun and Kamal, 1976</json:string>
<json:string>Damm et al., 1989</json:string>
<json:string>Laudet et al., 1992</json:string>
<json:string>Yao et al., 1992, 1993</json:string>
<json:string>Cho et al., 1995</json:string>
<json:string>Zelhof et al., 1995</json:string>
<json:string>Patrick and Hair (1976)</json:string>
<json:string>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323</json:string>
<json:string>Sauer et al., 1995</json:string>
<json:string>Gronemeyer and Laudet, 1995</json:string>
<json:string>Fawcett et al., 1986</json:string>
<json:string>Kothapalli et al., 1995</json:string>
<json:string>Yao et al., 1993</json:string>
<json:string>Imhof et al., 1993</json:string>
<json:string>Sonnenshine, 1991b</json:string>
<json:string>Lees, 1952</json:string>
<json:string>Pearson and Lipman, 1988</json:string>
<json:string>Melton et al., 1984</json:string>
<json:string>Willy et al., 1995</json:string>
<json:string>Altschul et al., 1990</json:string>
<json:string>Chanfreau et al., 1996</json:string>
<json:string>Talbot et al., 1993</json:string>
<json:string>Mangelsdorf et al., 1992</json:string>
<json:string>Labandeira and Seproski, 1993</json:string>
<json:string>Umesono et al., 1991</json:string>
<json:string>Sonnenshine, 1991a</json:string>
<json:string>Jackson and Wickens, 1997</json:string>
<json:string>Thummel, 1995</json:string>
<json:string>Ausubel et al., 1987</json:string>
<json:string>for review see Thummel, 1995</json:string>
<json:string>Balashov, 1972</json:string>
<json:string>Diehl et al., 1986</json:string>
<json:string>Dotson et al., 1993</json:string>
<json:string>Kozak, 1987</json:string>
<json:string>Baker et al., 1988</json:string>
<json:string>Koenig et al., 1989</json:string>
<json:string>Guo and Sherman, 1996</json:string>
<json:string>Riddihough and Pelham, 1987</json:string>
<json:string>Burtis et al., 1990</json:string>
<json:string>Coons et al., 1986</json:string>
<json:string>Jenny et al., 1996</json:string>
<json:string>Kaufman, 1986, 1989, 1990</json:string>
<json:string>Swofford and Olsen, 1990</json:string>
<json:string>Thomas et al., 1993</json:string>
<json:string>Joett, 1986</json:string>
<json:string>Fujiwara et al., 1995</json:string>
<json:string>Wickens et al., 1997</json:string>
<json:string>Sambrook et al., 1989</json:string>
<json:string>Cavener, 1987</json:string>
<json:string>Cherbas et al., 1991</json:string>
<json:string>Teboul et al., 1995</json:string>
<json:string>Forman et al., 1995</json:string>
<json:string>Mangelsdorf and Evans, 1995</json:string>
<json:string>Bigler et al., 1992</json:string>
<json:string>Harris and Kaufman, 1985</json:string>
<json:string>Mangelsdorf et al., 1995</json:string>
<json:string>Jindra et al., 1996</json:string>
<json:string>Stumpf and Domdey, 1996</json:string>
<json:string>Higgins and Sharp, 1989</json:string>
<json:string>Koelle et al., 1991</json:string>
<json:string>Swevers et al., 1995</json:string>
<json:string>Mouillet et al., 1997</json:string>
<json:string>Heyman et al., 1992</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-GDTXL577-Z</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - entomology</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - biology</json:string>
<json:string>3 - entomology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Insect Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1997</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0965-1748(97)00075-1</json:string>
</doi>
<id>98E65344AFE5B84E505070DD9E8ED920B10A9400</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-GDTXL577-Z/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-GDTXL577-Z/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-GDTXL577-Z/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©1998 Elsevier Science Ltd</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Fig. 1: Schematic representation of wild type and variant AamEcR cDNAs. Shown in the top panel are the putative structures of the three wild type AamEcR mRNA isoforms containing unique A1, A2, or A3 amino termini linked to a common region that includes the DBD and LBD. AamEcRA1 and AamEcRA2 mRNAs contain an additional region of shared sequence preceding the common region (black box). The ORFs of AamEcRA1 and AamEcRA2 are followed by a common 3′UT which may alternatively be spliced to produce two different ends (3′-UT-1 and 3′UT-2). The 3′ end and polyadenylation site for the AamEcRA2 cDNA is unknown and is indicated by a question mark. The AamEcR isoforms are characterized by unique amino termini that are linked either to a common region beginning at Gly-75 or Gly-85 in AamEcRA1 and AamEcRA2, respectively or at Lys-25 in AamEcRA3. The region common to all three isoforms extends from Lys-141 to Glu-560 of AamEcRA1 and contains the DBD and LBDs characteristic of most members of the nuclear receptor superfamily (Mangelsdorf et al., 1995). Shown in the bottom panel are the structures of cDNAs containing novel 5′ sequence; novel 3′ sequences; putative splicing variants of the AamEcRA3 transcript. The approximate lengths of sequences identical to the AamEcR are indicated relative to the length of corresponding wild type AmEcR regions shown in the top panel. Unique sequences are indicated by a white box with the word `unique'. Thin black lines indicate untranslated or putative intronic sequences.</note>
<note type="content">Fig. 2: Nucleotide sequence of the AamEcR cDNAs and deduced amino acid sequence of the AamEcRA1, AamEcRA2, and AamEcRA3 proteins. The DNA sequence encoding the three AamEcR proteins is divided into common and specific domains. (A–C) show AamEcRA1, AamEcRA2, and AamEcRA3 specific amino terminal domains; (D) shows a domain common to AamEcRA1 and AamEcRA2; (E) depicts the DBD and LBDs common to all three AamEcRA isoforms. AamEcRA1 (A,D, and E) was derived from the DNA sequence of five independent overlapping cDNAs isolated from three cDNA libraries and contains 2406 nucleotides of unique 5′ sequence. The AamEcRA2 mRNA sequence (B, D and E) was derived from a single cDNA (pEcRRE9) with 698 nucleotides of unique 5′ sequence. The AamECRA3 mRNA composite sequence (C and E) was obtained by sequencing three overlapping cDNAs (EcRRE20, EcR25, and EcROL10-3). The Genbank acession numbers for AamEcRA1, AamEcRA2, and AamEcRA3 are AF020187, AF020186, and AF020188, respectively. Although sequences are not shown here, Genbank accession numbers for AamEcR3′UT-1 and AamEcR3′UT-2 are AF020189 and AF020190.</note>
<note type="content">Fig. 3: Phylogenetic analysis of the AamEcR sequence. (A) Summary of the results obtained with the various substitution types studied. Only the relevant species are depicted for clarity. Two main topologies were found: With distance analysis (NJ) excluding gaps or with the parsimony analysis (PAUP) the AamEcR clusters with the TmEcR with bootstrap values between 52 and 71% (left). With distance analysis, including gaps or with the non conservative changes only, the AamEcR clusters outside the insect EcRs, consistent with the classical view of arthropod phylogeny (Labandeira and Seproski, 1993). (B) Example of an NJ tree obtained with non conservative changes only, without gaps. The placement of the AamEcR sequence is indicated by an arrow. The corresponding bootstrap values are boxed.</note>
<note type="content">Fig. 4: Expression of AamEcR isoform mRNAs in embryos, larvae and nymphs. Approximately 5μg of poly-A+ mRNA from mixed populations of embryos (E), larvae (L), and nymphs (N) (left and right panels) and 10μg of poly-A+ mRNA from ovaries (O) from 100–250mg females (right panel only) were separated on 0.8% formaldehyde gels, blotted, and hybridized to the following probes: AamEcRA1, 342bp PstI fragment, coordinates 1858–2200 Fig. 2(A); AamEcRA3/1, a 334bp EcoRI-BstEII fragment, coordinates 339–673 Fig. 2(C)(E); AamEcRA2, a 467bp EcoRI-PstI fragment, coordinates 1–467 Fig. 2(B); 3′UT-1, a 598bp XhoI fragment from pEcR1; 3′UT-2, a 698bp PstI-XhoI fragment from pEcR19; AamEcRA 2/1 a 898bp SmaI fragment coordinates 1–898 Fig. 2(B)(D). Lanes 7–9 (AmEcRA1, left panel) were exposed an additional 48h so that AamEcRA1 specific bands would be visible.</note>
<note type="content">Fig. 5: Expression of salivary gland AamEcR isoform mRNAs during feeding. Upper panel: 2μg of poly-A+ mRNA was prepared from salivary glands dissected from feeding ticks and separated on a 0.8% formaldehyde gel, transferred to nylon and probed with fragments specific for AamEcRA 3/1, AamEcRA2, and AamEcRA3. Lane 1, 20–50mg; lane 2, 50–100mg; lane 3, 100–250mg;, lane 4, 200–500mg; lane 5, replete ticks. Lower panel: blots were stripped and reprobed with a 709bp fragment encoding a cytoplasmic actin gene from A. americanum (manuscript in preparation).</note>
<note type="content">Fig. 6: The AamEcRA1 can direct an ecdysone response on D. melanogaster ecdysone response elements. Cotransfection of the AamEcRA1 and AamRXR or hRXR renders CV-1 cells responsive to the ecdysone analog muristerone A. These responses are comparable to the DmEcR cotransfected with either AamRXR or hRXR. Relative light units (RLU) were determined as described in materials and methods and fold activation is indicated above each bar as the fold activation of muristerone A over the methanol control. Panel (A): cotransfection with the MTV-hspEcRE-luc reporter containing an EcRE from the enhancer region of the hsp27 gene (Riddihough and Pelham, 1987); Panel (B): cotransfection with the tk-EIP28/29-luc reporter containing an EcRE from the enhancer region of the EIP28/29 gene (Cherbas et al., 1991). Aam=A. americanum ; Dm=D. melanogaster, h=human; EcR=ecdysone receptor; RXR=retinoic X receptor.</note>
<note type="content">Table 1: Estimation of tick weight vs day of feeding</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Xiaoping</forename>
<surname>Guo</surname>
</persName>
<affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Margaret A</forename>
<surname>Harmon</surname>
</persName>
<affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Vincent</forename>
<surname>Laudet</surname>
</persName>
<affiliation>CNRS UMR 319- Institut Pasteur de Lille, Institut de Biologie de Lille, BP447, 1, rue Calmette, 59021, Lille Cedex, France</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">David J</forename>
<surname>Mangelsdorf</surname>
</persName>
<affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Melanie</forename>
<surname>J. Palmer</surname>
</persName>
<affiliation>To whom all correspondence should be addressed.</affiliation>
<affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</affiliation>
</author>
<idno type="istex">98E65344AFE5B84E505070DD9E8ED920B10A9400</idno>
<idno type="ark">ark:/67375/6H6-GDTXL577-Z</idno>
<idno type="DOI">10.1016/S0965-1748(97)00075-1</idno>
<idno type="PII">S0965-1748(97)00075-1</idno>
</analytic>
<monogr>
<title level="j">Insect Biochemistry and Molecular Biology</title>
<title level="j" type="abbrev">IB</title>
<idno type="pISSN">0965-1748</idno>
<idno type="PII">S0965-1748(00)X0030-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997"></date>
<biblScope unit="volume">27</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="945">945</biblScope>
<biblScope unit="page" to="962">962</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick, Amblyomma americanum (L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the `F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5′ and 3′ termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Amblyomma americanum</term>
</item>
<item>
<term>ecdysteroid receptor</term>
</item>
<item>
<term>ecdysone</term>
</item>
<item>
<term>tick</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1997-08-26">Modified</change>
<change when="1997">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-GDTXL577-Z/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2a" NDATA="IMAGE" name="gr2a"></istex:entity>
<istex:entity SYSTEM="gr2bd" NDATA="IMAGE" name="gr2bd"></istex:entity>
<istex:entity SYSTEM="gr2e" NDATA="IMAGE" name="gr2e"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>IB</jid>
<aid>568</aid>
<ce:pii>S0965-1748(97)00075-1</ce:pii>
<ce:doi>10.1016/S0965-1748(97)00075-1</ce:doi>
<ce:copyright year="1998" type="full-transfer">Elsevier Science Ltd</ce:copyright>
</item-info>
<head>
<ce:title>Isolation of a functional ecdysteroid receptor homologue from the ixodid tick
<ce:italic>Amblyomma americanum</ce:italic>
(L.)</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Xiaoping</ce:given-name>
<ce:surname>Guo</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Margaret A</ce:given-name>
<ce:surname>Harmon</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Vincent</ce:given-name>
<ce:surname>Laudet</ce:surname>
<ce:cross-ref refid="AFF3">c</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>David J</ce:given-name>
<ce:surname>Mangelsdorf</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>Melanie</ce:given-name>
<ce:surname>J. Palmer</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF3">
<ce:label>c</ce:label>
<ce:textfn>CNRS UMR 319- Institut Pasteur de Lille, Institut de Biologie de Lille, BP447, 1, rue Calmette, 59021, Lille Cedex, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>To whom all correspondence should be addressed.</ce:text>
</ce:correspondence>
</ce:author-group>
<ce:date-received day="5" month="6" year="1997"></ce:date-received>
<ce:date-revised day="26" month="8" year="1997"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick,
<ce:italic>Amblyomma americanum</ce:italic>
(L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the `F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5′ and 3′ termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>
<ce:italic>Amblyomma americanum</ce:italic>
</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>ecdysteroid receptor</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>ecdysone</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>tick</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Isolation of a functional ecdysteroid receptor homologue from the ixodid tick</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiaoping</namePart>
<namePart type="family">Guo</namePart>
<affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margaret A</namePart>
<namePart type="family">Harmon</namePart>
<affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Laudet</namePart>
<affiliation>CNRS UMR 319- Institut Pasteur de Lille, Institut de Biologie de Lille, BP447, 1, rue Calmette, 59021, Lille Cedex, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David J</namePart>
<namePart type="family">Mangelsdorf</namePart>
<affiliation>Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd Dallas, TX 75235-9050, U.S.A.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Melanie</namePart>
<namePart type="family">J. Palmer</namePart>
<affiliation>Department of Entomology, 127 Noble Research Center, Oklahoma State University Stillwater, OK 74078, U.S.A.</affiliation>
<description>To whom all correspondence should be addressed.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
<dateModified encoding="w3cdtf">1997-08-26</dateModified>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Ecdysteroids are assumed to be the major steroid hormones in arthropods. However, with the exception of insects and crustaceans, very little is known about ecdysteroid action in other arthropods. To determine if ecdysteriods play a functional role in the ixodid tick, Amblyomma americanum (L.), we isolated cDNAs encoding three presumed ecdysteroid receptor isoforms (AamEcRA1, AamEcRA2, and AamEcRA3) that have common DNA and ligand binding domains linked to distinct amino termini. The DNA and ligand binding domains share an average of 86 and 64% identity, respectively with DNA and ligand binding domains from insect EcR proteins. The amino termini are highly divergent and the AamEcRs lack the `F' domain found in the insect EcRs. Analysis of AamEcR cDNAs show that processing of the AamEcR gene is complex, producing multiple transcripts with unique 5′ and 3′ termini as well as splicing variants with incomplete open reading frames. AamEcR mRNA profiles in whole animals and isolated tissues are consistent with complex regulation of AamEcR expression. We also examined the ability of AamEcRA1, when paired with an AamRXR, to activate transcription of an ecdysone response element containing reporter, and demonstrate that the AamEcR gene encodes a functional ecdysteroid receptor.</abstract>
<note type="content">Fig. 1: Schematic representation of wild type and variant AamEcR cDNAs. Shown in the top panel are the putative structures of the three wild type AamEcR mRNA isoforms containing unique A1, A2, or A3 amino termini linked to a common region that includes the DBD and LBD. AamEcRA1 and AamEcRA2 mRNAs contain an additional region of shared sequence preceding the common region (black box). The ORFs of AamEcRA1 and AamEcRA2 are followed by a common 3′UT which may alternatively be spliced to produce two different ends (3′-UT-1 and 3′UT-2). The 3′ end and polyadenylation site for the AamEcRA2 cDNA is unknown and is indicated by a question mark. The AamEcR isoforms are characterized by unique amino termini that are linked either to a common region beginning at Gly-75 or Gly-85 in AamEcRA1 and AamEcRA2, respectively or at Lys-25 in AamEcRA3. The region common to all three isoforms extends from Lys-141 to Glu-560 of AamEcRA1 and contains the DBD and LBDs characteristic of most members of the nuclear receptor superfamily (Mangelsdorf et al., 1995). Shown in the bottom panel are the structures of cDNAs containing novel 5′ sequence; novel 3′ sequences; putative splicing variants of the AamEcRA3 transcript. The approximate lengths of sequences identical to the AamEcR are indicated relative to the length of corresponding wild type AmEcR regions shown in the top panel. Unique sequences are indicated by a white box with the word `unique'. Thin black lines indicate untranslated or putative intronic sequences.</note>
<note type="content">Fig. 2: Nucleotide sequence of the AamEcR cDNAs and deduced amino acid sequence of the AamEcRA1, AamEcRA2, and AamEcRA3 proteins. The DNA sequence encoding the three AamEcR proteins is divided into common and specific domains. (A–C) show AamEcRA1, AamEcRA2, and AamEcRA3 specific amino terminal domains; (D) shows a domain common to AamEcRA1 and AamEcRA2; (E) depicts the DBD and LBDs common to all three AamEcRA isoforms. AamEcRA1 (A,D, and E) was derived from the DNA sequence of five independent overlapping cDNAs isolated from three cDNA libraries and contains 2406 nucleotides of unique 5′ sequence. The AamEcRA2 mRNA sequence (B, D and E) was derived from a single cDNA (pEcRRE9) with 698 nucleotides of unique 5′ sequence. The AamECRA3 mRNA composite sequence (C and E) was obtained by sequencing three overlapping cDNAs (EcRRE20, EcR25, and EcROL10-3). The Genbank acession numbers for AamEcRA1, AamEcRA2, and AamEcRA3 are AF020187, AF020186, and AF020188, respectively. Although sequences are not shown here, Genbank accession numbers for AamEcR3′UT-1 and AamEcR3′UT-2 are AF020189 and AF020190.</note>
<note type="content">Fig. 3: Phylogenetic analysis of the AamEcR sequence. (A) Summary of the results obtained with the various substitution types studied. Only the relevant species are depicted for clarity. Two main topologies were found: With distance analysis (NJ) excluding gaps or with the parsimony analysis (PAUP) the AamEcR clusters with the TmEcR with bootstrap values between 52 and 71% (left). With distance analysis, including gaps or with the non conservative changes only, the AamEcR clusters outside the insect EcRs, consistent with the classical view of arthropod phylogeny (Labandeira and Seproski, 1993). (B) Example of an NJ tree obtained with non conservative changes only, without gaps. The placement of the AamEcR sequence is indicated by an arrow. The corresponding bootstrap values are boxed.</note>
<note type="content">Fig. 4: Expression of AamEcR isoform mRNAs in embryos, larvae and nymphs. Approximately 5μg of poly-A+ mRNA from mixed populations of embryos (E), larvae (L), and nymphs (N) (left and right panels) and 10μg of poly-A+ mRNA from ovaries (O) from 100–250mg females (right panel only) were separated on 0.8% formaldehyde gels, blotted, and hybridized to the following probes: AamEcRA1, 342bp PstI fragment, coordinates 1858–2200 Fig. 2(A); AamEcRA3/1, a 334bp EcoRI-BstEII fragment, coordinates 339–673 Fig. 2(C)(E); AamEcRA2, a 467bp EcoRI-PstI fragment, coordinates 1–467 Fig. 2(B); 3′UT-1, a 598bp XhoI fragment from pEcR1; 3′UT-2, a 698bp PstI-XhoI fragment from pEcR19; AamEcRA 2/1 a 898bp SmaI fragment coordinates 1–898 Fig. 2(B)(D). Lanes 7–9 (AmEcRA1, left panel) were exposed an additional 48h so that AamEcRA1 specific bands would be visible.</note>
<note type="content">Fig. 5: Expression of salivary gland AamEcR isoform mRNAs during feeding. Upper panel: 2μg of poly-A+ mRNA was prepared from salivary glands dissected from feeding ticks and separated on a 0.8% formaldehyde gel, transferred to nylon and probed with fragments specific for AamEcRA 3/1, AamEcRA2, and AamEcRA3. Lane 1, 20–50mg; lane 2, 50–100mg; lane 3, 100–250mg;, lane 4, 200–500mg; lane 5, replete ticks. Lower panel: blots were stripped and reprobed with a 709bp fragment encoding a cytoplasmic actin gene from A. americanum (manuscript in preparation).</note>
<note type="content">Fig. 6: The AamEcRA1 can direct an ecdysone response on D. melanogaster ecdysone response elements. Cotransfection of the AamEcRA1 and AamRXR or hRXR renders CV-1 cells responsive to the ecdysone analog muristerone A. These responses are comparable to the DmEcR cotransfected with either AamRXR or hRXR. Relative light units (RLU) were determined as described in materials and methods and fold activation is indicated above each bar as the fold activation of muristerone A over the methanol control. Panel (A): cotransfection with the MTV-hspEcRE-luc reporter containing an EcRE from the enhancer region of the hsp27 gene (Riddihough and Pelham, 1987); Panel (B): cotransfection with the tk-EIP28/29-luc reporter containing an EcRE from the enhancer region of the EIP28/29 gene (Cherbas et al., 1991). Aam=A. americanum ; Dm=D. melanogaster, h=human; EcR=ecdysone receptor; RXR=retinoic X receptor.</note>
<note type="content">Table 1: Estimation of tick weight vs day of feeding</note>
<subject>
<genre>Keywords</genre>
<topic>Amblyomma americanum</topic>
<topic>ecdysteroid receptor</topic>
<topic>ecdysone</topic>
<topic>tick</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Insect Biochemistry and Molecular Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>IB</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1997</dateIssued>
</originInfo>
<identifier type="ISSN">0965-1748</identifier>
<identifier type="PII">S0965-1748(00)X0030-6</identifier>
<part>
<date>1997</date>
<detail type="volume">
<number>27</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>11</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>887</start>
<end>992</end>
</extent>
<extent unit="pages">
<start>945</start>
<end>962</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">98E65344AFE5B84E505070DD9E8ED920B10A9400</identifier>
<identifier type="ark">ark:/67375/6H6-GDTXL577-Z</identifier>
<identifier type="DOI">10.1016/S0965-1748(97)00075-1</identifier>
<identifier type="PII">S0965-1748(97)00075-1</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1998 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©1998</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-GDTXL577-Z/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002574 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002574 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:98E65344AFE5B84E505070DD9E8ED920B10A9400
   |texte=   Isolation of a functional ecdysteroid receptor homologue from the ixodid tick Amblyomma americanum (L.)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021