Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polymer Design for Nonviral Gene Delivery

Identifieur interne : 002252 ( Istex/Corpus ); précédent : 002251; suivant : 002253

Polymer Design for Nonviral Gene Delivery

Auteurs : Kam W. Leong

Source :

RBID : ISTEX:7295D4F4611349199345F9DFFEBA6ED5897248BA

Abstract

Abstract: Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [1–3]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [4–9]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.

Url:
DOI: 10.1007/978-0-387-25842-3_9

Links to Exploration step

ISTEX:7295D4F4611349199345F9DFFEBA6ED5897248BA

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polymer Design for Nonviral Gene Delivery</title>
<author>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7295D4F4611349199345F9DFFEBA6ED5897248BA</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1007/978-0-387-25842-3_9</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002252</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002252</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polymer Design for Nonviral Gene Delivery</title>
<author>
<name sortKey="Leong, Kam W" sort="Leong, Kam W" uniqKey="Leong K" first="Kam W." last="Leong">Kam W. Leong</name>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [1–3]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [4–9]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.</div>
</front>
</TEI>
<istex>
<corpusName>springer-ebooks</corpusName>
<editor>
<json:item>
<name>Mauro Ferrari Ph.D.</name>
<affiliations>
<json:string>Department of Biomedical Engineering, University of Texas Health Science Center, Houston, TX</json:string>
<json:string>University of Texas M.D. Anderson Cancer Center, Houston, TX</json:string>
<json:string>Rice University, Houston, TX</json:string>
<json:string>University of Texas Medical Branch, Galveston, TX</json:string>
<json:string>Texas Alliance for NanoHealth, Houston, TX</json:string>
</affiliations>
</json:item>
<json:item>
<name>Abraham P. Lee</name>
<affiliations>
<json:string>Biomedical Engineering, University of California, Irvine</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. James Lee</name>
<affiliations>
<json:string>Chemical and Biomolecular Engineering, The Ohio State University, USA</json:string>
</affiliations>
</json:item>
</editor>
<keywords>
<teeft>
<json:string>transfection</json:string>
<json:string>polyplexes</json:string>
<json:string>chitosan</json:string>
<json:string>polyplex</json:string>
<json:string>polymer</json:string>
<json:string>gene delivery</json:string>
<json:string>chem</json:string>
<json:string>leong</json:string>
<json:string>cationic</json:string>
<json:string>nonviral</json:string>
<json:string>bioconjug</json:string>
<json:string>transgene</json:string>
<json:string>biodegradable</json:string>
<json:string>cytotoxicity</json:string>
<json:string>nanoparticles</json:string>
<json:string>polyethylenimine</json:string>
<json:string>plasmid</json:string>
<json:string>amine</json:string>
<json:string>toxicity</json:string>
<json:string>gene transfer</json:string>
<json:string>copolymer</json:string>
<json:string>transgene expression</json:string>
<json:string>nonviral gene delivery</json:string>
<json:string>ester</json:string>
<json:string>pharm</json:string>
<json:string>wang</json:string>
<json:string>molecular weight</json:string>
<json:string>polymer design</json:string>
<json:string>buffering</json:string>
<json:string>sidechain</json:string>
<json:string>gene carrier</json:string>
<json:string>chitosan polyplexes</json:string>
<json:string>intramuscular</json:string>
<json:string>gene</json:string>
<json:string>endosomal</json:string>
<json:string>degradable</json:string>
<json:string>gene expression</json:string>
<json:string>polycation</json:string>
<json:string>nanogels</json:string>
<json:string>ppes</json:string>
<json:string>endosome</json:string>
<json:string>polycations</json:string>
<json:string>enhancement</json:string>
<json:string>figure chemical structure</json:string>
<json:string>vesicle</json:string>
<json:string>intracellular</json:string>
<json:string>dendrimers</json:string>
<json:string>biocompatibility</json:string>
<json:string>conjugation</json:string>
<json:string>recent study</json:string>
<json:string>gene therapy</json:string>
<json:string>buffering capacity</json:string>
<json:string>cationic polymer</json:string>
<json:string>aggregation</json:string>
<json:string>cellular uptake</json:string>
<json:string>gene delivery system</json:string>
<json:string>side chain</json:string>
<json:string>ligand</json:string>
<json:string>amino</json:string>
<json:string>nonviral gene transfer</json:string>
<json:string>intramuscular administration</json:string>
<json:string>positive charge</json:string>
<json:string>lower toxicity</json:string>
<json:string>charge group</json:string>
<json:string>polymeric gene carrier</json:string>
<json:string>degradation</json:string>
<json:string>derivative</json:string>
<json:string>peptide</json:string>
<json:string>vivo</json:string>
<json:string>polymeric</json:string>
<json:string>charge center</json:string>
<json:string>systemic administration</json:string>
<json:string>graft copolymer</json:string>
<json:string>enzymatic degradation</json:string>
<json:string>structural effect</json:string>
<json:string>nuclear transport</json:string>
<json:string>more stable</json:string>
<json:string>spinal cord</json:string>
<json:string>intrathecal administration</json:string>
<json:string>other study</json:string>
<json:string>intramuscular injection</json:string>
<json:string>injection site</json:string>
<json:string>viral vector</json:string>
<json:string>expression level</json:string>
<json:string>time point</json:string>
<json:string>drug delivery</json:string>
<json:string>serum protein</json:string>
<json:string>oligomeric chitosan</json:string>
<json:string>high transfection</json:string>
<json:string>inverse microemulsion polymerization</json:string>
<json:string>pluronic block copolymer</json:string>
<json:string>wide variety</json:string>
<json:string>charge density</json:string>
<json:string>physicochemical property</json:string>
<json:string>delivery</json:string>
<json:string>carrier</json:string>
<json:string>less cytotoxic</json:string>
<json:string>autoimmune insulitis</json:string>
<json:string>cell culture study</json:string>
<json:string>vesicle membrane</json:string>
<json:string>optimal condition</json:string>
<json:string>dendritic polyamines</json:string>
<json:string>ternary complex</json:string>
<json:string>parallel synthesis</json:string>
<json:string>large number</json:string>
<json:string>figure synthetic scheme</json:string>
<json:string>chemical structure</json:string>
<json:string>rapid degradation</json:string>
<json:string>cationic network</json:string>
<json:string>wide range</json:string>
<json:string>primary amine</json:string>
<json:string>other structural parameter</json:string>
<json:string>linear polymer</json:string>
<json:string>polycation backbone</json:string>
<json:string>carbohydrate size</json:string>
<json:string>immune response</json:string>
<json:string>proton sponge</json:string>
<json:string>polyplexes show</json:string>
<json:string>positive transgene expression</json:string>
<json:string>potential barrier</json:string>
<json:string>intracellular study</json:string>
<json:string>target cell</json:string>
<json:string>cell membrane</json:string>
<json:string>less toxic</json:string>
<json:string>extracellular space</json:string>
<json:string>hydrolytic cleavage</json:string>
<json:string>important parameter</json:string>
<json:string>transfection ability</json:string>
<json:string>tertiary amino group</json:string>
<json:string>cell type</json:string>
<json:string>effective gene carrier</json:string>
<json:string>central nervous system</json:string>
<json:string>larger size</json:string>
<json:string>drug deliv</json:string>
<json:string>different molecular weight</json:string>
<json:string>poor transfection</json:string>
<json:string>enhancement effect</json:string>
<json:string>higher level</json:string>
<json:string>nuclear membrane</json:string>
<json:string>cationic lipid</json:string>
<json:string>storage stability</json:string>
<json:string>gene transfer process</json:string>
<json:string>chitosan oligomers</json:string>
<json:string>lung tissue</json:string>
<json:string>serum component</json:string>
<json:string>murine model</json:string>
<json:string>peanut allergy</json:string>
<json:string>right domain</json:string>
<json:string>cell culture</json:string>
<json:string>vaccine delivery system</json:string>
<json:string>tumor cell</json:string>
<json:string>folic acid</json:string>
<json:string>pegylated complex</json:string>
<json:string>potential advantage</json:string>
<json:string>amino group</json:string>
<json:string>nonviral gene therapy</json:string>
<json:string>delivery system</json:string>
<json:string>systematic study</json:string>
<json:string>molar ratio</json:string>
<json:string>intravenous administration</json:string>
<json:string>cationic complex</json:string>
<json:string>hepg2 cell</json:string>
<json:string>drug target</json:string>
<json:string>effective gene delivery</json:string>
<json:string>fetal bovine serum</json:string>
<json:string>mouse muscle</json:string>
<json:string>secondary amine</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Kam W. Leong</name>
<affiliations>
<json:string>Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/HCB-PN334NL0-9</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>chapter</json:string>
</originalGenre>
<abstract>Abstract: Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [1–3]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [4–9]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.</abstract>
<qualityIndicators>
<refBibsNative>false</refBibsNative>
<abstractWordCount>190</abstractWordCount>
<abstractCharCount>1285</abstractCharCount>
<keywordCount>0</keywordCount>
<score>9.28</score>
<pdfWordCount>10979</pdfWordCount>
<pdfCharCount>70255</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>25</pdfPageCount>
<pdfPageSize>468 x 711 pts</pdfPageSize>
</qualityIndicators>
<title>Polymer Design for Nonviral Gene Delivery</title>
<chapterId>
<json:string>9</json:string>
<json:string>Chap9</json:string>
</chapterId>
<genre>
<json:string>chapter</json:string>
</genre>
<host>
<title>BioMEMS and Biomedical Nanotechnology</title>
<language>
<json:string>unknown</json:string>
</language>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1007/b136237</json:string>
</doi>
<eisbn>
<json:string>978-0-387-25842-3</json:string>
</eisbn>
<bookId>
<json:string>978-0-387-25842-3</json:string>
</bookId>
<isbn>
<json:string>978-0-387-25563-7</json:string>
</isbn>
<pages>
<first>239</first>
<last>263</last>
</pages>
<genre>
<json:string>book</json:string>
</genre>
<editor>
<json:item>
<name>Mauro Ferrari Ph.D.</name>
<affiliations>
<json:string>Department of Biomedical Engineering, University of Texas Health Science Center, Houston, TX</json:string>
<json:string>University of Texas M.D. Anderson Cancer Center, Houston, TX</json:string>
<json:string>Rice University, Houston, TX</json:string>
<json:string>University of Texas Medical Branch, Galveston, TX</json:string>
<json:string>Texas Alliance for NanoHealth, Houston, TX</json:string>
</affiliations>
</json:item>
<json:item>
<name>Abraham P. Lee</name>
<affiliations>
<json:string>Biomedical Engineering, University of California, Irvine</json:string>
</affiliations>
</json:item>
<json:item>
<name>L. James Lee</name>
<affiliations>
<json:string>Chemical and Biomolecular Engineering, The Ohio State University, USA</json:string>
</affiliations>
</json:item>
</editor>
<subject>
<json:item>
<value>Engineering</value>
</json:item>
<json:item>
<value>Engineering</value>
</json:item>
<json:item>
<value>Nanotechnology and Microengineering</value>
</json:item>
<json:item>
<value>Biomedical Engineering</value>
</json:item>
<json:item>
<value>Biophysics and Biological Physics</value>
</json:item>
<json:item>
<value>Nanotechnology</value>
</json:item>
<json:item>
<value>Biomedicine general</value>
</json:item>
<json:item>
<value>Biotechnology</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HCB-PN334NL0-9</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1007/978-0-387-25842-3_9</json:string>
</doi>
<id>7295D4F4611349199345F9DFFEBA6ED5897248BA</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="m" type="main">BioMEMS and Biomedical Nanotechnology</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Springer US</publisher>
<pubPlace>Boston, MA</pubPlace>
<availability>
<licence>Springer Science + Business Media, LLC</licence>
</availability>
<date when="2006">2006</date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="other" source="Reference work" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-7474895G-0">other</note>
<note type="publication-type" subtype="book" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</note>
</notesStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Polymer Design for Nonviral Gene Delivery</title>
<author>
<persName>
<forename type="first">Kam</forename>
<forename type="first">W.</forename>
<surname>Leong</surname>
</persName>
<affiliation>
<orgName type="department">Department of Biomedical Engineering</orgName>
<orgName type="institution">Johns Hopkins School of Medicine</orgName>
<address>
<settlement>Baltimore</settlement>
<region>MD</region>
<postCode>21205</postCode>
</address>
</affiliation>
</author>
<idno type="istex">7295D4F4611349199345F9DFFEBA6ED5897248BA</idno>
<idno type="ark">ark:/67375/HCB-PN334NL0-9</idno>
<idno type="DOI">10.1007/978-0-387-25842-3_9</idno>
</analytic>
<monogr>
<title level="m" type="main">BioMEMS and Biomedical Nanotechnology</title>
<title level="m" type="sub">Volume I Biological and Biomedical Nanotechnology</title>
<idno type="DOI">10.1007/b136237</idno>
<idno type="book-id">978-0-387-25842-3</idno>
<idno type="ISBN">978-0-387-25563-7</idno>
<idno type="eISBN">978-0-387-25842-3</idno>
<idno type="chapter-id">Chap9</idno>
<editor>
<persName>
<forename type="first">Mauro</forename>
<surname>Ferrari</surname>
</persName>
<affiliation>
<orgName type="department">Department of Biomedical Engineering</orgName>
<orgName type="institution">University of Texas Health Science Center</orgName>
<address>
<settlement>Houston</settlement>
<region>TX</region>
</address>
</affiliation>
<affiliation>
<orgName type="institution">University of Texas M.D. Anderson Cancer Center</orgName>
<address>
<settlement>Houston</settlement>
<region>TX</region>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Rice University</orgName>
<address>
<settlement>Houston</settlement>
<region>TX</region>
</address>
</affiliation>
<affiliation>
<orgName type="institution">University of Texas Medical Branch</orgName>
<address>
<settlement>Galveston</settlement>
<region>TX</region>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Texas Alliance for NanoHealth</orgName>
<address>
<settlement>Houston</settlement>
<region>TX</region>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">Abraham</forename>
<forename type="first">P.</forename>
<surname>Lee</surname>
</persName>
<affiliation>
<orgName type="department">Biomedical Engineering</orgName>
<orgName type="institution">University of California</orgName>
<address>
<settlement>Irvine</settlement>
</address>
</affiliation>
</editor>
<editor>
<persName>
<forename type="first">L.</forename>
<forename type="first">James</forename>
<surname>Lee</surname>
</persName>
<affiliation>
<orgName type="department">Chemical and Biomolecular Engineering</orgName>
<orgName type="institution">The Ohio State University</orgName>
<address>
<country key="US">UNITED STATES</country>
</address>
</affiliation>
</editor>
<imprint>
<biblScope unit="page" from="239">239</biblScope>
<biblScope unit="page" to="263">263</biblScope>
<biblScope unit="chapter-count">16</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en">
<head>Abstract</head>
<p>Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [1–3]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [4–9]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="book-subject-collection">
<list>
<label>SUCO11647</label>
<item>
<term>Engineering</term>
</item>
</list>
</keywords>
</textClass>
<textClass ana="subject">
<keywords scheme="book-subject">
<list>
<label>SCT</label>
<item>
<term type="Primary">Engineering</term>
</item>
<label>SCT18000</label>
<item>
<term type="Secondary" subtype="priority-1">Nanotechnology and Microengineering</term>
</item>
<label>SCT2700X</label>
<item>
<term type="Secondary" subtype="priority-2">Biomedical Engineering</term>
</item>
<label>SCP27008</label>
<item>
<term type="Secondary" subtype="priority-3">Biophysics and Biological Physics</term>
</item>
<label>SCZ14000</label>
<item>
<term type="Secondary" subtype="priority-4">Nanotechnology</term>
</item>
<label>SCB0000X</label>
<item>
<term type="Secondary" subtype="priority-5">Biomedicine general</term>
</item>
<label>SCC12002</label>
<item>
<term type="Secondary" subtype="priority-6">Biotechnology</term>
</item>
</list>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus springer-ebooks not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Springer-Verlag//DTD A++ V2.4//EN" URI="http://devel.springer.de/A++/V2.4/DTD/A++V2.4.dtd" name="istex:docType"></istex:docType>
<istex:document>
<Publisher>
<PublisherInfo>
<PublisherName>Springer US</PublisherName>
<PublisherLocation>Boston, MA</PublisherLocation>
</PublisherInfo>
<Book Language="En">
<BookInfo BookProductType="Reference work" ContainsESM="No" Language="En" MediaType="eBook" NumberingStyle="ChapterContent" TocLevels="0">
<BookID>978-0-387-25842-3</BookID>
<BookTitle>BioMEMS and Biomedical Nanotechnology</BookTitle>
<BookSubTitle>Volume I Biological and Biomedical Nanotechnology</BookSubTitle>
<BookDOI>10.1007/b136237</BookDOI>
<BookTitleID>117264</BookTitleID>
<BookPrintISBN>978-0-387-25563-7</BookPrintISBN>
<BookElectronicISBN>978-0-387-25842-3</BookElectronicISBN>
<BookChapterCount>16</BookChapterCount>
<BookCopyright>
<CopyrightHolderName>Springer Science + Business Media, LLC</CopyrightHolderName>
<CopyrightYear>2006</CopyrightYear>
</BookCopyright>
<BookSubjectGroup>
<BookSubject Code="SCT" Type="Primary">Engineering</BookSubject>
<BookSubject Code="SCT18000" Priority="1" Type="Secondary">Nanotechnology and Microengineering</BookSubject>
<BookSubject Code="SCT2700X" Priority="2" Type="Secondary">Biomedical Engineering</BookSubject>
<BookSubject Code="SCP27008" Priority="3" Type="Secondary">Biophysics and Biological Physics</BookSubject>
<BookSubject Code="SCZ14000" Priority="4" Type="Secondary">Nanotechnology</BookSubject>
<BookSubject Code="SCB0000X" Priority="5" Type="Secondary">Biomedicine general</BookSubject>
<BookSubject Code="SCC12002" Priority="6" Type="Secondary">Biotechnology</BookSubject>
<SubjectCollection Code="SUCO11647">Engineering</SubjectCollection>
</BookSubjectGroup>
</BookInfo>
<BookHeader>
<EditorGroup>
<Editor AffiliationIDS="Aff1 Aff2 Aff3 Aff4 Aff5">
<EditorName DisplayOrder="Western">
<GivenName>Mauro</GivenName>
<FamilyName>Ferrari</FamilyName>
<Degrees>Ph.D.</Degrees>
</EditorName>
<Role>Editor-in-Chief, Professor, Brown Institute of Molecular Medicine Chairman, Professor of Experimental Therapeutics, Professor of Bioengineering, Professor of Biochemistry and Molecular Biology, President</Role>
</Editor>
<Editor AffiliationIDS="Aff6">
<EditorName DisplayOrder="Western">
<GivenName>Abraham</GivenName>
<GivenName>P.</GivenName>
<FamilyName>Lee</FamilyName>
</EditorName>
</Editor>
<Editor AffiliationIDS="Aff7">
<EditorName DisplayOrder="Western">
<GivenName>L.</GivenName>
<GivenName>James</GivenName>
<FamilyName>Lee</FamilyName>
</EditorName>
</Editor>
<Affiliation ID="Aff1">
<OrgDivision>Department of Biomedical Engineering</OrgDivision>
<OrgName>University of Texas Health Science Center</OrgName>
<OrgAddress>
<City>Houston</City>
<State>TX</State>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff2">
<OrgName>University of Texas M.D. Anderson Cancer Center</OrgName>
<OrgAddress>
<City>Houston</City>
<State>TX</State>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff3">
<OrgName>Rice University</OrgName>
<OrgAddress>
<City>Houston</City>
<State>TX</State>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff4">
<OrgName>University of Texas Medical Branch</OrgName>
<OrgAddress>
<City>Galveston</City>
<State>TX</State>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff5">
<OrgName>Texas Alliance for NanoHealth</OrgName>
<OrgAddress>
<City>Houston</City>
<State>TX</State>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff6">
<OrgDivision>Biomedical Engineering</OrgDivision>
<OrgName>University of California</OrgName>
<OrgAddress>
<City>Irvine</City>
</OrgAddress>
</Affiliation>
<Affiliation ID="Aff7">
<OrgDivision>Chemical and Biomolecular Engineering</OrgDivision>
<OrgName>The Ohio State University</OrgName>
<OrgAddress>
<Country>USA</Country>
</OrgAddress>
</Affiliation>
</EditorGroup>
</BookHeader>
<Chapter ID="Chap9" Language="En">
<ChapterInfo ChapterType="OriginalPaper" ContainsESM="No" Language="En" NumberingStyle="ChapterContent" TocLevels="0">
<ChapterID>9</ChapterID>
<ChapterNumber>9</ChapterNumber>
<ChapterDOI>10.1007/978-0-387-25842-3_9</ChapterDOI>
<ChapterSequenceNumber>9</ChapterSequenceNumber>
<ChapterTitle Language="En">Polymer Design for Nonviral Gene Delivery</ChapterTitle>
<ChapterFirstPage>239</ChapterFirstPage>
<ChapterLastPage>263</ChapterLastPage>
<ChapterCopyright>
<CopyrightHolderName>Springer Science + Business Media, LLC</CopyrightHolderName>
<CopyrightYear>2006</CopyrightYear>
</ChapterCopyright>
<ChapterGrants Type="Regular">
<MetadataGrant Grant="OpenAccess"></MetadataGrant>
<AbstractGrant Grant="OpenAccess"></AbstractGrant>
<BodyPDFGrant Grant="Restricted"></BodyPDFGrant>
<BodyHTMLGrant Grant="Restricted"></BodyHTMLGrant>
<BibliographyGrant Grant="Restricted"></BibliographyGrant>
<ESMGrant Grant="Restricted"></ESMGrant>
</ChapterGrants>
<ChapterContext>
<BookID>978-0-387-25842-3</BookID>
<BookTitle>BioMEMS and Biomedical Nanotechnology</BookTitle>
</ChapterContext>
</ChapterInfo>
<ChapterHeader>
<AuthorGroup>
<Author AffiliationIDS="Aff8">
<AuthorName DisplayOrder="Western">
<GivenName>Kam</GivenName>
<GivenName>W.</GivenName>
<FamilyName>Leong</FamilyName>
</AuthorName>
</Author>
<Affiliation ID="Aff8">
<OrgDivision>Department of Biomedical Engineering</OrgDivision>
<OrgName>Johns Hopkins School of Medicine</OrgName>
<OrgAddress>
<City>Baltimore</City>
<State>MD</State>
<Postcode>21205</Postcode>
</OrgAddress>
</Affiliation>
</AuthorGroup>
<Abstract ID="Abs1" Language="En">
<Heading>Abstract</Heading>
<Para TextBreak="No">Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [1–3]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [4–9]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.</Para>
</Abstract>
</ChapterHeader>
<NoBody></NoBody>
</Chapter>
</Book>
</Publisher>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Polymer Design for Nonviral Gene Delivery</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Polymer Design for Nonviral Gene Delivery</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kam</namePart>
<namePart type="given">W.</namePart>
<namePart type="family">Leong</namePart>
<affiliation>Department of Biomedical Engineering, Johns Hopkins School of Medicine, 21205, Baltimore, MD</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mauro</namePart>
<namePart type="family">Ferrari</namePart>
<namePart type="termsOfAddress">Ph.D.</namePart>
<affiliation>Department of Biomedical Engineering, University of Texas Health Science Center, Houston, TX</affiliation>
<affiliation>University of Texas M.D. Anderson Cancer Center, Houston, TX</affiliation>
<affiliation>Rice University, Houston, TX</affiliation>
<affiliation>University of Texas Medical Branch, Galveston, TX</affiliation>
<affiliation>Texas Alliance for NanoHealth, Houston, TX</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
<description>Editor-in-Chief, Professor, Brown Institute of Molecular Medicine Chairman, Professor of Experimental Therapeutics, Professor of Bioengineering, Professor of Biochemistry and Molecular Biology, President</description>
</name>
<name type="personal">
<namePart type="given">Abraham</namePart>
<namePart type="given">P.</namePart>
<namePart type="family">Lee</namePart>
<affiliation>Biomedical Engineering, University of California, Irvine</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="given">James</namePart>
<namePart type="family">Lee</namePart>
<affiliation>Chemical and Biomolecular Engineering, The Ohio State University, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="chapter" displayLabel="chapter" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-CGT4WMJM-6"></genre>
<originInfo>
<publisher>Springer US</publisher>
<place>
<placeTerm type="text">Boston, MA</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2006</dateIssued>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract lang="en">Abstract: Gene therapy continues to hold promise in treating a variety of inherited and acquired diseases. The great majority of gene therapy trials rely on viral vectors for gene transduction because of their high efficiency. Viruses remain the vectors of choice in achieving high efficiency of gene transfer in vivo. Viral vectors, however, pose safety concerns unlikely to abate in the near future [1–3]. Issues of immunogenicity and toxicity remain a challenge. Limitations of cell mitosis for retrovirus, contamination of adenovirus, and packaging constraints of adeno-associated virus (AAV) also lessen their appeal. Non-viral vectors, although achieving only transient and lower gene expression level, may be able to compete on potential advantages of ease of synthesis, low immune response, and unrestricted plasmid size [4–9]. They have the potential to be administered repeatedly with minimal host immune response. They can also satisfy many of the pharmaceutical issues better than the viral vectors, such as scale-up, storage stability, and quality control. However, non-viral gene delivery is still too inefficient to be therapeutic for many applications. Development of safe and effective non-viral gene carriers is still critical to the ultimate success of gene therapy.</abstract>
<relatedItem type="host">
<titleInfo>
<title>BioMEMS and Biomedical Nanotechnology</title>
<subTitle>Volume I Biological and Biomedical Nanotechnology</subTitle>
</titleInfo>
<name type="personal">
<namePart type="given">Mauro</namePart>
<namePart type="family">Ferrari</namePart>
<namePart type="termsOfAddress">Ph.D.</namePart>
<affiliation>Department of Biomedical Engineering, University of Texas Health Science Center, Houston, TX</affiliation>
<affiliation>University of Texas M.D. Anderson Cancer Center, Houston, TX</affiliation>
<affiliation>Rice University, Houston, TX</affiliation>
<affiliation>University of Texas Medical Branch, Galveston, TX</affiliation>
<affiliation>Texas Alliance for NanoHealth, Houston, TX</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
<description>Editor-in-Chief, Professor, Brown Institute of Molecular Medicine Chairman, Professor of Experimental Therapeutics, Professor of Bioengineering, Professor of Biochemistry and Molecular Biology, President</description>
</name>
<name type="personal">
<namePart type="given">Abraham</namePart>
<namePart type="given">P.</namePart>
<namePart type="family">Lee</namePart>
<affiliation>Biomedical Engineering, University of California, Irvine</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">L.</namePart>
<namePart type="given">James</namePart>
<namePart type="family">Lee</namePart>
<affiliation>Chemical and Biomolecular Engineering, The Ohio State University, USA</affiliation>
<role>
<roleTerm type="text">editor</roleTerm>
</role>
</name>
<genre type="book" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-5WTPMB5N-F">book</genre>
<originInfo>
<publisher>Springer</publisher>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
<issuance>monographic</issuance>
</originInfo>
<subject>
<genre>Book-Subject-Collection</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SUCO11647">Engineering</topic>
</subject>
<subject>
<genre>Book-Subject-Group</genre>
<topic authority="SpringerSubjectCodes" authorityURI="SCT">Engineering</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCT18000">Nanotechnology and Microengineering</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCT2700X">Biomedical Engineering</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCP27008">Biophysics and Biological Physics</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCZ14000">Nanotechnology</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCB0000X">Biomedicine general</topic>
<topic authority="SpringerSubjectCodes" authorityURI="SCC12002">Biotechnology</topic>
</subject>
<identifier type="DOI">10.1007/b136237</identifier>
<identifier type="ISBN">978-0-387-25563-7</identifier>
<identifier type="eISBN">978-0-387-25842-3</identifier>
<identifier type="BookTitleID">117264</identifier>
<identifier type="BookID">978-0-387-25842-3</identifier>
<identifier type="BookChapterCount">16</identifier>
<part>
<date>2006</date>
<detail type="chapter">
<number>9</number>
<caption>chapter</caption>
</detail>
<extent unit="pages">
<start>239</start>
<end>263</end>
</extent>
</part>
<recordInfo>
<recordOrigin>Springer Science + Business Media, LLC, 2006</recordOrigin>
</recordInfo>
</relatedItem>
<identifier type="istex">7295D4F4611349199345F9DFFEBA6ED5897248BA</identifier>
<identifier type="ark">ark:/67375/HCB-PN334NL0-9</identifier>
<identifier type="DOI">10.1007/978-0-387-25842-3_9</identifier>
<identifier type="ChapterID">9</identifier>
<identifier type="ChapterID">Chap9</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Springer Science + Business Media, LLC, 2006</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-RLRX46XW-4">springer</recordContentSource>
<recordOrigin>Springer Science + Business Media, LLC, 2006</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>txt</extension>
<original>true</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HCB-PN334NL0-9/annexes.txt</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002252 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002252 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7295D4F4611349199345F9DFFEBA6ED5897248BA
   |texte=   Polymer Design for Nonviral Gene Delivery
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021