Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain

Identifieur interne : 002230 ( Istex/Corpus ); précédent : 002229; suivant : 002231

Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain

Auteurs : Tao Fu ; Chris Burbage ; Edward Tagge ; John Chandler ; Mark Willingham ; Arthur Frankel

Source :

RBID : ISTEX:7C1819B940792562DFC0BE3CC4B7423241542012

Abstract

Ricin toxin, the heterodimeric 65 kDa glycoprotein synthesized in castor bean seeds, contains a cell binding lectin subunit (RTB) disulfide linked to an RNA N-glycosidase protein synthesis-inactivating subunit (RTA). Investigations of the molecular nature of the lectin sites in RTB by X-ray crystallography, equilibrium dialysis, chemical modification, and mutational analysis have yielded conflicting results as to the number, location, and affinity of sugar-combining sites. An accurate assessment of the amino acid residues of RTB involved in galactose binding is needed both for correlating structure−function of a number of plant lectins and for the design and synthesis of targeted toxins for cancer and autoimmune disease therapy. We have performed oligonucleotide-directed mutagenesis on cDNA encoding RTB and expressed the mutant RTBs in insect cells. Partially purified recombinant proteins obtained from infected cell supernatants and cell extracts were characterized as to yields, immunoreactivities, asialofetuin binding, cell binding, ability to reassociate with RTA, and recombinant heterodimer cell cytotoxicity. Two single-site mutants (subdomain 1α or 2γ) and two double-site mutants (subdomains 1α and 2γ) were produced and studied. Yields varied by two logs with lower recoveries of double-site mutants. All the mutants showed immunoreactivity with a panel of anti-RTB monoclonal and polyclonal antibodies. Single-lectin site mutants displayed up to a 1 log decrease in asialofetuin binding avidity, while the double-site mutants showed close to a 2 log decrease in sugar binding. However, for each of the double-site mutants, residual sugar binding was demonstrated to both immobilized asialofetuin and cells, and this binding was specifically inhibitable with α-lactose. All mutants reassociated with RTA, and the mutant heterodimers were cytotoxic to mammalian cells with potencies 1000-fold or more times that of unreassociated wild-type RTA or RTB. These data support a model for three or more lectin binding subdomains in RTB.

Url:
DOI: 10.1021/bc960056b

Links to Exploration step

ISTEX:7C1819B940792562DFC0BE3CC4B7423241542012

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
<author>
<name sortKey="Fu, Tao" sort="Fu, Tao" uniqKey="Fu T" first="Tao" last="Fu">Tao Fu</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Medicine.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burbage, Chris" sort="Burbage, Chris" uniqKey="Burbage C" first="Chris" last="Burbage">Chris Burbage</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Medicine.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tagge, Edward" sort="Tagge, Edward" uniqKey="Tagge E" first="Edward" last="Tagge">Edward Tagge</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Surgery.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chandler, John" sort="Chandler, John" uniqKey="Chandler J" first="John" last="Chandler">John Chandler</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Surgery.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Willingham, Mark" sort="Willingham, Mark" uniqKey="Willingham M" first="Mark" last="Willingham">Mark Willingham</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Pathology.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frankel, Arthur" sort="Frankel, Arthur" uniqKey="Frankel A" first="Arthur" last="Frankel">Arthur Frankel</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Medicine.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Address correspondence to this author at thefollowingaddress:  Hollings Cancer Center, Rm 306, 86 JonathanLucasSt., Charleston, SC 29425. Telephone:  803-792-1450.Fax: 803-792-3200.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7C1819B940792562DFC0BE3CC4B7423241542012</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1021/bc960056b</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002230</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002230</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
<author>
<name sortKey="Fu, Tao" sort="Fu, Tao" uniqKey="Fu T" first="Tao" last="Fu">Tao Fu</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Medicine.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Burbage, Chris" sort="Burbage, Chris" uniqKey="Burbage C" first="Chris" last="Burbage">Chris Burbage</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Medicine.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tagge, Edward" sort="Tagge, Edward" uniqKey="Tagge E" first="Edward" last="Tagge">Edward Tagge</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Surgery.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chandler, John" sort="Chandler, John" uniqKey="Chandler J" first="John" last="Chandler">John Chandler</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Surgery.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Willingham, Mark" sort="Willingham, Mark" uniqKey="Willingham M" first="Mark" last="Willingham">Mark Willingham</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Pathology.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Frankel, Arthur" sort="Frankel, Arthur" uniqKey="Frankel A" first="Arthur" last="Frankel">Arthur Frankel</name>
<affiliation>
<mods:affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Department of Medicine.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Address correspondence to this author at thefollowingaddress:  Hollings Cancer Center, Rm 306, 86 JonathanLucasSt., Charleston, SC 29425. Telephone:  803-792-1450.Fax: 803-792-3200.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="ISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1996</date>
<date type="published">1996</date>
<biblScope unit="vol">7</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="651">651</biblScope>
<biblScope unit="page" to="658">658</biblScope>
</imprint>
<idno type="ISSN">1043-1802</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1043-1802</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Ricin toxin, the heterodimeric 65 kDa glycoprotein synthesized in castor bean seeds, contains a cell binding lectin subunit (RTB) disulfide linked to an RNA N-glycosidase protein synthesis-inactivating subunit (RTA). Investigations of the molecular nature of the lectin sites in RTB by X-ray crystallography, equilibrium dialysis, chemical modification, and mutational analysis have yielded conflicting results as to the number, location, and affinity of sugar-combining sites. An accurate assessment of the amino acid residues of RTB involved in galactose binding is needed both for correlating structure−function of a number of plant lectins and for the design and synthesis of targeted toxins for cancer and autoimmune disease therapy. We have performed oligonucleotide-directed mutagenesis on cDNA encoding RTB and expressed the mutant RTBs in insect cells. Partially purified recombinant proteins obtained from infected cell supernatants and cell extracts were characterized as to yields, immunoreactivities, asialofetuin binding, cell binding, ability to reassociate with RTA, and recombinant heterodimer cell cytotoxicity. Two single-site mutants (subdomain 1α or 2γ) and two double-site mutants (subdomains 1α and 2γ) were produced and studied. Yields varied by two logs with lower recoveries of double-site mutants. All the mutants showed immunoreactivity with a panel of anti-RTB monoclonal and polyclonal antibodies. Single-lectin site mutants displayed up to a 1 log decrease in asialofetuin binding avidity, while the double-site mutants showed close to a 2 log decrease in sugar binding. However, for each of the double-site mutants, residual sugar binding was demonstrated to both immobilized asialofetuin and cells, and this binding was specifically inhibitable with α-lactose. All mutants reassociated with RTA, and the mutant heterodimers were cytotoxic to mammalian cells with potencies 1000-fold or more times that of unreassociated wild-type RTA or RTB. These data support a model for three or more lectin binding subdomains in RTB.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>mutant</json:string>
<json:string>ricin</json:string>
<json:string>lectin</json:string>
<json:string>rtbs</json:string>
<json:string>mutant rtbs</json:string>
<json:string>recombinant</json:string>
<json:string>asialofetuin</json:string>
<json:string>monoclonal</json:string>
<json:string>chem</json:string>
<json:string>elisa</json:string>
<json:string>azide</json:string>
<json:string>subdomain</json:string>
<json:string>sodium azide</json:string>
<json:string>subdomains</json:string>
<json:string>galactose</json:string>
<json:string>sugar binding</json:string>
<json:string>bioconjugate</json:string>
<json:string>lectin site</json:string>
<json:string>bioconjugate chem</json:string>
<json:string>monoclonal antibody</json:string>
<json:string>ricin toxin</json:string>
<json:string>blattler</json:string>
<json:string>lactose</json:string>
<json:string>cytotoxicity</json:string>
<json:string>heterodimers</json:string>
<json:string>biol</json:string>
<json:string>toxin</json:string>
<json:string>reassociation</json:string>
<json:string>frankel</json:string>
<json:string>heterodimer</json:string>
<json:string>receptor</json:string>
<json:string>recombinant protein</json:string>
<json:string>tween</json:string>
<json:string>rabbit antibody</json:string>
<json:string>insect cell</json:string>
<json:string>supernatant</json:string>
<json:string>assay</json:string>
<json:string>mutational analysis</json:string>
<json:string>amino acid residue</json:string>
<json:string>mutational</json:string>
<json:string>asialofetuin binding</json:string>
<json:string>room temperature</json:string>
<json:string>different concentration</json:string>
<json:string>amino</json:string>
<json:string>mutant heterodimers</json:string>
<json:string>chain mutant</json:string>
<json:string>alkaline goat</json:string>
<json:string>binding concentration</json:string>
<json:string>polar residue</json:string>
<json:string>walter blattler</json:string>
<json:string>incomplete inactivation</json:string>
<json:string>additional mutant</json:string>
<json:string>protein synthesis</json:string>
<json:string>asialofetuin elisa</json:string>
<json:string>recombinant rtbs</json:string>
<json:string>ricinus communis agglutinin</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>FU Tao</name>
<affiliations>
<json:string>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</json:string>
<json:string>Department of Medicine.</json:string>
</affiliations>
</json:item>
<json:item>
<name>BURBAGE Chris</name>
<affiliations>
<json:string>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</json:string>
<json:string>Department of Medicine.</json:string>
</affiliations>
</json:item>
<json:item>
<name>TAGGE Edward</name>
<affiliations>
<json:string>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</json:string>
<json:string>Department of Surgery.</json:string>
</affiliations>
</json:item>
<json:item>
<name>CHANDLER John</name>
<affiliations>
<json:string>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</json:string>
<json:string>Department of Surgery.</json:string>
</affiliations>
</json:item>
<json:item>
<name>WILLINGHAM Mark</name>
<affiliations>
<json:string>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</json:string>
<json:string>Department of Pathology.</json:string>
</affiliations>
</json:item>
<json:item>
<name>FRANKEL Arthur</name>
<affiliations>
<json:string>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</json:string>
<json:string>Department of Medicine.</json:string>
<json:string>Address correspondence to this author at thefollowingaddress:  Hollings Cancer Center, Rm 306, 86 JonathanLucasSt., Charleston, SC 29425. Telephone:  803-792-1450.Fax: 803-792-3200.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-3DMJ2R0G-C</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Ricin toxin, the heterodimeric 65 kDa glycoprotein synthesized in castor bean seeds, contains a cell binding lectin subunit (RTB) disulfide linked to an RNA N-glycosidase protein synthesis-inactivating subunit (RTA). Investigations of the molecular nature of the lectin sites in RTB by X-ray crystallography, equilibrium dialysis, chemical modification, and mutational analysis have yielded conflicting results as to the number, location, and affinity of sugar-combining sites. An accurate assessment of the amino acid residues of RTB involved in galactose binding is needed both for correlating structure−function of a number of plant lectins and for the design and synthesis of targeted toxins for cancer and autoimmune disease therapy. We have performed oligonucleotide-directed mutagenesis on cDNA encoding RTB and expressed the mutant RTBs in insect cells. Partially purified recombinant proteins obtained from infected cell supernatants and cell extracts were characterized as to yields, immunoreactivities, asialofetuin binding, cell binding, ability to reassociate with RTA, and recombinant heterodimer cell cytotoxicity. Two single-site mutants (subdomain 1α or 2γ) and two double-site mutants (subdomains 1α and 2γ) were produced and studied. Yields varied by two logs with lower recoveries of double-site mutants. All the mutants showed immunoreactivity with a panel of anti-RTB monoclonal and polyclonal antibodies. Single-lectin site mutants displayed up to a 1 log decrease in asialofetuin binding avidity, while the double-site mutants showed close to a 2 log decrease in sugar binding. However, for each of the double-site mutants, residual sugar binding was demonstrated to both immobilized asialofetuin and cells, and this binding was specifically inhibitable with α-lactose. All mutants reassociated with RTA, and the mutant heterodimers were cytotoxic to mammalian cells with potencies 1000-fold or more times that of unreassociated wild-type RTA or RTB. These data support a model for three or more lectin binding subdomains in RTB.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>5538</pdfWordCount>
<pdfCharCount>36266</pdfCharCount>
<pdfVersion>1.1</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>692</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>293</abstractWordCount>
<abstractCharCount>2053</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Bioconjugate Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1043-1802</json:string>
</issn>
<eissn>
<json:string>1520-4812</json:string>
</eissn>
<volume>7</volume>
<issue>6</issue>
<pages>
<first>651</first>
<last>658</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-3DMJ2R0G-C</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, organic</json:string>
<json:string>2 - chemistry, multidisciplinary</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
<json:string>2 - biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - organic chemistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Organic Chemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmaceutical Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmacology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Bioengineering</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biotechnology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1021/bc960056b</json:string>
</doi>
<id>7C1819B940792562DFC0BE3CC4B7423241542012</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 1996 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">1996</date>
<date type="Copyright" when="1996">1996</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
<author xml:id="author-0000">
<persName>
<surname>Fu</surname>
<forename type="first">Tao</forename>
</persName>
<affiliation>
<orgName type="division">Departments of Medicine</orgName>
<address>
<addrLine>Surgery</addrLine>
<addrLine>and Pathology</addrLine>
<addrLine>Medical University of South Carolina</addrLine>
<addrLine>Charleston</addrLine>
<addrLine>South Carolina 29425</addrLine>
</address>
</affiliation>
<note place="foot" n="bc960056bAF2">
<ref></ref>
<p>  Department of Medicine.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Burbage</surname>
<forename type="first">Chris</forename>
</persName>
<affiliation>
<orgName type="division">Departments of Medicine</orgName>
<address>
<addrLine>Surgery</addrLine>
<addrLine>and Pathology</addrLine>
<addrLine>Medical University of South Carolina</addrLine>
<addrLine>Charleston</addrLine>
<addrLine>South Carolina 29425</addrLine>
</address>
</affiliation>
<note place="foot" n="bc960056bAF2">
<ref></ref>
<p>  Department of Medicine.</p>
</note>
</author>
<author xml:id="author-0002">
<persName>
<surname>Tagge</surname>
<forename type="first">Edward</forename>
</persName>
<affiliation>
<orgName type="division">Departments of Medicine</orgName>
<address>
<addrLine>Surgery</addrLine>
<addrLine>and Pathology</addrLine>
<addrLine>Medical University of South Carolina</addrLine>
<addrLine>Charleston</addrLine>
<addrLine>South Carolina 29425</addrLine>
</address>
</affiliation>
<note place="foot" n="bc960056bAF3">
<ref></ref>
<p>  Department of Surgery.</p>
</note>
</author>
<author xml:id="author-0003">
<persName>
<surname>Chandler</surname>
<forename type="first">John</forename>
</persName>
<affiliation>
<orgName type="division">Departments of Medicine</orgName>
<address>
<addrLine>Surgery</addrLine>
<addrLine>and Pathology</addrLine>
<addrLine>Medical University of South Carolina</addrLine>
<addrLine>Charleston</addrLine>
<addrLine>South Carolina 29425</addrLine>
</address>
</affiliation>
<note place="foot" n="bc960056bAF3">
<ref></ref>
<p>  Department of Surgery.</p>
</note>
</author>
<author xml:id="author-0004">
<persName>
<surname>Willingham</surname>
<forename type="first">Mark</forename>
</persName>
<affiliation>
<orgName type="division">Departments of Medicine</orgName>
<address>
<addrLine>Surgery</addrLine>
<addrLine>and Pathology</addrLine>
<addrLine>Medical University of South Carolina</addrLine>
<addrLine>Charleston</addrLine>
<addrLine>South Carolina 29425</addrLine>
</address>
</affiliation>
<note place="foot" n="bc960056bAF4">
<ref>§</ref>
<p>  Department of Pathology.</p>
</note>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<surname>Frankel</surname>
<forename type="first">Arthur</forename>
</persName>
<note place="foot" n="bc960056bAF2">
<ref></ref>
<p>  Department of Medicine.</p>
</note>
<affiliation role="corresp"> Address correspondence to this author at the following address:  Hollings Cancer Center, Rm 306, 86 Jonathan Lucas St., Charleston, SC 29425. Telephone:  803-792-1450. Fax:  803-792-3200.</affiliation>
</author>
<idno type="istex">7C1819B940792562DFC0BE3CC4B7423241542012</idno>
<idno type="ark">ark:/67375/TPS-3DMJ2R0G-C</idno>
<idno type="DOI">10.1021/bc960056b</idno>
</analytic>
<monogr>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="acspubs">bc</idno>
<idno type="coden">bcches</idno>
<idno type="pISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">1996</date>
<date type="published">1996</date>
<biblScope unit="vol">7</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="651">651</biblScope>
<biblScope unit="page" to="658">658</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Ricin toxin, the heterodimeric 65 kDa glycoprotein synthesized in castor bean seeds, contains a cell binding lectin subunit (RTB) disulfide linked to an RNA
<hi rend="italic">N</hi>
-glycosidase protein synthesis-inactivating subunit (RTA). Investigations of the molecular nature of the lectin sites in RTB by X-ray crystallography, equilibrium dialysis, chemical modification, and mutational analysis have yielded conflicting results as to the number, location, and affinity of sugar-combining sites. An accurate assessment of the amino acid residues of RTB involved in galactose binding is needed both for correlating structure−function of a number of plant lectins and for the design and synthesis of targeted toxins for cancer and autoimmune disease therapy. We have performed oligonucleotide-directed mutagenesis on cDNA encoding RTB and expressed the mutant RTBs in insect cells. Partially purified recombinant proteins obtained from infected cell supernatants and cell extracts were characterized as to yields, immunoreactivities, asialofetuin binding, cell binding, ability to reassociate with RTA, and recombinant heterodimer cell cytotoxicity. Two single-site mutants (subdomain 1α or 2γ) and two double-site mutants (subdomains 1α and 2γ) were produced and studied. Yields varied by two logs with lower recoveries of double-site mutants. All the mutants showed immunoreactivity with a panel of anti-RTB monoclonal and polyclonal antibodies. Single-lectin site mutants displayed up to a 1 log decrease in asialofetuin binding avidity, while the double-site mutants showed close to a 2 log decrease in sugar binding. However, for each of the double-site mutants, residual sugar binding was demonstrated to both immobilized asialofetuin and cells, and this binding was specifically inhibitable with α-lactose. All mutants reassociated with RTA, and the mutant heterodimers were cytotoxic to mammalian cells with potencies 1000-fold or more times that of unreassociated wild-type RTA or RTB. These data support a model for three or more lectin binding subdomains in RTB. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bc</journal-id>
<journal-id journal-id-type="coden">bcches</journal-id>
<journal-title-group>
<journal-title>Bioconjugate Chemistry</journal-title>
<abbrev-journal-title>Bioconjugate Chem.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">1043-1802</issn>
<issn pub-type="epub">1520-4812</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/bc</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bc960056b</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Fu</surname>
<given-names>Tao</given-names>
</name>
<xref rid="bc960056bAF2">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Burbage</surname>
<given-names>Chris</given-names>
</name>
<xref rid="bc960056bAF2">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Tagge</surname>
<given-names>Edward</given-names>
</name>
<xref rid="bc960056bAF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Chandler</surname>
<given-names>John</given-names>
</name>
<xref rid="bc960056bAF3">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<surname>Willingham</surname>
<given-names>Mark</given-names>
</name>
<xref rid="bc960056bAF4">
<sup>§</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Frankel</surname>
<given-names>Arthur</given-names>
</name>
<xref rid="bc960056bAF1">*</xref>
<xref rid="bc960056bAF2">
<sup></sup>
</xref>
</contrib>
<aff>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, South Carolina 29425</aff>
</contrib-group>
<author-notes>
<fn id="bc960056bAF2">
<label></label>
<p>  Department of Medicine.</p>
</fn>
<fn id="bc960056bAF3">
<label></label>
<p>  Department of Surgery.</p>
</fn>
<fn id="bc960056bAF4">
<label>§</label>
<p>  Department of Pathology.</p>
</fn>
<corresp id="bc960056bAF1">  Address correspondence to this author at the following address:  Hollings Cancer Center, Rm 306, 86 Jonathan Lucas St., Charleston, SC 29425. Telephone:  803-792-1450. Fax:  803-792-3200.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>27</day>
<month>11</month>
<year>1996</year>
</pub-date>
<pub-date pub-type="ppub">
<day>27</day>
<month>11</month>
<year>1996</year>
</pub-date>
<volume>7</volume>
<issue>6</issue>
<fpage>651</fpage>
<lpage>658</lpage>
<history>
<date date-type="received">
<day>31</day>
<month>05</month>
<year>1996</year>
</date>
<date date-type="issue-pub">
<day>27</day>
<month>11</month>
<year>1996</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 1996 American Chemical Society</copyright-statement>
<copyright-year>1996</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>Ricin toxin, the heterodimeric 65 kDa glycoprotein synthesized in castor bean seeds, contains a cell binding lectin subunit (RTB) disulfide linked to an RNA
<italic toggle="yes">N</italic>
-glycosidase protein synthesis-inactivating subunit (RTA). Investigations of the molecular nature of the lectin sites in RTB by X-ray crystallography, equilibrium dialysis, chemical modification, and mutational analysis have yielded conflicting results as to the number, location, and affinity of sugar-combining sites. An accurate assessment of the amino acid residues of RTB involved in galactose binding is needed both for correlating structure−function of a number of plant lectins and for the design and synthesis of targeted toxins for cancer and autoimmune disease therapy. We have performed oligonucleotide-directed mutagenesis on cDNA encoding RTB and expressed the mutant RTBs in insect cells. Partially purified recombinant proteins obtained from infected cell supernatants and cell extracts were characterized as to yields, immunoreactivities, asialofetuin binding, cell binding, ability to reassociate with RTA, and recombinant heterodimer cell cytotoxicity. Two single-site mutants (subdomain 1α or 2γ) and two double-site mutants (subdomains 1α and 2γ) were produced and studied. Yields varied by two logs with lower recoveries of double-site mutants. All the mutants showed immunoreactivity with a panel of anti-RTB monoclonal and polyclonal antibodies. Single-lectin site mutants displayed up to a 1 log decrease in asialofetuin binding avidity, while the double-site mutants showed close to a 2 log decrease in sugar binding. However, for each of the double-site mutants, residual sugar binding was demonstrated to both immobilized asialofetuin and cells, and this binding was specifically inhibitable with α-lactose. All mutants reassociated with RTA, and the mutant heterodimers were cytotoxic to mammalian cells with potencies 1000-fold or more times that of unreassociated wild-type RTA or RTB. These data support a model for three or more lectin binding subdomains in RTB. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bc960056b</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes id="bc960056bAF7">
<label></label>
<p>  Abstract published in
<italic toggle="yes">Advance ACS Abstracts,</italic>
November 1, 1996.</p>
</notes>
</front>
<body>
<sec id="d7e170">
<title>Introduction</title>
<p>Lectins such as ricin toxin from the
<italic toggle="yes">Ricinus communis</italic>
plant mediate a wide range of biological effects due to binding cell surface carbohydrates. The B chain subunit of ricin (RTB)
<xref rid="bc960056bb00001" ref-type="bibr"></xref>
binds to mammalian cell membranes by recognizing galactose-containing receptors, and this reaction is the first necessary step for intoxication of cells (
<italic toggle="yes">
<xref rid="bc960056bb00001" ref-type="bibr"></xref>
</italic>
). RTB binds β-galactosides (
<italic toggle="yes">
<xref rid="bc960056bb00002" ref-type="bibr"></xref>
</italic>
) with association constants from 10
<sup>3</sup>
to 3 × 10
<sup>4</sup>
M
<sup>-1</sup>
for simple sugars (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00003" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00004" ref-type="bibr"></xref>
</named-content>
</italic>
) and 10
<sup>7</sup>
−10
<sup>8</sup>
M
<sup>-1</sup>
for free and cell surface-bound glycoproteins (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00005" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00006" ref-type="bibr"></xref>
</named-content>
</italic>
). These results lead to the hypothesis that multiple low-affinity sugar binding on ricin interact with complex oligosaccharides and cells to yield high-affinity binding. Clustering of target sugars in the proper geometry to enhance lectin binding via interactions at multiple sites has been observed for the hepatic galactose
<italic toggle="yes">N</italic>
-acetylgalactosamine-binding receptor (
<italic toggle="yes">
<xref rid="bc960056bb00007" ref-type="bibr"></xref>
</italic>
) and the macrophage mannose receptor (
<italic toggle="yes">
<xref rid="bc960056bb00008" ref-type="bibr"></xref>
</italic>
).</p>
<p>The X-ray crystallographic structure of ricin provides a structural basis for this hypothesis. RTB has two domains each with three subdomains (
<italic toggle="yes">
<xref rid="bc960056bb00009" ref-type="bibr"></xref>
</italic>
). The six subdomains have similar folding and primary amino acid sequences and resemble the primitive galactose binding fold in discoidin I from the slime mold
<italic toggle="yes">Dictyostelium discoideum</italic>
. Tripeptide kinks in the loops from subdomains 1α, 1β, 2α, and 2γ may interact with galactosides. Each of these subdomains has aromatic residues which can interact with the nonpolar face of galactose, and three of the four subdomain folds (1α, 1β, and 2γ) have polar residues for hydrogen bond formation to the sugar hydroxyls. Cocrystallization of α-lactose at low concentrations (5 mM) with ricin permitted identification of bonds between lactose and amino acid residues of subdomains 1α and 2γ.</p>
<p>Biochemical modification studies have identified one to three sugar binding sites per RTB molecule.
<italic toggle="yes">N</italic>
-Bromosuccinimide modification of Trp-37 reduced sugar binding, demonstrating a sugar-binding site in the subdomain 1α fold (
<italic toggle="yes">
<xref rid="bc960056bb00010" ref-type="bibr"></xref>
</italic>
).
<italic toggle="yes">N</italic>
-Acetylimidazole O-acetylation of two tyrosines reduced sugar binding, implicating sites in subdomains 1β pocket and 2γ pocket (
<italic toggle="yes">
<xref rid="bc960056bb00011" ref-type="bibr"></xref>
</italic>
). Further, three distinct sites on ricin were cross-linked by radiolabeled fetuin glycopeptide containing a dichlorotriazine-activated 6-(
<italic toggle="yes">N</italic>
-methylamino)-6-deoxy-
<sc>d</sc>
-galactose moiety, supporting the concept of three sugar-binding sites (
<italic toggle="yes">
<xref rid="bc960056bb00012" ref-type="bibr"></xref>
</italic>
).</p>
<p>Mutational analysis of recombinant RTBs produced in Cos cells, bacteriophage, and
<italic toggle="yes">Xenopus laevis</italic>
ooctyes has suggested either one active lectin site in subdomain 2γ or two lectin sites in subdomains 1α and 2γ (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00013" ref-type="bibr"></xref>
<xref rid="bc960056bb00014" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc960056bb00015" ref-type="bibr"></xref>
</named-content>
</italic>
). RTB mutant N255A produced in Cos cells and RTB mutants K40M/N46G/N255G and D22Q/V23A/R24N/D234A/V235A/R236T synthesized in
<italic toggle="yes">Xenopus</italic>
oocytes lacked sugar binding (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00013" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00014" ref-type="bibr"></xref>
</named-content>
</italic>
). However, very small amounts of proteins were made in each case, and purification and immunologic characterization of products were not done. In all three mutational studies, decreased sugar binding due to misfolding or aggregation of recombinant RTBs could lead to an overestimation of the effect of individual modifications.</p>
<p>To obtain more accurate quantitative information on the RTB lectin sites, our laboratory has expressed, partially purified, and characterized wild-type, single-site, and double-site RTB mutants in insect cells (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00016" ref-type="bibr"></xref>
<xref rid="bc960056bb00017" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc960056bb00018" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc960056bb00019" ref-type="bibr"></xref>
</named-content>
</italic>
). We obtained microgram to milligram yields of recombinant proteins and were able to purify the lectins to 10−50% purity by Coomassie-stained SDS−PAGE. Wild-type recombinant RTB bound asialofetuin and cell surface oligosaccharides in a manner similar to that of plant RTB with half-maximal binding concentrations of about 5 × 10
<sup>-9</sup>
M (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00016" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00017" ref-type="bibr"></xref>
</named-content>
</italic>
). Single-site mutants of both the 1α subdomain and the 2γ subdomain had reduced binding affinity for asialofetuin and KB mammalian cells (
<italic toggle="yes">
<xref rid="bc960056bb00018" ref-type="bibr"></xref>
</italic>
). However, the reduction in binding affinity was 1 log or less in each case. After reassociation with plant RTA, each single-site mutant retained HUT102 human leukemia cell cytotoxicity with ID
<sub>50</sub>
's within 1−1.5 logs of that of the wild-type heterodimer. The minor effect of genetic modification of lectin sites in subdomains 1α and 2γ suggested incomplete inactivation of lectin sites or additional sugar-combining sites on RTB. We then expressed, partially purified, and characterized three double-site mutant RTBs and one additional single-site mutant RTB (
<italic toggle="yes">
<xref rid="bc960056bb00019" ref-type="bibr"></xref>
</italic>
). Two of the double-site mutants had unique properties suggesting either persistence of two main galactose binding sites operating at reduced levels or the theory of three ricin lectin sites. To resolve the issue of incomplete inactivation of the lectin sites in the single- and double-site mutants, we now report the biological properties of two additional single-site mutants and two additional double-site mutants. Modifications at each site were chosen to maximally alter each lectin pocket. Our findings support the hypothesis of at least three independent sugar-combining sites on ricin. </p>
</sec>
<sec id="d7e306">
<title>Experimental Procedures</title>
<p>
<bold>Mutagenesis.</bold>
pUC119-RTB plasmid containing a
<italic toggle="yes">Bam</italic>
HI-
<italic toggle="yes">Eco</italic>
RI DNA fragment coding for ADP−RTB was propagated in INVαF‘
<italic toggle="yes">Escherichia coli</italic>
cells (InVitrogen, San Diego, CA) as previously described (
<italic toggle="yes">
<xref rid="bc960056bb00016" ref-type="bibr"></xref>
</italic>
). Single-stranded DNA was produced by infection of transformants with M13K07 phage (Stratagene, La Jolla, CA) as previously described (
<italic toggle="yes">
<xref rid="bc960056bb00020" ref-type="bibr"></xref>
</italic>
). Oligonucleotides were synthesized on an Applied Biosystems 380B DNA synthesizer and desalted with butan-1-ol. 39-mers were prepared with the modified codon flanked by 18 bases on each side matching RTB sequence and lacking an
<italic toggle="yes">Nci</italic>
I site. Site-specific mutagenesis was performed by the Eckstein method using the Sculptor
<italic toggle="yes">in vitro</italic>
mutagenesis system (Amersham, Arlington Heights, IL) and the manufacturer's instructions (
<italic toggle="yes">
<xref rid="bc960056bb00021" ref-type="bibr"></xref>
</italic>
). Modifications were made at both the 1α and 2γ subdomains on the basis of the X-ray crystallographic model of the lectin binding sites (Figure
<xref rid="bc960056bf00001"></xref>
) to either alter key polar residues which provide hydrogen bonds to sugar hydroxyls (D234E, N46G/K40M/N255G, and D22Q/V23A/R24N/D234A/ V235A/R236T) or change aromatic ring residues which provide van der Waals interactions between the protein and sugar (Y248H). Sequences of mutant RTB DNAs were confirmed by double-stranded dideoxy sequencing by the Sanger method using the Sequenase kit (USB, Cleveland, OH) (
<italic toggle="yes">
<xref rid="bc960056bb00022" ref-type="bibr"></xref>
</italic>
).
<fig id="bc960056bf00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Model of subdomains 1α and 2γ of ricin B chain showing amino acid residues altered in this study. Coordinates derived from Rutenber and Robertus (
<italic toggle="yes">
<xref rid="bc960056bb00009" ref-type="bibr"></xref>
</italic>
). Ball and stick diagram display of Brookhaven coordinates on SYBYL software on Silicon Graphics Iris Indigo workstation with α carbon backbone displayed in gray and modified amino acid residues in black. Lactose molecules displayed in black also.</p>
</caption>
<graphic xlink:href="bc960056bf00001.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Construction of Transfer Vectors Encoding Mutant RTBs.</bold>
Mutant RTB-encoding pUC119 DNAs were then restricted with
<italic toggle="yes">Bam</italic>
HI and
<italic toggle="yes">Eco</italic>
RI, and the RTB-encoding fragments were subcloned into pAcGP67A plasmid (PharMingen, San Diego, CA) and used to transform INVαF‘
<italic toggle="yes">E</italic>
.
<italic toggle="yes">coli</italic>
cells. Transfer vectors with mutant RTBs were then purified by cesium chloride gradient centrifugation.</p>
<p>
<bold>Isolation of Recombinant Baculoviruses.</bold>
The Sf9
<italic toggle="yes">Spodoptera</italic>
<italic toggle="yes">frugiperda</italic>
ovarian cell line was maintained on TMNFH medium supplemented with 10% fetal calf serum and gentamicin sulfate (10 μg/mL). pAcGP67A−mutant RTB DNAs (4 μg) were cotransfected with 0.5 μg of BaculoGold AcNPV DNA (PharMingen) into 2 × 10
<sup>6</sup>
Sf9 insect cells following the recommendations of the supplier. On day 7 post-transfection, media were centrifuged and the supernatants tested in limiting dilution assays with Sf9 cells. Sf9 cells (2 × 10
<sup>4</sup>
) were incubated with 10-fold dilutions of supernatants in 96-well plates. Seven days postinfection, supernatants were saved and cells in each assay well were lysed with NaOH and the lysates transferred to nitrocellulose. The nitrocellulose was then blocked with Blotto and reacted with random primer [
<sup>32</sup>
P]-dCTP-labelled RTB DNA. After hybridization for 16 h at 67 °C, the dot blot membranes were washed with 0.1 × (150 mM NaCl/15 mM sodium citrate)/1% SDS, dried, and exposed to X-ray film. Positive wells were identified and supernatants reassayed by limiting dilution until all wells up to 10
<sup>-8</sup>
dilution were positive. Two rounds of selection were required for each mutant. Recombinant viruses in the supernatants were then amplified by infecting Sf9 cells at a multiplicity of infection (moi) of 0.1, followed by collection of day 7 supernatants.</p>
<p>
<bold>Expression of Mutant B Chains in Sf9 Cells.</bold>
Recombinant baculoviruses were used to infect 2 × 10
<sup>8</sup>
Sf9 cells at an moi of 5 in EX-CELL 400 media (JRH Scientific, Lexena, KS) with 50 mM α-lactose in spinner flasks. Media supernatants containing mutant RTBs were collected on day 6 postinfection.</p>
<p>
<bold>Purification of Mutant RTBS.</bold>
Media supernatants were adjusted to 0.01% sodium azide and maintained through all purification steps at 4 °C. The supernatants were concentrated 15-fold by vacuum dialysis, centrifuged at 3000
<italic toggle="yes">g</italic>
for 10 min to remove precipitate, dialyzed against 50 mM NaCl, 25 mM Tris (pH 8), 1 mM EDTA, 0.01% sodium azide, and 25 mM α-lactose (NTEAL), ultracentrifuged at 100000
<italic toggle="yes">g</italic>
for 1 h, and loaded onto a P2 monoclonal antibody−acrylamide column previously described (
<italic toggle="yes">
<xref rid="bc960056bb00016" ref-type="bibr"></xref>
</italic>
). The affinity column was then washed sequentially with NTEAL and 500 mM NaCl, 25 mM Tris (pH 9), 1 mM EDTA, 0.01% sodium azide, 25 mM α-lactose, and 0.1% Tween 20 (NTEALT), and mutant RTBs were eluted with 0.1 M triethylamine (pH 11). The alkaline eluants were immediately neutralized with 1 M sodium phosphate (pH 4.8) and stored at −20 °C until they were assayed. Optical densities at 280 nm were determined and aliquots mixed with reducing 2 × SDS sample buffer, boiled for 4 min, submitted to a 15% SDS−PAGE, stained with Coomassie Blue R-250, and destained with acetic acid/methanol. Gels were scanned on an IBAS automatic image analysis system (Kontron, Germany) to estimate the fraction of the protein with a molecular mass of 32 kDa.</p>
<p>Several preparations of mutant RTBs were made from cell pellets by dissolving pellets in 10 volumes of 20 mM Tris (pH 8), 50 mM NaCl, 1% NP40, 1 mM PMSF, 2 μg/mL aprotinin, 1.5 μg/mL pepstatin, and 1.5 μg/mL leupeptin. The extracts were frozen at −70 °C, thawed, and centrifuged at 22000
<italic toggle="yes">g</italic>
for 15 min at 4 °C. Extracts were then dialyzed against NTEAL and treated in the same manner as dialyzed concentrated cell supernatants.</p>
<p>
<bold>Immunological Properties of Mutant RTBs.</bold>
Aliquots of mutant RTBs, plant RTB (Inland Laboratories, Austin, TX), wild-type recombinant RTB, and prestained low-molecular mass standards (BioRad, Hercules, CA) were mixed with reducing 2 × SDS sample buffer, boiled for 4 min, submitted to a 15% SDS−PAGE, and electrophoresed for 90 min. Gels, Whatman 3M #1 paper, and nitrocellulose were equilibrated for 15 min in Towbin buffer (20 mM Tris/0.1 M glycine/20% methanol) and placed in a Semi-dry Trans-blot cell (BioRad). After electrophoresis at 15 V for 20 min, the nitrocellulose was blocked with 10% Carnation's nonfat dry milk/0.1% BSA/0.1% Tween 20/0.02% sodium azide. The blots were then washed with PBS plus 0.05% Tween 20 and PBS, incubated with rabbit anti-ricin antibody (Sigma, St. Louis, MO) at 1:400 in PBS plus 0.5% BSA plus 0.01% sodium azide for 1 h, washed again, incubated with alkaline phosphatase-conjugated goat anti-(rabbit IgG) (Sigma) at 1:1000 in PBS plus 0.5% BSA plus 0.01% sodium azide for 1 h, washed again, and developed with the Vectastain alkaline phosphatase kit, following the manufacturer's recommendations (Vector Laboratories, Burlingame, CA). Blots were scanned as above to compare 32 kDa
<italic toggle="yes">M</italic>
<sub>r</sub>
band intensities.</p>
<p>Monoclonal antibody P2, P8, or P10 (gifts of Dr. Walter Blattler, ImmunoGen, Cambridge, MA) (100 μL) at 5 μg/mL in PBS was incubated in Costar EIA microtiter wells overnight at 4 °C. Samples of plant RTB, wild-type recombinant RTB, and mutant RTBs were treated for 20 min at room temperature with 5% β-mercaptoethanol and then dilutions made in EX-CELL 400. The antibody-coated microtiter wells were then washed with PBS plus 0.1% Tween 20, blocked with 3% BSA/PBS/0.01% sodium azide, rewashed and incubated with dilutions of the reduced RTB samples, rewashed and incubated with rabbit anti-ricin antibody at 1:400 in PBS plus 0.5% BSA plus 0.01% sodium azide, washed again, incubated with alkaline phosphatase-conjugated goat anti-(rabbit IgG) at 1:1000 in PBS plus 0.05% BSA plus 0.01% sodium azide, washed and developed with (
<italic toggle="yes">p</italic>
-nitrophenyl)phosphate at 1 mg/mL in 50 mM diethanolamine buffer (pH 9.8), and read on a BioRad 450 microplate reader at 405 nm. For each experiment, 12 different concentrations of plant RTB and recombinant RTBs were tested. A plot of absorbance versus dilution was made for plant RTB and recombinant proteins. Dilutions yielding half-maximal binding were used to calculate concentrations.</p>
<p>
<bold>Lectin Activity of Mutant RTBs.</bold>
Volumes (100 μL) of 1 μg/mL asialofetuin in PBS were added to wells of a Costar EIA plate and incubated overnight at 4 °C. Samples of plant RTB, wild-type recombinant RTB, or mutant RTBs in EX-CELL 400 were exposed to 5% β-mercaptoethanol for 20 min at room temperature to remove homodimers and dilutions made in EX-CELL 400 medium with or without 100 μg/mL asialofetuin or 100 mM α-lactose. The asialofetuin-coated microtiter wells were then washed with PBS/0.1% Tween 20, blocked with 3% BSA/PBS/0.01% sodium azide, and rewashed. The dilutions of various reduced RTBs were added to wells for 1 h and then removed and the wells washed again. Rabbit anti-ricin antibody was added (1:400 dilution in 0.5% BSA/PBS/0.01% sodium azide) for 1 h, and the wells were washed again; alkaline phosphatase-conjugated goat anti-(rabbit IgG) (1:5000 in 0.5% BSA/PBS/0.01% sodium azide) was incubated in the wells, and finally, the wells were washed and reacted with 1 mg/mL (
<italic toggle="yes">p</italic>
-nitrophenyl)phosphate in 50 mM diethanolamine buffer (pH 9.6) and measured in a microtiter plate reader at 405 nm. In each experiment, 12 different concentrations of plant RTB and recombinant protein were tested. As in the antibody ELISA, relative reactivity to plant RTB was calculated from concentrations giving half-maximal binding. The effects of 100 μg/mL asialofetuin or 100 mM α-lactose on half-maximal binding were calculated for plant RTB, wild-type recombinant RTB, and mutant RTBs.</p>
<p>KB cells were washed with PBS and attached to polylysine-coated tissue culture dishes and centrifuged at 2000
<italic toggle="yes">g</italic>
for 10 min. The cells were then incubated live at 4 °C. The cells were washed with 2 mg/mL BSA in PBS and incubated in PBS plus BSA with or without 100 μg/mL asialofetuin and with 1 μg/mL freshly reduced plant RTB, recombinant wild-type RTB, or mutant RTB. The incubation was done at 4 °C. The cells were then washed with PBS and incubated with rabbit anti-ricin antibody at 1:400 in PBS plus BSA for 30 min at 4 °C. The cells were then washed with PBS and reacted with goat anti-(rabbit Ig) conjugated to rhodamine at 25 μg/mL for 30 min at 4 °C. The cells were washed again in PBS, fixed in 3.7% formaldehyde in PBS, mounted under a #1 coverslip in glycerol−PBS (90:10), and examined under a Zeiss Axioplan epifluorescence microscope.</p>
<p>
<bold>Reassociation of Mutant RTBs with Plant RTA To Form Heterodimers.</bold>
Portions (30 μg) of plant RTB and wild-type recombinant RTB and 1−5 μg of mutant RTBs were mixed with a 4-fold molar excess of plant RTA (Inland Laboratories) in a total volume of 0.5 mL of 0.1 M triethylamine/sodium phosphate (pH 7) shaking overnight at room temperature. The reaction mixture was then analyzed by a modified ricin ELISA. Wells of an EIA plate were coated with 10 μg/mL P2 monoclonal antibody to RTB diluted in PBS in a volume of 100 μL overnight at 4 °C. The wells were washed with PBS plus 0.1% Tween 20, blocked with 3% BSA in PBS plus 0.02% sodium azide, rewashed, and incubated with dilutions of ricin or reassociated heterodimers. The wells were again washed and incubated with biotin-conjugated αBR12 monoclonal antibody (αBR12 mouse monoclonal antibody reactive with RTA was a gift of Dr. Walter Blattler, ImmunoGen) at 5 μg/mL in PBS/0.5% BSA/0.01% sodium azide. Biotinylation was performed using (
<italic toggle="yes">N</italic>
-hydroxysuccinimido)biotin (Sigma) following the manufacturer's instructions. Wells were washed and incubated with alkaline phosphatase-conjugated strepavidin (Sigma) at 1:1000 in PBS/0.5% BSA/0.01% sodium azide, washed again, and developed with (
<italic toggle="yes">p</italic>
-nitrophenyl)phosphate at 1 mg/mL in 50 mM diethanolamine (pH 9.8). Absorbance at 405 nm was read on a microtiter plate reader. Reassociated mixtures were also analyzed by nonreducing SDS−PAGE followed by immunoblots with αBR12 anti-RTA monoclonal antibody and P10 anti-RTB monoclonal antibody. Densitometric scanning using the IBAS 2000 automatic image analysis system was done to quantify shift of immunoreactive material from 30 to 60 kDa.</p>
<p>
<bold>Cytotoxicity of Recombinant Mutant Heterodimers.</bold>
HUT102 human T leukemia cells (1.5 × 10
<sup>4</sup>
) in 100 μL were placed in 96-well flat-bottomed plates in leucine-poor RPMI1640 containing 10% dialyzed fetal bovine serum. Fifty microliters of ricin (Inland Laboratories), recombinant wild-type RTB−plant RTA heterodimer, and mutant RTB−plant RTA heterodimers at varying concentrations were added in the same medium and the cells incubated at 37 °C in 5% CO
<sub>2</sub>
for 24 h. [
<sup>3</sup>
H]-Leucine, 0.5 μCi per well (120 mCi/mmol), in 50 μL of the same medium was added and incubated for 4 h. Cells were then harvested with a PhD cell harvester onto glass-fiber filter mats. The filters were dried, mixed with 3 mL of liquid scintillation fluid, and counted in an LKB-Wallac liquid scintillation counter gated for
<sup>3</sup>
H. Cells cultured with medium alone served as controls. All assays were performed in triplicate. The ID
<sub>50</sub>
was the concentration of protein which inhibited protein synthesis by 50% compared with control. </p>
</sec>
<sec id="d7e479">
<title>Results</title>
<p>
<bold>Yields and Immunoreactivity of Mutant RTBs.</bold>
Two new single-site mutants were prepared (D22E and Y248H). Y248H was previously described as part of a single-domain RTB−gene 3 protein fusion on fd phage (
<italic toggle="yes">
<xref rid="bc960056bb00023" ref-type="bibr"></xref>
</italic>
), but the properties of a full length RTB with the single mutation have not been reported.
<italic toggle="yes">R</italic>
.
<italic toggle="yes">communis</italic>
agglutinin B chain and ricin E B chain have histidinesat position 248 which may contribute to their lower galactose avidities (
<italic toggle="yes">
<xref rid="bc960056bb00024" ref-type="bibr"></xref>
</italic>
). The two double-site mutants, N46G/K40M/N255G and D22Q/V23A/R24N/D234A/V235A/R236T, which were prepared had been previously expressed in
<italic toggle="yes">Xenopus</italic>
oocytes but have not been expressed and purified from insect cells (
<italic toggle="yes">
<xref rid="bc960056bb00014" ref-type="bibr"></xref>
</italic>
).</p>
<p>The yields were estimated from the optical density at 280 nm of neutralized alkaline eluants with postaffinity chromatography (plant RTB OD = 1.44 for 1 mg/mL) and densitometry of Coomassie-stained reducing SDS−PAGE (10−30% of the protein migrated at 33 kDa, Figure
<xref rid="bc960056bf00002"></xref>
A). These results were confirmed by densitometry of immunoblots with polyclonal rabbit anti-ricin antibody. As shown in Figure
<xref rid="bc960056bf00002"></xref>
B, the single-site and double-site mutants were reactive with the polyclonal antibody. Finally, a monoclonal antibody anti-RTB ELISA was used to verify concentrations of each mutant. All three assays gave similar values. The yields of each of the four new mutants and 12 previously prepared mutants are shown in Table
<xref rid="bc960056bt00001"></xref>
. The lower yields of 3/11 single-site mutants (N255A, K40M/N46G, and K40M) and 4/5 double-site mutants (D22E/D234E, W37S/Y248S, N46G/K40M/ N255G, and D22Q/V23A/R24N/D234A/V235A/R236T) may be due to degradation of improperly folded proteins. Other investigators reported bioactivity of mutants without purification or characterization (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00013" ref-type="bibr"></xref>
<xref rid="bc960056bb00014" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc960056bb00015" ref-type="bibr"></xref>
</named-content>
</italic>
). Their assumption that modification of lectin site residues would not affect secondary structure may be inaccurate and overemphasize the role of individual residues and subdomains in sugar binding and cytotoxicity. Yields from cells extracts were similar to yields from supernatants in the four mutants tested (K40M, Q35N, N46G/K40M/N255G, and D22Q/V23A/R24N/D234A/V235A/R236T).
<fig id="bc960056bf00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Insect-derived wild-type and mutant RTBs. (A) Coomassie-stained 15% reducing SDS−PAGE of mutant RTBs:  lane 1, low-molecular mass prestained BioRad protein standards; lane 2, wild type; lane 3, D234E; lane 4, Y248H; lane 5, N46G/K40M/N255G; and lane 6, D22Q/V23A/R24N/D234A/V235A/R236T. (B) Immunoblot using rabbit anti-ricin antibody of 15% reducing SDS−PAGE of wild-type and mutant RTBs. Lanes are the same as in panel A.</p>
</caption>
<graphic xlink:href="bc960056bf00002.gif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="bc960056bt00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Yields of Mutant RTBs Produced in Insect Cells
<italic toggle="yes">
<sup>a</sup>
</italic>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">protein</oasis:entry>
<oasis:entry colname="2">type of mutant (subdomain)</oasis:entry>
<oasis:entry colname="3">amount of partially purified mutant per liter of culture (μg)</oasis:entry>
<oasis:entry colname="4">reference </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">1500</oasis:entry>
<oasis:entry colname="4">present study </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">640</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248H</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">420</oasis:entry>
<oasis:entry colname="4">present study </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wild-type</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">400</oasis:entry>
<oasis:entry colname="4">16 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">264</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E/A237R</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">240</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248H</oasis:entry>
<oasis:entry colname="2">1α 2γ</oasis:entry>
<oasis:entry colname="3">205</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">160</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">150</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Q35N</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">90</oasis:entry>
<oasis:entry colname="4">18, 19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255A</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">40</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">32</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">24</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E/D234E</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">23</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248S</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">22</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N46G/K40M/N255G</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">10</oasis:entry>
<oasis:entry colname="4">present study </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22Q/V234A/R24N/D234A/V235A/R236T</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">2</oasis:entry>
<oasis:entry colname="4">present study</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
 Quantity of RTB based on P2 ELISA and product of densitometry of Coomassie-stained gels and absorbance at 280 nm of patially purified protein. At least four preparations of each mutant made. Values given are mean. Agreement between densitometry and ELISA within 30% in each case.</p>
</table-wrap-foot>
</table-wrap>
<table-wrap id="bc960056bt00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Binding of Monoclonal Anti-RTB Antibodies to Mutants
<italic toggle="yes">
<sup>a</sup>
</italic>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry namest="3" nameend="4">% relative to monoclonal P2</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">protein</oasis:entry>
<oasis:entry colname="2">type (subdomain)</oasis:entry>
<oasis:entry colname="3">P8</oasis:entry>
<oasis:entry colname="4">P10 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E/D234E</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">60</oasis:entry>
<oasis:entry colname="4">100 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wild-type</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">88</oasis:entry>
<oasis:entry colname="4">20 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248H</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">90</oasis:entry>
<oasis:entry colname="4">710 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248S</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">94</oasis:entry>
<oasis:entry colname="4">160 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Q35N</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">96</oasis:entry>
<oasis:entry colname="4">250 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">100</oasis:entry>
<oasis:entry colname="4">100 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22Q/V23A/R24N/D234A/ V235A/R236T</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">100</oasis:entry>
<oasis:entry colname="4">250 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">100</oasis:entry>
<oasis:entry colname="4">100 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E/A237R</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">113</oasis:entry>
<oasis:entry colname="4">53 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N46G/K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">114</oasis:entry>
<oasis:entry colname="4">80 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">117</oasis:entry>
<oasis:entry colname="4">80 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">119</oasis:entry>
<oasis:entry colname="4">55 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255A</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">130</oasis:entry>
<oasis:entry colname="4">350 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248H</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">143</oasis:entry>
<oasis:entry colname="4">202 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">145</oasis:entry>
<oasis:entry colname="4">90 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N46G/K40M/N255G</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">200</oasis:entry>
<oasis:entry colname="4">600 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">250</oasis:entry>
<oasis:entry colname="4">80</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
 Measured by P2, P8, and P10 ELISA calibrated with known amounts of plant RTB. Each assay employed 5% β-mercaptoethanol to reduce homodimers. Average of two to four assays on each mutant.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Reactivites of mutant RTBs with different monoclonal antibodies to RTB (P2, P8, and P10) were tested by substituting different monoclonal antibodies as capture reagents in the antibody ELISA. Equivalent results were observed for each antibody in most cases, suggesting similar folding of the mutants (Table
<xref rid="bc960056bt00002"></xref>
).</p>
<p>
<bold>Sugar Binding of Mutant RTBs.</bold>
Binding of partially purified mutants to immobilized asialofetuin was quantitated by ELISA, and the results are shown in Table
<xref rid="bc960056bt00003"></xref>
. The two new single-site mutants showed a less than 1 log drop in binding relative to recombinant or plant RTB. The two new double-site mutants showed a close to 2 log drop in sugar binding. The limit of detection of the assay was a 2.5−3 log decrease in sugar binding avidity.
<table-wrap id="bc960056bt00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Binding of Mutant RTBs to Asialofetuin
<italic toggle="yes">
<sup>a</sup>
</italic>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">protein</oasis:entry>
<oasis:entry colname="2">type of mutant</oasis:entry>
<oasis:entry colname="3">relative binding to asialofetuin (%)</oasis:entry>
<oasis:entry colname="4">reference </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wild-type</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">83</oasis:entry>
<oasis:entry colname="4">16 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255A</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">70</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Q35N</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">50</oasis:entry>
<oasis:entry colname="4">18, 19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">33</oasis:entry>
<oasis:entry colname="4">this report </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">33</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">32</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E/A237R</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">30</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">25</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">24</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248S</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">20</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248H</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">17</oasis:entry>
<oasis:entry colname="4">this report </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">15</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">12</oasis:entry>
<oasis:entry colname="4">18 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22Q/V23A/R24N/ D234A/V235A/R236T</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">10</oasis:entry>
<oasis:entry colname="4">this report </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G/N255G</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">4</oasis:entry>
<oasis:entry colname="4">this report </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248H</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">2</oasis:entry>
<oasis:entry colname="4">19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E/D234E</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">2</oasis:entry>
<oasis:entry colname="4">19</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
 Quantity of RTB based on P2 ELISA and asialofetuin binding measured by asialofetuin ELISA. Both assays employed 5% β-mercaptoethanol to reduce homodimers. Average of three to four assays run on each mutant. Δ32 nonsense mutant, DRA, and AcNPV antibody matrix eluants treated identically gave values of 0.01 μg/mL for both the P2 and asialofetuin ELISA. Experimentals had P2 values of 0.2−150 μg/mL and asialofetuin values of 0.02−58 μg/mL. Q35N assays within 1 week of preparation.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>An independent measure of mutant RTB binding to glycoproteins was made by detecting mutant RTB bound to cell surfaces. All mutants bound KB cells at 4 °C (Figure
<xref rid="bc960056bf00003"></xref>
).
<fig id="bc960056bf00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Binding of mutant RTBs to KB cells. Cells were attached to polylysine-coated tissue culture dishes, and all incubations were done at 4 °C. The cells were washed with 2 mg/mL BSA in PBS and the PBS plus BSA plus 1 μg/mL purified mutant RTB or wild-type RTB, rewashed, incubated with 1:200 rabbit anti-ricin antibody (Sigma) in PBS plus BSA, rewashed, incubated with affinity-urified goat anti-(rabbit Ig) coupled to rhodamine (Jackson ImmunoResearch) at 25 μg/mL, washed again, and fixed in 3.7% formaldehyde in PBS (magnification = 250×; bar = 20 μm):  (A, C, E, G, and I) without 100 μg/mL asialofetuin and (B, D, F, H, and J) with asialofetuin. (A and B) wild-type RTB, (C and D) D234E, (E and F) Y248H, (G and H) N46G/K40M/N255G, and (I and J) D22Q/V23A/R24N/D234A/V235A/R236T.</p>
</caption>
<graphic xlink:href="bc960056bf00003.gif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>Competition Experiments.</bold>
Binding of recombinant proteins to immobilized asialofetuin was performed in the presence of 100 mM α-lactose or 100 μg/mL asialofetuin. In each case, the sugar binding of the RTB protein was inhibited by a competitor (Table
<xref rid="bc960056bt00004"></xref>
). Lactose blocked wild-type and mutant RTB sugar binding between 2- and 81- fold. Asialofetuin blocked sugar binding 3−400-fold. The inhibition of soluble carbohydrates of double-site mutant binding was a lower estimate as the assay sensitivity was only 5−10-fold less than the observed binding to immobilized asialofetuin in the absence of added sugars for four of the double-site mutants. Each experiment was repeated three times, and 12 different concentrations of recombinant protein and plant RTB were used to compare half-maximal binding concentrations. Binding of mutant RTBs to KB cells was blocked by 100 μg/mL asialofetuin (Figure
<xref rid="bc960056bf00003"></xref>
).
<table-wrap id="bc960056bt00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Competition of Mutant RTB Lectin Binding by Sugars
<italic toggle="yes">
<sup>a</sup>
</italic>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="4">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry namest="3" nameend="4">fold inhibition</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">protein</oasis:entry>
<oasis:entry colname="2">type (subdomain)</oasis:entry>
<oasis:entry colname="3">lactose</oasis:entry>
<oasis:entry colname="4">asialofetuin </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Q35N</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">81</oasis:entry>
<oasis:entry colname="4">150 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248H</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">27</oasis:entry>
<oasis:entry colname="4">9 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">27</oasis:entry>
<oasis:entry colname="4">50 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">27</oasis:entry>
<oasis:entry colname="4">243 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">27</oasis:entry>
<oasis:entry colname="4">100 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255A</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">15</oasis:entry>
<oasis:entry colname="4">150 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">15</oasis:entry>
<oasis:entry colname="4">81 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">9</oasis:entry>
<oasis:entry colname="4">15 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wild-type</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">9</oasis:entry>
<oasis:entry colname="4">400 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248S</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">9</oasis:entry>
<oasis:entry colname="4">243 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">9</oasis:entry>
<oasis:entry colname="4">243 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22Q/V23A/R24N/D234A/ V235A/R236T</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">9</oasis:entry>
<oasis:entry colname="4">9 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G/N255G</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">3</oasis:entry>
<oasis:entry colname="4">3 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">3</oasis:entry>
<oasis:entry colname="4">200 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248H</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">3</oasis:entry>
<oasis:entry colname="4">5 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E/A237R</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">3</oasis:entry>
<oasis:entry colname="4">150 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E/D234E</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">2</oasis:entry>
<oasis:entry colname="4">3</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
 Asialofetuin ELISA performed in the presence or absence of 100 mM α-lactose or 100 μg/mL asialofetuin. Twelve different concentrations of each protein tested and half-maximal binding concentrations compared to assess fold inhibition of binding.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<bold>Reassociation of Mutant RTBs with Plant RTA.</bold>
Incubation of mutant RTBs at 3 × 10
<sup>-8</sup>
to 3 × 10
<sup>-7</sup>
M with plant RTA at a 4-fold molar excess overnight at room temperature led to 11−100% reassociation (Table
<xref rid="bc960056bt00005"></xref>
and Figure
<xref rid="bc960056bf00004"></xref>
). Similar levels of reassociation were seen using plant RTB or recombinant wild-type RTB with plant RTA at the same concentrations. The heterodimer concentrations were quantitated by a modified ELISA which identified molecules with both RTA and RTB epitopes and by densitometry of 65 kDa bands of immunoblots with anti-RTB or anti-RTA antibodies. Both ELISA and immunoblots gave similar values and showed all mutants reassociated well with plant RTA and had minimal homodimer formation.
<fig id="bc960056bf00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Reassociation of mutant RTBs with plant RTA. (A) Immunoblots of 15% nonreducing SDS−PAGE of reassociated mutant RTB−plant RTA. Low-molecular mass BioRad protein standards are 106, 80, 49.5, 32.5, 27.5, and 18.5 kDa. The heterodimer appears at 60 kDa, and subunits appear at 30 kDa. Immunoblot uses monoclonal antibody P2 and P10 anti-RTB. (B) Same as panel A except immunoblot uses monoclonal antibody αBR12 anti-RTA:  lane 1, low-molecular mass prestained BioRad protein standards; lane 2, D234E−RTA; lane 3, Y248H−RTA; lane 4, N46G/K40M/N255G−RTA; lane 5, D22Q/V23A/R24N/D234A/V235A/R236T−RTA; and lane 6, ricin.</p>
</caption>
<graphic xlink:href="bc960056bf00004.gif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="bc960056bt00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Reassociation of Mutant RTBs with RTA
<italic toggle="yes">
<sup>a</sup>
</italic>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="3">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">protein</oasis:entry>
<oasis:entry colname="2">type (subdomain)</oasis:entry>
<oasis:entry colname="3">heterodimer formed (%) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">11 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N46G/K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">22 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248S</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">25 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">25 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">27 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255A</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">34 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248S</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">35 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248H</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">43 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wild-type</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">45 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E/D234E</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">50 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E/A237R</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">50 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Q35N</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">65 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248H</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">70 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">70 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G/N255G</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">81 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22Q/V23A/R24N/D234A/ V235A/R236T</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">90 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255G</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">100</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
 Assayed by modified ricin ELISA using P2 anti-RTB antibody capture and biotinylated αBR12 anti-RTA antibody detection reagent and confirmed by densitometry of immunoblots of nonreducing SDS−PAGE.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<bold>Cytotoxicity of Mutant Heterodimers.</bold>
The ID
<sub>50</sub>
of ricin and recombinant mutant RTB−RTA heterodimers on HUT102 human leukemia cells is shown in Figure
<xref rid="bc960056bf00005"></xref>
and Table
<xref rid="bc960056bt00006"></xref>
. The reduction in potency for single-site and double-site mutant RTB−RTA heterodimers compared to that for wild-type RTB−RTA and plant ricin was 1−2 log. Nevertheless, the potency for all the mutants was at least 3 log more than that for wild-type RTA or RTB alone.
<fig id="bc960056bf00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>HUT102 cell cytotoxicity. Assay as described in text:  (·) ricin, IC
<sub>50</sub>
= 4 × 10
<sup>-12</sup>
M; (○) D234E−RTA, IC
<sub>50</sub>
= 1 × 10
<sup>-10</sup>
M; (▪) Y248H−RTA, IC
<sub>50</sub>
= 8 × 10
<sup>-11</sup>
M; (□) N46G/K40M/N255G−RTA, IC
<sub>50</sub>
= 2 × 10
<sup>-10</sup>
M; and (▴) D22Q/V23A/R24N/D234A/V235A/R236T−RTA, IC
<sub>50</sub>
= 5 × 10
<sup>-11</sup>
M. Yield of reassociated heterodimer tested by modified ELISA. Each experiment performed in triplicate.</p>
</caption>
<graphic xlink:href="bc960056bf00005.gif" position="float" orientation="portrait"></graphic>
</fig>
<table-wrap id="bc960056bt00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>HUT102 Cell Sensitivity to Recombinant Heterodimers
<italic toggle="yes">
<sup>a</sup>
</italic>
</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="3">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1">protein</oasis:entry>
<oasis:entry colname="2">type (subdomain)</oasis:entry>
<oasis:entry colname="3">IC
<sub>50</sub>
 (M) </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">wild-type</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">5 × 10
<sup>-12</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248S−RTA</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">1 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">2 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Q35N−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">2 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248S−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">5 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">5 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22Q/V23A/R24N/D234A/ V235A/R236T−RTA</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">5 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">Y248H−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">8 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E/A237R−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">8 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255G−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">8 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">N255A−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">8 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E/D234E−RTA</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">9 × 10
<sup>-11</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">1 × 10
<sup>-10</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D234E−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">1 × 10
<sup>-10</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">D22E−RTA</oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3">2 × 10
<sup>-10</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">K40M/N46G/N255G−RTA</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">2 × 10
<sup>-10</sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">W37S/Y248H−RTA</oasis:entry>
<oasis:entry colname="2">1α, 2γ</oasis:entry>
<oasis:entry colname="3">2 × 10
<sup>-10</sup>
</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
 HUT102 cell cytotoxicity as described in text. Ricin IC
<sub>50</sub>
was 4 × 10
<sup>-12</sup>
M.</p>
</table-wrap-foot>
</table-wrap>
</p>
</sec>
<sec id="d7e1721">
<title>Discussion</title>
<p>The molecular mechanism of interaction between ricin and its saccharide receptors on the cell surface is the first necessary step in intoxication of cells. Determination of the number of lectin sites on RTB and their affinities and participating amino acid residues are important both to define the structure−function relationships of this and other plant lectins, to interpret intracellular routing signals, and to design and synthesize genetically engineered cell-selective toxins.</p>
<p>While initial studies with ricin by equilibrium dialysis (
<italic toggle="yes">
<xref rid="bc960056bb00025" ref-type="bibr"></xref>
</italic>
) and mutational analysis (
<italic toggle="yes">
<xref rid="bc960056bb00013" ref-type="bibr"></xref>
</italic>
) suggested a single lectin site per molecule, subsequent equilibrium dialysis measurements (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00004" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00026" ref-type="bibr"></xref>
</named-content>
</italic>
), X-ray diffraction analysis (
<italic toggle="yes">
<xref rid="bc960056bb00009" ref-type="bibr"></xref>
</italic>
), chemical modification studies (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00010" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00011" ref-type="bibr"></xref>
</named-content>
</italic>
), and mutational analyses (
<italic toggle="yes">14</italic>
,
<italic toggle="yes">15</italic>
,
<italic toggle="yes">23</italic>
) suggested two lectin sites in subdomains 1α and 2γ. However, for the mutational analyses, no quantitation of soluble immunoreactive proteins was reported, and hence, the true specific activities of the recombinant proteins were unknown. If misfolding with aggregation or proteolytic degradation occurred, no residual lectin activity would be seen even if three or more lectin sites were present.</p>
<p>To more accurately measure sugar binding avidities of recombinant RTB proteins, we produced and purified wild-type and mutant RTBs from insect cells using the baculovirus system and monoclonal antibody affinity chromatography (
<italic toggle="yes">16</italic>
<italic toggle="yes">19</italic>
, present study). One log decreases in asialofetuin binding were observed with single-site mutants, and in 4/5 cases, 2 log decreases in asialofetuin binding were seen with double-site mutants. The persistent lactose and asialofetuin-inhibitable sugar and cell binding of a number of double-site (subdomain 1α and 2γ) mutants suggests either incomplete inactivation of the two sites in the mutants or the existence of a third lectin site. Since seven different residues in one subdomain (1α) and seven different residues in the other domain (2γ) were tested (Figure
<xref rid="bc960056bf00001"></xref>
), we believe the first hypothesis is unlikely and that ricin has three or more lectin binding sites. Possible third lectin sites include subdomain 1β with aromatic ring residue Y78 and a lectin pocket kink and subdomain 2α with aromatic residue W160, kink residues, and polar residues D153, E170, and Q171. Ongoing mutational analysis using the insect expression system should help address this question.</p>
<p>Other observations support the hypothesis of three lectin sites on ricin. Three distinct sites on ricin were cross-linked by radiolabeled fetuin glycopeptides containing a dichlorotriazine-activated 6-(
<italic toggle="yes">N</italic>
-methylamino)-6-deoxy-
<sc>d</sc>
-galactose moiety (
<italic toggle="yes">
<xref rid="bc960056bb00012" ref-type="bibr"></xref>
</italic>
). When ricin molecules containing either two or three affinity cross-linkers were conjugated to monoclonal antibodies and tested for toxicity
<italic toggle="yes">in vitro</italic>
and
<italic toggle="yes">in vivo</italic>
, marked differences were observed (
<italic toggle="yes">
<xref rid="bc960056bb00027" ref-type="bibr"></xref>
</italic>
). The residual nonspecific toxicity
<italic toggle="yes">in vitro</italic>
of the doubly blocked ricin conjugate could be blocked with excess lactose.</p>
<p>The finding of three or more independent sugar-combining sites on a lectin is not unique to ricin and has been reported for hepatic galactose
<italic toggle="yes">N</italic>
-acetylgalactosamine receptor and macrophage mannose receptor (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc960056bb00007" ref-type="bibr"></xref>
,
<xref rid="bc960056bb00008" ref-type="bibr"></xref>
</named-content>
</italic>
). The results also have implications in the role of the residual sugar-combining site of blocked ricin conjugates in intracellular trafficking (
<italic toggle="yes">
<xref rid="bc960056bb00028" ref-type="bibr"></xref>
</italic>
) and in the genetic engineering of tumor cell selective ricin fusion toxins (
<italic toggle="yes">
<xref rid="bc960056bb00029" ref-type="bibr"></xref>
</italic>
). </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>We thank Joseph Vesely and Billie Harris for excellent technical assistance, Starr Hazard for molecular graphics analysis, James Nicholson for imaging analysis, Dr. Walter Blattler for the anti-ricin monoclonal antibodies, and Dr. Jerry Fulton for the plant ricin and ricin subunits. </p>
</ack>
<ref-list>
<title>References</title>
<ref id="bc960056bb00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Olsnes</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Pihl</surname>
<given-names>A.</given-names>
</name>
<article-title>Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis</article-title>
<source>Biochemistry</source>
<year>1973</year>
<volume>12</volume>
<fpage>3121</fpage>
<lpage>3126</lpage>
<pub-id pub-id-type="doi">10.1021/bi00740a028</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Rivera-Sagredo</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Solis</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Diaz-Maurino</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Jimenez-Barbero</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Martin-Lomas</surname>
<given-names>M.</given-names>
</name>
<article-title>Studies on the molecular recognition of synthetic methyl β-lactoside analogs by ricin, a cytotoxic plant lectin</article-title>
<source>Eur. J. Biochem.</source>
<year>1991</year>
<volume>197</volume>
<fpage>217</fpage>
<lpage>228</lpage>
<pub-id pub-id-type="doi">10.1111/j.1432-1033.1991.tb15902.x</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Olsnes</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Sandvig</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Refsnes</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Pihl</surname>
<given-names>A.</given-names>
</name>
<article-title>Rates of different steps involved in the inhibition of protein synthesis by the toxic lectins abrin and ricin</article-title>
<source>J. Biol. Chem.</source>
<year>1976</year>
<volume>251</volume>
<fpage>3985</fpage>
<lpage>3992</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Zentz</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Frenoy</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Bourrillon</surname>
<given-names>R.</given-names>
</name>
<article-title>Binding of galactose and lactose to ricin: equilibrium studies</article-title>
<source>Biochim. Biophys. Acta</source>
<year>1978</year>
<volume>536</volume>
<fpage>18</fpage>
<lpage>26</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Baenziger</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Fiete</surname>
<given-names>D.</given-names>
</name>
<article-title>Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides</article-title>
<source>J. Biol. Chem.</source>
<year>1979</year>
<volume>254</volume>
<fpage>9795</fpage>
<lpage>9799</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sandvig</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Olsnes</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Pihl</surname>
<given-names>A.</given-names>
</name>
<article-title>Kinetics of binding of the toxic lectins abrin and ricin to surface receptors on human cells</article-title>
<source>J. Biol. Chem.</source>
<year>1976</year>
<volume>251</volume>
<fpage>3977</fpage>
<lpage>3984</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lee</surname>
<given-names>Y.</given-names>
</name>
<article-title>Biochemistry of carbohydrate-protein interaction</article-title>
<source>FASEB J.</source>
<year>1992</year>
<volume>6</volume>
<fpage>3193</fpage>
<lpage>3200</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Drickamer</surname>
<given-names>K.</given-names>
</name>
<article-title>Multiplicity of lectin-carbohydrate interactions</article-title>
<source>Nat. Struct. Biol.</source>
<year>1995</year>
<volume>2</volume>
<fpage>437</fpage>
<lpage>439</lpage>
<pub-id pub-id-type="doi">10.1038/nsb0695-437</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Rutenber</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Robertus</surname>
<given-names>J.</given-names>
</name>
<article-title>Structure of ricin B chain at 2.5 Anstrom resolution</article-title>
<source>Proteins</source>
<year>1991</year>
<volume>10</volume>
<fpage>260</fpage>
<lpage>269</lpage>
<pub-id pub-id-type="doi">10.1002/prot.340100310</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hatakeyama</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Yamasaki</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Funatsu</surname>
<given-names>G.</given-names>
</name>
<article-title>Identification of the tryptophan residue located at the low-affinity saccharide binding site of ricin D</article-title>
<source>J. Biochem.</source>
<year>1986</year>
<volume>100</volume>
<fpage>781</fpage>
<lpage>788</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Youle</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Murray</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Neville</surname>
<given-names>D.</given-names>
</name>
<article-title>Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin</article-title>
<source>Cell</source>
<year>1981</year>
<volume>23</volume>
<fpage>551</fpage>
<lpage>559</lpage>
<pub-id pub-id-type="doi">10.1016/0092-8674(81)90151-3</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lambert</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>McIntyre</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Gauthier</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Zullo</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Rao</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Steeves</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Goldmacher</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Blattler</surname>
<given-names>W.</given-names>
</name>
<article-title>The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides</article-title>
<source>Biochemistry</source>
<year>1991</year>
<volume>30</volume>
<fpage>3234</fpage>
<lpage>3247</lpage>
<pub-id pub-id-type="doi">10.1021/bi00227a011</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Vitetta</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Yen</surname>
<given-names>N.</given-names>
</name>
<article-title>Expression and functional properties of genetically engineered ricin B chain lacking galactose-binding activity</article-title>
<source>Biochim. Biophys. Acta</source>
<year>1990</year>
<volume>1049</volume>
<fpage>151</fpage>
<lpage>157</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Wales</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Richardson</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Roberts</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Woodland</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Lord</surname>
<given-names>J.</given-names>
</name>
<article-title>Mutational analysis of the galactose binding ability of recombinant ricin B chain</article-title>
<source>J. Biol. Chem.</source>
<year>1991</year>
<volume>266</volume>
<fpage>19172</fpage>
<lpage>19179</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Swimmer</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Lehar</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>McCafferty</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Chiswell</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Blattler</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Guild</surname>
<given-names>B.</given-names>
</name>
<article-title>Phage display of ricin B chain and its single binding domains: system for screening galactose-binding mutants</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1992</year>
<volume>89</volume>
<fpage>3756</fpage>
<lpage>3760</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.89.9.3756</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Frankel</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Roberts</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Afrin</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Vesely</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Willingham</surname>
<given-names>M.</given-names>
</name>
<article-title>Expression of ricin B chain in Spodoptera frugiperda</article-title>
<source>Biochem. J.</source>
<year>1994</year>
<volume>303</volume>
<fpage>787</fpage>
<lpage>794</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Afrin</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Gulick</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Vesely</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Willingham</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Frankel</surname>
<given-names>A.</given-names>
</name>
<article-title>Expression of oligohistidine-tagged ricin B chain in Spodoptera frugiperda</article-title>
<source>Bioconjugate Chem.</source>
<year>1994</year>
<volume>5</volume>
<fpage>539</fpage>
<lpage>546</lpage>
<pub-id pub-id-type="doi">10.1021/bc00030a009</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Frankel</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Tagge</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Chandler</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Burbage</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Hancock</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Vesely</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Willingham</surname>
<given-names>M.</given-names>
</name>
<article-title>Characterization of single-site ricin toxin B chain mutants</article-title>
<source>Bioconjugate Chem.</source>
<year>1996</year>
<volume>7</volume>
<fpage>30</fpage>
<lpage>37</lpage>
<pub-id pub-id-type="doi">10.1021/bc950067p</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Frankel</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Tagge</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Chandler</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Burbage</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Willingham</surname>
<given-names>M.</given-names>
</name>
<article-title>Double-site ricin B chain mutants retain galactose binding</article-title>
<source>Protein Eng.</source>
<year>1996</year>
<volume>9</volume>
<fpage>371</fpage>
<lpage>379</lpage>
<pub-id pub-id-type="doi">10.1093/protein/9.4.371</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Schlossman</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Withers</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Welsh</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Alexander</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Robertus</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Frankel</surname>
<given-names>A.</given-names>
</name>
<article-title>Expression and characterization of mutants of ricin toxin A chain in E</article-title>
<source>coli. Mol. Cell Biol.</source>
<year>1989</year>
<volume>9</volume>
<fpage>5012</fpage>
<lpage>5021</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Olson</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Eckstein</surname>
<given-names>F.</given-names>
</name>
<article-title>High-efficiency oligonucleotide-directed plasmid mutagenesis</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1990</year>
<volume>87</volume>
<fpage>1451</fpage>
<lpage>1455</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.87.4.1451</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Sanger</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Nicklen</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Coulson</surname>
<given-names>A.</given-names>
</name>
<article-title>DNA sequencing with chain-terminating inhibitors</article-title>
<source>Proc. Natl. Acad. Sci. U.S.A.</source>
<year>1977</year>
<volume>74</volume>
<fpage>5463</fpage>
<lpage>5467</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.74.12.5463</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lehar</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Pedersen</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Kamath</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Swimmer</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Goldmacher</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Lambert</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Blattler</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Guild</surname>
<given-names>B.</given-names>
</name>
<article-title>Mutational and structural analysis of the lectin activity in binding domain 2 of ricin B chain</article-title>
<source>Protein Eng.</source>
<year>1995</year>
<volume>7</volume>
<fpage>1261</fpage>
<lpage>1266</lpage>
<pub-id pub-id-type="doi">10.1093/protein/7.10.1261</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Araki</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Funatsu</surname>
<given-names>G.</given-names>
</name>
<article-title>The complete amino acid sequence of ricin B-chain of ricin E isolated from small-grain castor bean seeds. Ricin E is a gene recombination product of ricin D and Ricinus communis agglutinin</article-title>
<source>Biochim. Biophys. Acta</source>
<year>1987</year>
<volume>911</volume>
<fpage>191</fpage>
<lpage>200</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Olsnes</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Saltvedt</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Pihl</surname>
<given-names>A.</given-names>
</name>
<article-title>Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis</article-title>
<source>J. Biol. Chem.</source>
<year>1974</year>
<volume>249</volume>
<fpage>803</fpage>
<lpage>810</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Houston</surname>
<given-names>L.</given-names>
</name>
<name name-style="western">
<surname>Dooley</surname>
<given-names>T.</given-names>
</name>
<article-title>Binding of two molecules of 4-methylumbelliferyl galactose or 4-methylumbelliferyl N-acetylgalactosamine to the B chains of ricin and Ricinus communis agglutinin and to purified ricin B chain</article-title>
<source>J. Biol. Chem.</source>
<year>1982</year>
<volume>257</volume>
<fpage>4147</fpage>
<lpage>4151</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Grossbard</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Lambert</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Goldmacher</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Blattler</surname>
<given-names>W.</given-names>
</name>
<name name-style="western">
<surname>Nadler</surname>
<given-names>L.</given-names>
</name>
<article-title>Correlation between in vivo toxicity and preclinical in vitro parameters for the immunotoxin anti-B4-blocked ricin</article-title>
<source>Cancer Res.</source>
<year>1992</year>
<volume>52</volume>
<fpage>4200</fpage>
<lpage>4207</lpage>
</element-citation>
</ref>
<ref id="bc960056bb00028">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Goldmacher</surname>
<given-names>V.</given-names>
</name>
<name name-style="western">
<surname>Lambert</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Blattler</surname>
<given-names>W.</given-names>
</name>
<article-title>The specific cytotoxicity of immunoconjugate containing blocked ricin is dependent on the residual binding capacity of blocked ricin: evidence that the membrane binding and A-chain translocation activities of ricin cannot be separated</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>1992</year>
<volume>183</volume>
<fpage>758</fpage>
<lpage>766</lpage>
<pub-id pub-id-type="doi">10.1016/0006-291X(92)90548-Y</pub-id>
</element-citation>
</ref>
<ref id="bc960056bb00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Frankel</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Tagge</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Chandler</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Burbage</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Hancock</surname>
<given-names>G.</given-names>
</name>
<name name-style="western">
<surname>Vesely</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Willingham</surname>
<given-names>M.</given-names>
</name>
<article-title>IL2-ricin fusion toxin is selectively cytotoxic in vitro to IL2 receptor-bearing tumor cells</article-title>
<source>Bioconjugate Chem.</source>
<year>1995</year>
<volume>6</volume>
<fpage>666</fpage>
<lpage>672</lpage>
<pub-id pub-id-type="doi">10.1021/bc00036a002</pub-id>
</element-citation>
</ref>
<ref id="bc960056bn00001">
<mixed-citation>
<comment>Abbreviations:  RTB, ricin toxin B chain; RTA, ricin toxin A chain; PBS, phosphate-buffered saline; BSA, bovine serum albumin; ELISA, enzyme-linked immunoassay; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; cDNA, complementary DNA; IC
<sub>50</sub>
, concentration of compound reducing cellular protein synthesis by 50%; moi, multiplicity of infection; EDTA, ethylenediaminetetraacetic acid; NTEAL, 50 mM NaCl/25 mM Tris (pH) 8/1 mM EDTA/0.01% sodium azide/25 mM lactose; NTEALT, 500 mM NaCl/25 mM Tris (pH) 9/1 mM EDTA/0.01% sodium azide/25 mM lactose/0.1% Tween 20.</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain</title>
</titleInfo>
<name type="personal">
<namePart type="family">FU</namePart>
<namePart type="given">Tao</namePart>
<affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</affiliation>
<affiliation> Department of Medicine.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">BURBAGE</namePart>
<namePart type="given">Chris</namePart>
<affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</affiliation>
<affiliation> Department of Medicine.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">TAGGE</namePart>
<namePart type="given">Edward</namePart>
<affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</affiliation>
<affiliation> Department of Surgery.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">CHANDLER</namePart>
<namePart type="given">John</namePart>
<affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</affiliation>
<affiliation> Department of Surgery.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="family">WILLINGHAM</namePart>
<namePart type="given">Mark</namePart>
<affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</affiliation>
<affiliation> Department of Pathology.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">Arthur</namePart>
<affiliation>Departments of Medicine, Surgery, and Pathology, Medical University of South Carolina, Charleston, SouthCarolina 29425</affiliation>
<affiliation> Department of Medicine.</affiliation>
<affiliation> Address correspondence to this author at thefollowingaddress:  Hollings Cancer Center, Rm 306, 86 JonathanLucasSt., Charleston, SC 29425. Telephone:  803-792-1450.Fax: 803-792-3200.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">1996-11-27</dateCreated>
<dateIssued encoding="w3cdtf">1996-11-27</dateIssued>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<note type="footnote" ID="bc960056bAF7"> Abstract published in Advance ACS Abstracts, November 1, 1996.</note>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>Ricin toxin, the heterodimeric 65 kDa glycoprotein synthesized in castor bean seeds, contains a cell binding lectin subunit (RTB) disulfide linked to an RNA N-glycosidase protein synthesis-inactivating subunit (RTA). Investigations of the molecular nature of the lectin sites in RTB by X-ray crystallography, equilibrium dialysis, chemical modification, and mutational analysis have yielded conflicting results as to the number, location, and affinity of sugar-combining sites. An accurate assessment of the amino acid residues of RTB involved in galactose binding is needed both for correlating structure−function of a number of plant lectins and for the design and synthesis of targeted toxins for cancer and autoimmune disease therapy. We have performed oligonucleotide-directed mutagenesis on cDNA encoding RTB and expressed the mutant RTBs in insect cells. Partially purified recombinant proteins obtained from infected cell supernatants and cell extracts were characterized as to yields, immunoreactivities, asialofetuin binding, cell binding, ability to reassociate with RTA, and recombinant heterodimer cell cytotoxicity. Two single-site mutants (subdomain 1α or 2γ) and two double-site mutants (subdomains 1α and 2γ) were produced and studied. Yields varied by two logs with lower recoveries of double-site mutants. All the mutants showed immunoreactivity with a panel of anti-RTB monoclonal and polyclonal antibodies. Single-lectin site mutants displayed up to a 1 log decrease in asialofetuin binding avidity, while the double-site mutants showed close to a 2 log decrease in sugar binding. However, for each of the double-site mutants, residual sugar binding was demonstrated to both immobilized asialofetuin and cells, and this binding was specifically inhibitable with α-lactose. All mutants reassociated with RTA, and the mutant heterodimers were cytotoxic to mammalian cells with potencies 1000-fold or more times that of unreassociated wild-type RTA or RTB. These data support a model for three or more lectin binding subdomains in RTB.</abstract>
<note type="footnote" ID="bc960056bAF7"> Abstract published in Advance ACS Abstracts, November 1, 1996.</note>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1043-1802</identifier>
<identifier type="eISSN">1520-4812</identifier>
<identifier type="acspubs">bc</identifier>
<identifier type="coden">BCCHES</identifier>
<identifier type="uri">pubs.acs.org/bc</identifier>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>651</start>
<end>658</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00001" displayLabel="bibbc960056bb00001">
<titleInfo>
<title>Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Different biological properties of the two constituent peptide chains of ricin, a toxic protein inhibiting protein synthesis</title>
</titleInfo>
<name type="personal">
<namePart type="family">OLSNES</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">PIHL</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1973</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>3121</start>
<end>3126</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00002" displayLabel="bibbc960056bb00002">
<titleInfo>
<title>Studies on the molecular recognition of synthetic methyl β-lactoside analogs by ricin, a cytotoxic plant lectin</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Studies on the molecular recognition of synthetic methyl β-lactoside analogs by ricin, a cytotoxic plant lectin</title>
</titleInfo>
<name type="personal">
<namePart type="family">RIVERA-SAGREDO</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">SOLIS</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">DIAZ-MAURINO</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">JIMENEZ-BARBERO</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MARTIN-LOMAS</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Eur. J. Biochem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>197</number>
</detail>
<extent unit="pages">
<start>217</start>
<end>228</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00003" displayLabel="bibbc960056bb00003">
<titleInfo>
<title>Rates of different steps involved in the inhibition of protein synthesis by the toxic lectins abrin and ricin</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Rates of different steps involved in the inhibition of protein synthesis by the toxic lectins abrin and ricin</title>
</titleInfo>
<name type="personal">
<namePart type="family">OLSNES</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SANDVIG</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">REFSNES</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">PIHL</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1976</date>
<detail type="volume">
<caption>vol.</caption>
<number>251</number>
</detail>
<extent unit="pages">
<start>3985</start>
<end>3992</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00004" displayLabel="bibbc960056bb00004">
<titleInfo>
<title>Binding of galactose and lactose to ricin: equilibrium studies</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Binding of galactose and lactose to ricin: equilibrium studies</title>
</titleInfo>
<name type="personal">
<namePart type="family">ZENTZ</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">FRENOY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BOURRILLON</namePart>
<namePart type="given">R.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1978</date>
<detail type="volume">
<caption>vol.</caption>
<number>536</number>
</detail>
<extent unit="pages">
<start>18</start>
<end>26</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00005" displayLabel="bibbc960056bb00005">
<titleInfo>
<title>Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides</title>
</titleInfo>
<name type="personal">
<namePart type="family">BAENZIGER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">FIETE</namePart>
<namePart type="given">D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1979</date>
<detail type="volume">
<caption>vol.</caption>
<number>254</number>
</detail>
<extent unit="pages">
<start>9795</start>
<end>9799</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00006" displayLabel="bibbc960056bb00006">
<titleInfo>
<title>Kinetics of binding of the toxic lectins abrin and ricin to surface receptors on human cells</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Kinetics of binding of the toxic lectins abrin and ricin to surface receptors on human cells</title>
</titleInfo>
<name type="personal">
<namePart type="family">SANDVIG</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">OLSNES</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">PIHL</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1976</date>
<detail type="volume">
<caption>vol.</caption>
<number>251</number>
</detail>
<extent unit="pages">
<start>3977</start>
<end>3984</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00007" displayLabel="bibbc960056bb00007">
<titleInfo>
<title>Biochemistry of carbohydrate-protein interaction</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Biochemistry of carbohydrate-protein interaction</title>
</titleInfo>
<name type="personal">
<namePart type="family">LEE</namePart>
<namePart type="given">Y.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>FASEB J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>3193</start>
<end>3200</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00008" displayLabel="bibbc960056bb00008">
<titleInfo>
<title>Multiplicity of lectin-carbohydrate interactions</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Multiplicity of lectin-carbohydrate interactions</title>
</titleInfo>
<name type="personal">
<namePart type="family">DRICKAMER</namePart>
<namePart type="given">K.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nat. Struct. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>437</start>
<end>439</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00009" displayLabel="bibbc960056bb00009">
<titleInfo>
<title>Structure of ricin B chain at 2.5 Anstrom resolution</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Structure of ricin B chain at 2.5 Anstrom resolution</title>
</titleInfo>
<name type="personal">
<namePart type="family">RUTENBER</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">ROBERTUS</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proteins</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>260</start>
<end>269</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00010" displayLabel="bibbc960056bb00010">
<titleInfo>
<title>Identification of the tryptophan residue located at the low-affinity saccharide binding site of ricin D</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Identification of the tryptophan residue located at the low-affinity saccharide binding site of ricin D</title>
</titleInfo>
<name type="personal">
<namePart type="family">HATAKEYAMA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">YAMASAKI</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">FUNATSU</namePart>
<namePart type="given">G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biochem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>100</number>
</detail>
<extent unit="pages">
<start>781</start>
<end>788</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00011" displayLabel="bibbc960056bb00011">
<titleInfo>
<title>Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin</title>
</titleInfo>
<name type="personal">
<namePart type="family">YOULE</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">MURRAY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">NEVILLE</namePart>
<namePart type="given">D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1981</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<extent unit="pages">
<start>551</start>
<end>559</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00012" displayLabel="bibbc960056bb00012">
<titleInfo>
<title>The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The galactose-binding sites of the cytotoxic lectin ricin can be chemically blocked in high yield with reactive ligands prepared by chemical modification of glycopeptides containing triantennary N-linked oligosaccharides</title>
</titleInfo>
<name type="personal">
<namePart type="family">LAMBERT</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MCINTYRE</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">GAUTHIER</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">ZULLO</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">RAO</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">STEEVES</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLDMACHER</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">BLATTLER</namePart>
<namePart type="given">W.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>3234</start>
<end>3247</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00013" displayLabel="bibbc960056bb00013">
<titleInfo>
<title>Expression and functional properties of genetically engineered ricin B chain lacking galactose-binding activity</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Expression and functional properties of genetically engineered ricin B chain lacking galactose-binding activity</title>
</titleInfo>
<name type="personal">
<namePart type="family">VITETTA</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">YEN</namePart>
<namePart type="given">N.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>1049</number>
</detail>
<extent unit="pages">
<start>151</start>
<end>157</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00014" displayLabel="bibbc960056bb00014">
<titleInfo>
<title>Mutational analysis of the galactose binding ability of recombinant ricin B chain</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutational analysis of the galactose binding ability of recombinant ricin B chain</title>
</titleInfo>
<name type="personal">
<namePart type="family">WALES</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">RICHARDSON</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">ROBERTS</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">WOODLAND</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">LORD</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>266</number>
</detail>
<extent unit="pages">
<start>19172</start>
<end>19179</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00015" displayLabel="bibbc960056bb00015">
<titleInfo>
<title>Phage display of ricin B chain and its single binding domains: system for screening galactose-binding mutants</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Phage display of ricin B chain and its single binding domains: system for screening galactose-binding mutants</title>
</titleInfo>
<name type="personal">
<namePart type="family">SWIMMER</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">LEHAR</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">MCCAFFERTY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">CHISWELL</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">BLATTLER</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">GUILD</namePart>
<namePart type="given">B.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>89</number>
</detail>
<extent unit="pages">
<start>3756</start>
<end>3760</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00016" displayLabel="bibbc960056bb00016">
<titleInfo>
<title>Expression of ricin B chain in Spodoptera frugiperda</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Expression of ricin B chain in Spodoptera frugiperda</title>
</titleInfo>
<name type="personal">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">ROBERTS</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">AFRIN</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">VESELY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLINGHAM</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochem. J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>303</number>
</detail>
<extent unit="pages">
<start>787</start>
<end>794</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00017" displayLabel="bibbc960056bb00017">
<titleInfo>
<title>Expression of oligohistidine-tagged ricin B chain in Spodoptera frugiperda</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Expression of oligohistidine-tagged ricin B chain in Spodoptera frugiperda</title>
</titleInfo>
<name type="personal">
<namePart type="family">AFRIN</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">GULICK</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">VESELY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLINGHAM</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>5</number>
</detail>
<extent unit="pages">
<start>539</start>
<end>546</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00018" displayLabel="bibbc960056bb00018">
<titleInfo>
<title>Characterization of single-site ricin toxin B chain mutants</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Characterization of single-site ricin toxin B chain mutants</title>
</titleInfo>
<name type="personal">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">TAGGE</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">CHANDLER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BURBAGE</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">HANCOCK</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">VESELY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLINGHAM</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>30</start>
<end>37</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00019" displayLabel="bibbc960056bb00019">
<titleInfo>
<title>Double-site ricin B chain mutants retain galactose binding</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Double-site ricin B chain mutants retain galactose binding</title>
</titleInfo>
<name type="personal">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">TAGGE</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">CHANDLER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BURBAGE</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLINGHAM</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Protein Eng.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>371</start>
<end>379</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00020" displayLabel="bibbc960056bb00020">
<titleInfo>
<title>Expression and characterization of mutants of ricin toxin A chain in E</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Expression and characterization of mutants of ricin toxin A chain in E</title>
</titleInfo>
<name type="personal">
<namePart type="family">SCHLOSSMAN</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">WITHERS</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">WELSH</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">ALEXANDER</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">ROBERTUS</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>coli. Mol. Cell Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>9</number>
</detail>
<extent unit="pages">
<start>5012</start>
<end>5021</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00021" displayLabel="bibbc960056bb00021">
<titleInfo>
<title>High-efficiency oligonucleotide-directed plasmid mutagenesis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>High-efficiency oligonucleotide-directed plasmid mutagenesis</title>
</titleInfo>
<name type="personal">
<namePart type="family">OLSON</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">ECKSTEIN</namePart>
<namePart type="given">F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>87</number>
</detail>
<extent unit="pages">
<start>1451</start>
<end>1455</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00022" displayLabel="bibbc960056bb00022">
<titleInfo>
<title>DNA sequencing with chain-terminating inhibitors</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>DNA sequencing with chain-terminating inhibitors</title>
</titleInfo>
<name type="personal">
<namePart type="family">SANGER</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">NICKLEN</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">COULSON</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl. Acad. Sci. U.S.A.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1977</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>5463</start>
<end>5467</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00023" displayLabel="bibbc960056bb00023">
<titleInfo>
<title>Mutational and structural analysis of the lectin activity in binding domain 2 of ricin B chain</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Mutational and structural analysis of the lectin activity in binding domain 2 of ricin B chain</title>
</titleInfo>
<name type="personal">
<namePart type="family">LEHAR</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">PEDERSEN</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">KAMATH</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">SWIMMER</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLDMACHER</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">LAMBERT</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BLATTLER</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">GUILD</namePart>
<namePart type="given">B.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Protein Eng.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>1261</start>
<end>1266</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00024" displayLabel="bibbc960056bb00024">
<titleInfo>
<title>The complete amino acid sequence of ricin B-chain of ricin E isolated from small-grain castor bean seeds. Ricin E is a gene recombination product of ricin D and Ricinus communis agglutinin</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The complete amino acid sequence of ricin B-chain of ricin E isolated from small-grain castor bean seeds. Ricin E is a gene recombination product of ricin D and Ricinus communis agglutinin</title>
</titleInfo>
<name type="personal">
<namePart type="family">ARAKI</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">FUNATSU</namePart>
<namePart type="given">G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1987</date>
<detail type="volume">
<caption>vol.</caption>
<number>911</number>
</detail>
<extent unit="pages">
<start>191</start>
<end>200</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00025" displayLabel="bibbc960056bb00025">
<titleInfo>
<title>Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis</title>
</titleInfo>
<name type="personal">
<namePart type="family">OLSNES</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SALTVEDT</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">PIHL</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1974</date>
<detail type="volume">
<caption>vol.</caption>
<number>249</number>
</detail>
<extent unit="pages">
<start>803</start>
<end>810</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00026" displayLabel="bibbc960056bb00026">
<titleInfo>
<title>Binding of two molecules of 4-methylumbelliferyl galactose or 4-methylumbelliferyl N-acetylgalactosamine to the B chains of ricin and Ricinus communis agglutinin and to purified ricin B chain</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Binding of two molecules of 4-methylumbelliferyl galactose or 4-methylumbelliferyl N-acetylgalactosamine to the B chains of ricin and Ricinus communis agglutinin and to purified ricin B chain</title>
</titleInfo>
<name type="personal">
<namePart type="family">HOUSTON</namePart>
<namePart type="given">L.</namePart>
</name>
<name type="personal">
<namePart type="family">DOOLEY</namePart>
<namePart type="given">T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1982</date>
<detail type="volume">
<caption>vol.</caption>
<number>257</number>
</detail>
<extent unit="pages">
<start>4147</start>
<end>4151</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00027" displayLabel="bibbc960056bb00027">
<titleInfo>
<title>Correlation between in vivo toxicity and preclinical in vitro parameters for the immunotoxin anti-B4-blocked ricin</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Correlation between in vivo toxicity and preclinical in vitro parameters for the immunotoxin anti-B4-blocked ricin</title>
</titleInfo>
<name type="personal">
<namePart type="family">GROSSBARD</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">LAMBERT</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">GOLDMACHER</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">BLATTLER</namePart>
<namePart type="given">W.</namePart>
</name>
<name type="personal">
<namePart type="family">NADLER</namePart>
<namePart type="given">L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>52</number>
</detail>
<extent unit="pages">
<start>4200</start>
<end>4207</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00028" displayLabel="bibbc960056bb00028">
<titleInfo>
<title>The specific cytotoxicity of immunoconjugate containing blocked ricin is dependent on the residual binding capacity of blocked ricin: evidence that the membrane binding and A-chain translocation activities of ricin cannot be separated</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The specific cytotoxicity of immunoconjugate containing blocked ricin is dependent on the residual binding capacity of blocked ricin: evidence that the membrane binding and A-chain translocation activities of ricin cannot be separated</title>
</titleInfo>
<name type="personal">
<namePart type="family">GOLDMACHER</namePart>
<namePart type="given">V.</namePart>
</name>
<name type="personal">
<namePart type="family">LAMBERT</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BLATTLER</namePart>
<namePart type="given">W.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochem. Biophys. Res. Commun.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>183</number>
</detail>
<extent unit="pages">
<start>758</start>
<end>766</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bb00029" displayLabel="bibbc960056bb00029">
<titleInfo>
<title>IL2-ricin fusion toxin is selectively cytotoxic in vitro to IL2 receptor-bearing tumor cells</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>IL2-ricin fusion toxin is selectively cytotoxic in vitro to IL2 receptor-bearing tumor cells</title>
</titleInfo>
<name type="personal">
<namePart type="family">FRANKEL</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">TAGGE</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">CHANDLER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">BURBAGE</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">HANCOCK</namePart>
<namePart type="given">G.</namePart>
</name>
<name type="personal">
<namePart type="family">VESELY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WILLINGHAM</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>666</start>
<end>672</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc960056bn00001" displayLabel="bibbc960056bn00001">
<titleInfo>
<title>Abbreviations:  RTB, ricin toxin B chain; RTA, ricin toxin A chain; PBS, phosphate-buffered saline; BSA, bovine serum albumin; ELISA, enzyme-linked immunoassay; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; cDNA, complementary DNA; IC50, concentration of compound reducing cellular protein synthesis by 50%; moi, multiplicity of infection; EDTA, ethylenediaminetetraacetic acid; NTEAL, 50 mM NaCl/25 mM Tris (pH) 8/1 mM EDTA/0.01% sodium azide/25 mM lactose; NTEALT, 500 mM NaCl/25 mM Tris (pH) 9/1 mM EDTA/0.01% sodium azide/25 mM lactose/0.1% Tween 20.</title>
</titleInfo>
<note type="content-in-line">Abbreviations:  RTB, ricin toxin B chain; RTA, ricin toxin A chain; PBS, phosphate-buffered saline; BSA, bovine serum albumin; ELISA, enzyme-linked immunoassay; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; cDNA, complementary DNA; IC50, concentration of compound reducing cellular protein synthesis by 50%; moi, multiplicity of infection; EDTA, ethylenediaminetetraacetic acid; NTEAL, 50 mM NaCl/25 mM Tris (pH) 8/1 mM EDTA/0.01% sodium azide/25 mM lactose; NTEALT, 500 mM NaCl/25 mM Tris (pH) 9/1 mM EDTA/0.01% sodium azide/25 mM lactose/0.1% Tween 20.</note>
</relatedItem>
<identifier type="istex">7C1819B940792562DFC0BE3CC4B7423241542012</identifier>
<identifier type="ark">ark:/67375/TPS-3DMJ2R0G-C</identifier>
<identifier type="DOI">10.1021/bc960056b</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 1996 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-3DMJ2R0G-C/annexes.gif</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002230 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002230 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:7C1819B940792562DFC0BE3CC4B7423241542012
   |texte=   Double-Lectin Site Ricin B Chain Mutants Expressed in Insect Cells Have Residual Galactose Binding:  Evidence for More Than Two Lectin Sites on the Ricin Toxin B Chain
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021