Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse

Identifieur interne : 002112 ( Istex/Corpus ); précédent : 002111; suivant : 002113

Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse

Auteurs : Michael J. Mckay ; Christine Troelstra ; Peter Van Der ; Roland Kanaar ; Bep Smit ; Anne Hagemeijer ; Dirk Bootsma ; Jan H. J. Hoeijmakers

Source :

RBID : ISTEX:EFD60663358B3AF844188F179EE883C3313FC82E

English descriptors

Abstract

Abstract: Therad21gene ofSchizosaccharomyces pombeis involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs ofrad21is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21sp(mouse homolog of Rad21,S. pombe) and hHR21sp(human homolog of Rad21,S. pombe) predicted proteins were 96% identical, whereas the human andS. pombeproteins were 25% identical and 47% similar. RNA blot analysis showed thatmHR21spmRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment.hHR21spmRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level ofhHR21sptranscripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation.In situhybridization showed thatmHR21spresided on chromosome 15D3, whereashHR21splocalized to the syntenic 8q24 region. Elevated expression ofmHR21spin testis and thymus supports a possible role for therad21mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation ofrad21,retained fromS. pombeto human, is consistent with a conservation of function betweenS. pombeand humanrad21genes.

Url:
DOI: 10.1006/geno.1996.0466

Links to Exploration step

ISTEX:EFD60663358B3AF844188F179EE883C3313FC82E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse</title>
<author>
<name sortKey="Mckay, Michael J" sort="Mckay, Michael J" uniqKey="Mckay M" first="Michael J." last="Mckay">Michael J. Mckay</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Troelstra, Christine" sort="Troelstra, Christine" uniqKey="Troelstra C" first="Christine" last="Troelstra">Christine Troelstra</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der, Peter" sort="Van Der, Peter" uniqKey="Van Der P" first="Peter" last="Van Der">Peter Van Der</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanaar, Roland" sort="Kanaar, Roland" uniqKey="Kanaar R" first="Roland" last="Kanaar">Roland Kanaar</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smit, Bep" sort="Smit, Bep" uniqKey="Smit B" first="Bep" last="Smit">Bep Smit</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hagemeijer, Anne" sort="Hagemeijer, Anne" uniqKey="Hagemeijer A" first="Anne" last="Hagemeijer">Anne Hagemeijer</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bootsma, Dirk" sort="Bootsma, Dirk" uniqKey="Bootsma D" first="Dirk" last="Bootsma">Dirk Bootsma</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoeijmakers, Jan H J" sort="Hoeijmakers, Jan H J" uniqKey="Hoeijmakers J" first="Jan H. J." last="Hoeijmakers">Jan H. J. Hoeijmakers</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:EFD60663358B3AF844188F179EE883C3313FC82E</idno>
<date when="1996" year="1996">1996</date>
<idno type="doi">10.1006/geno.1996.0466</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-SS6J20V8-Z/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002112</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002112</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse</title>
<author>
<name sortKey="Mckay, Michael J" sort="Mckay, Michael J" uniqKey="Mckay M" first="Michael J." last="Mckay">Michael J. Mckay</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Troelstra, Christine" sort="Troelstra, Christine" uniqKey="Troelstra C" first="Christine" last="Troelstra">Christine Troelstra</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Van Der, Peter" sort="Van Der, Peter" uniqKey="Van Der P" first="Peter" last="Van Der">Peter Van Der</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kanaar, Roland" sort="Kanaar, Roland" uniqKey="Kanaar R" first="Roland" last="Kanaar">Roland Kanaar</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smit, Bep" sort="Smit, Bep" uniqKey="Smit B" first="Bep" last="Smit">Bep Smit</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hagemeijer, Anne" sort="Hagemeijer, Anne" uniqKey="Hagemeijer A" first="Anne" last="Hagemeijer">Anne Hagemeijer</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Bootsma, Dirk" sort="Bootsma, Dirk" uniqKey="Bootsma D" first="Dirk" last="Bootsma">Dirk Bootsma</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hoeijmakers, Jan H J" sort="Hoeijmakers, Jan H J" uniqKey="Hoeijmakers J" first="Jan H. J." last="Hoeijmakers">Jan H. J. Hoeijmakers</name>
<affiliation>
<mods:affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Genomics</title>
<title level="j" type="abbrev">YGENO</title>
<idno type="ISSN">0888-7543</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996">1996</date>
<biblScope unit="volume">36</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="305">305</biblScope>
<biblScope unit="page" to="315">315</biblScope>
</imprint>
<idno type="ISSN">0888-7543</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0888-7543</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Academic press</term>
<term>Accession</term>
<term>Amino</term>
<term>Amino acid sequence</term>
<term>Amino acids</term>
<term>Basic residues</term>
<term>Biol</term>
<term>Birkenbihl</term>
<term>Bootsma</term>
<term>Cdna</term>
<term>Cell cycle</term>
<term>Cell cycle regulation</term>
<term>Cell cycle stage</term>
<term>Cellular processing</term>
<term>Cerevisiae</term>
<term>Checkpoint</term>
<term>Chromosomal</term>
<term>Chromosomal aberrations</term>
<term>Chromosomal localization</term>
<term>Chromosome</term>
<term>Database</term>
<term>Double strand</term>
<term>Dsbs</term>
<term>Elegans</term>
<term>Elegans cdna</term>
<term>Elegans probe</term>
<term>Genbank accession</term>
<term>Gene</term>
<term>Gene product</term>
<term>Genom</term>
<term>Genomic</term>
<term>Genomic instability</term>
<term>Genomic sequence</term>
<term>Genomics</term>
<term>Gnma</term>
<term>Hela</term>
<term>Hela cells</term>
<term>Hoeijmakers</term>
<term>Homolog</term>
<term>Homologs</term>
<term>Homology</term>
<term>Human homolog</term>
<term>Hybridization</term>
<term>Jeggo</term>
<term>Kinase</term>
<term>Localization</term>
<term>Mammalian</term>
<term>Mammalian mutants</term>
<term>Mammalian proteins</term>
<term>Mckay</term>
<term>Meiotic recombination</term>
<term>Mouse homolog</term>
<term>Mrna</term>
<term>Mrna expression</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Northern blot analysis</term>
<term>Nucleotide</term>
<term>Other species</term>
<term>Phosphorylation</term>
<term>Phylogenetic</term>
<term>Pombe</term>
<term>Possible role</term>
<term>Protein kinase</term>
<term>Putative</term>
<term>Recombination</term>
<term>Repair gene</term>
<term>Saccharomyces</term>
<term>Saccharomyces cerevisiae</term>
<term>Schizosaccharomyces</term>
<term>Schizosaccharomyces pombe</term>
<term>Ssion yeast</term>
<term>Structural homologs</term>
<term>Subramani</term>
<term>Testis</term>
<term>Testis tissue</term>
<term>Thymidine</term>
<term>Transcript</term>
<term>Yeast</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Therad21gene ofSchizosaccharomyces pombeis involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs ofrad21is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21sp(mouse homolog of Rad21,S. pombe) and hHR21sp(human homolog of Rad21,S. pombe) predicted proteins were 96% identical, whereas the human andS. pombeproteins were 25% identical and 47% similar. RNA blot analysis showed thatmHR21spmRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment.hHR21spmRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level ofhHR21sptranscripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation.In situhybridization showed thatmHR21spresided on chromosome 15D3, whereashHR21splocalized to the syntenic 8q24 region. Elevated expression ofmHR21spin testis and thymus supports a possible role for therad21mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation ofrad21,retained fromS. pombeto human, is consistent with a conservation of function betweenS. pombeand humanrad21genes.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>pombe</json:string>
<json:string>mrna</json:string>
<json:string>homologs</json:string>
<json:string>cdna</json:string>
<json:string>testis</json:string>
<json:string>subramani</json:string>
<json:string>birkenbihl</json:string>
<json:string>hybridization</json:string>
<json:string>chromosomal</json:string>
<json:string>elegans</json:string>
<json:string>cerevisiae</json:string>
<json:string>genomics</json:string>
<json:string>mutant</json:string>
<json:string>recombination</json:string>
<json:string>genomic</json:string>
<json:string>biol</json:string>
<json:string>chromosome</json:string>
<json:string>cell cycle</json:string>
<json:string>genom</json:string>
<json:string>gnma</json:string>
<json:string>homolog</json:string>
<json:string>dsbs</json:string>
<json:string>mckay</json:string>
<json:string>checkpoint</json:string>
<json:string>kinase</json:string>
<json:string>phosphorylation</json:string>
<json:string>saccharomyces</json:string>
<json:string>amino</json:string>
<json:string>homology</json:string>
<json:string>hoeijmakers</json:string>
<json:string>database</json:string>
<json:string>hela</json:string>
<json:string>schizosaccharomyces</json:string>
<json:string>mutation</json:string>
<json:string>schizosaccharomyces pombe</json:string>
<json:string>putative</json:string>
<json:string>jeggo</json:string>
<json:string>bootsma</json:string>
<json:string>accession</json:string>
<json:string>phylogenetic</json:string>
<json:string>thymidine</json:string>
<json:string>amino acids</json:string>
<json:string>mrna expression</json:string>
<json:string>saccharomyces cerevisiae</json:string>
<json:string>chromosomal localization</json:string>
<json:string>hela cells</json:string>
<json:string>amino acid sequence</json:string>
<json:string>protein kinase</json:string>
<json:string>repair gene</json:string>
<json:string>gene</json:string>
<json:string>cell cycle stage</json:string>
<json:string>other species</json:string>
<json:string>northern blot analysis</json:string>
<json:string>genbank accession</json:string>
<json:string>chromosomal aberrations</json:string>
<json:string>mouse homolog</json:string>
<json:string>human homolog</json:string>
<json:string>mammalian proteins</json:string>
<json:string>possible role</json:string>
<json:string>genomic instability</json:string>
<json:string>double strand</json:string>
<json:string>elegans cdna</json:string>
<json:string>elegans probe</json:string>
<json:string>genomic sequence</json:string>
<json:string>gene product</json:string>
<json:string>meiotic recombination</json:string>
<json:string>basic residues</json:string>
<json:string>mammalian mutants</json:string>
<json:string>cell cycle regulation</json:string>
<json:string>academic press</json:string>
<json:string>ssion yeast</json:string>
<json:string>cellular processing</json:string>
<json:string>testis tissue</json:string>
<json:string>structural homologs</json:string>
<json:string>yeast</json:string>
<json:string>mammalian</json:string>
<json:string>transcript</json:string>
<json:string>localization</json:string>
<json:string>nucleotide</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Michael J. McKay</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Christine Troelstra</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Peter van der</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Roland Kanaar</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Bep Smit</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Anne Hagemeijer</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dirk Bootsma</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jan H.J. Hoeijmakers</name>
<affiliations>
<json:string>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/6H6-SS6J20V8-Z</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>Abstract: Therad21gene ofSchizosaccharomyces pombeis involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs ofrad21is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21sp(mouse homolog of Rad21,S. pombe) and hHR21sp(human homolog of Rad21,S. pombe) predicted proteins were 96% identical, whereas the human andS. pombeproteins were 25% identical and 47% similar. RNA blot analysis showed thatmHR21spmRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment.hHR21spmRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level ofhHR21sptranscripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation.In situhybridization showed thatmHR21spresided on chromosome 15D3, whereashHR21splocalized to the syntenic 8q24 region. Elevated expression ofmHR21spin testis and thymus supports a possible role for therad21mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation ofrad21,retained fromS. pombeto human, is consistent with a conservation of function betweenS. pombeand humanrad21genes.</abstract>
<qualityIndicators>
<score>9.676</score>
<pdfWordCount>6886</pdfWordCount>
<pdfCharCount>42919</pdfCharCount>
<pdfVersion>1.1</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>539 x 719 pts</pdfPageSize>
<refBibsNative>false</refBibsNative>
<abstractWordCount>223</abstractWordCount>
<abstractCharCount>1615</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse</title>
<pmid>
<json:string>8812457</json:string>
</pmid>
<pii>
<json:string>S0888-7543(96)90466-8</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Genomics</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1996</publicationDate>
<issn>
<json:string>0888-7543</json:string>
</issn>
<pii>
<json:string>S0888-7543(00)X0117-6</json:string>
</pii>
<volume>36</volume>
<issue>2</issue>
<pages>
<first>305</first>
<last>315</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>08-01-96</json:string>
<json:string>1996</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Academic Press, Inc</json:string>
<json:string>Netherlands Received</json:string>
<json:string>Clontech</json:string>
<json:string>Erasmus University</json:string>
<json:string>Academic Press, Inc.</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>C. Filters</json:string>
<json:string>Sequences</json:string>
</persName>
<placeName>
<json:string>Japan</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Al-Khodairy and Carr, 1992</json:string>
<json:string>I67 r T in the Rad21-45 mutant protein; Birkenbihl and Subramani, 1992</json:string>
<json:string>Liu et al., 1994</json:string>
<json:string>Cleaver and Kraemer, 1994</json:string>
<json:string>Cole and Mortimer, 1989</json:string>
<json:string>Birkenbihl and Subramani, 1995</json:string>
<json:string>Seide et al., 1996</json:string>
<json:string>Birkenbihl and Subramani (1992, 1995)</json:string>
<json:string>Obe et al., 1992</json:string>
<json:string>Sedgwick and Boder, 1991</json:string>
<json:string>Auffray and Rougeon, 1980</json:string>
<json:string>Birkenbihl and Subramani, 1992, 1995</json:string>
<json:string>Bootsma et al., 1964</json:string>
<json:string>Altschul et al., 1990</json:string>
<json:string>Pinkel et al., 1986</json:string>
<json:string>Grootegoed et al., 1986</json:string>
<json:string>Hoeijmakers, 1993</json:string>
<json:string>German, 1993</json:string>
<json:string>Kemp et al., 1984</json:string>
<json:string>Naratajan and Obe, 1978</json:string>
<json:string>Feldman and Winnacker, 1993</json:string>
<json:string>Hagemeijer et al., 1982</json:string>
<json:string>Fornace, 1992</json:string>
<json:string>Bendixen et al., 1994</json:string>
<json:string>Friedberg et al., 1995</json:string>
<json:string>Kronenberg, 1994</json:string>
<json:string>Felsenstein, 1993</json:string>
<json:string>Kanaar et al.</json:string>
<json:string>van der Spek et al., 1996</json:string>
<json:string>Jeggo et al., 1995</json:string>
<json:string>Birkenbihl and Subramani, 1992</json:string>
<json:string>Sullivan and Willis, 1989</json:string>
<json:string>McKay and Langlands, 1990</json:string>
<json:string>Honchel et al., 1995</json:string>
<json:string>Petrini et al., 1995</json:string>
<json:string>Iliakis, 1991</json:string>
<json:string>Sambrook et al., 1989</json:string>
<json:string>Morita et al., 1993</json:string>
<json:string>Papathanasiou et al., 1991</json:string>
<json:string>Keyse, 1993</json:string>
<json:string>Basile et al., 1992</json:string>
<json:string>Strunnikov and Koshland, 1995, unpublished</json:string>
<json:string>Shinohara et al., 1993</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-SS6J20V8-Z</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - genetics & heredity</json:string>
<json:string>2 - biotechnology & applied microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - genetics & heredity</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>1996</publicationDate>
<copyrightDate>1996</copyrightDate>
<doi>
<json:string>10.1006/geno.1996.0466</json:string>
</doi>
<id>EFD60663358B3AF844188F179EE883C3313FC82E</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-SS6J20V8-Z/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-SS6J20V8-Z/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-SS6J20V8-Z/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©1996 Academic Press</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>1996</date>
</publicationStmt>
<notesStmt>
<note type="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note>Sequence data from this article have been deposited with the GenBank/EMBL Data Libraries under Accession Nos. X98293 and X98294.</note>
<note type="content">Section title: Regular Article</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Michael J.</forename>
<surname>McKay</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Christine</forename>
<surname>Troelstra</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Peter</forename>
<surname>van der</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Roland</forename>
<surname>Kanaar</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Bep</forename>
<surname>Smit</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<forename type="first">Anne</forename>
<surname>Hagemeijer</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<forename type="first">Dirk</forename>
<surname>Bootsma</surname>
</persName>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<forename type="first">Jan H.J.</forename>
<surname>Hoeijmakers</surname>
</persName>
<affiliation>To whom correspondence should be addressed.</affiliation>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
</author>
<idno type="istex">EFD60663358B3AF844188F179EE883C3313FC82E</idno>
<idno type="ark">ark:/67375/6H6-SS6J20V8-Z</idno>
<idno type="DOI">10.1006/geno.1996.0466</idno>
<idno type="PII">S0888-7543(96)90466-8</idno>
</analytic>
<monogr>
<title level="j">Genomics</title>
<title level="j" type="abbrev">YGENO</title>
<idno type="pISSN">0888-7543</idno>
<idno type="PII">S0888-7543(00)X0117-6</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1996"></date>
<biblScope unit="volume">36</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="305">305</biblScope>
<biblScope unit="page" to="315">315</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1996</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Therad21gene ofSchizosaccharomyces pombeis involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs ofrad21is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21sp(mouse homolog of Rad21,S. pombe) and hHR21sp(human homolog of Rad21,S. pombe) predicted proteins were 96% identical, whereas the human andS. pombeproteins were 25% identical and 47% similar. RNA blot analysis showed thatmHR21spmRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment.hHR21spmRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level ofhHR21sptranscripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation.In situhybridization showed thatmHR21spresided on chromosome 15D3, whereashHR21splocalized to the syntenic 8q24 region. Elevated expression ofmHR21spin testis and thymus supports a possible role for therad21mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation ofrad21,retained fromS. pombeto human, is consistent with a conservation of function betweenS. pombeand humanrad21genes.</p>
</abstract>
</profileDesc>
<revisionDesc>
<change when="1996">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-SS6J20V8-Z/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier converted-article found">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType"></istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla" xml:lang="en">
<item-info>
<jid>YGENO</jid>
<aid>90466</aid>
<ce:pii>S0888-7543(96)90466-8</ce:pii>
<ce:doi>10.1006/geno.1996.0466</ce:doi>
<ce:copyright type="full-transfer" year="1996">Academic Press</ce:copyright>
</item-info>
<head>
<ce:article-footnote>
<ce:label></ce:label>
<ce:note-para>Sequence data from this article have been deposited with the GenBank/EMBL Data Libraries under Accession Nos. X98293 and X98294.</ce:note-para>
</ce:article-footnote>
<ce:dochead>
<ce:textfn>Regular Article</ce:textfn>
</ce:dochead>
<ce:title>Sequence Conservation of the
<ce:italic>rad21 Schizosaccharomyces pombe</ce:italic>
DNA Double-Strand Break Repair Gene in Human and Mouse</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Michael J.</ce:given-name>
<ce:surname>McKay</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Christine</ce:given-name>
<ce:surname>Troelstra</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Peter</ce:given-name>
<ce:surname>van der</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Roland</ce:given-name>
<ce:surname>Kanaar</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Bep</ce:given-name>
<ce:surname>Smit</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Anne</ce:given-name>
<ce:surname>Hagemeijer</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Dirk</ce:given-name>
<ce:surname>Bootsma</ce:surname>
</ce:author>
<ce:author>
<ce:given-name>Jan H.J.</ce:given-name>
<ce:surname>Hoeijmakers</ce:surname>
<ce:cross-ref refid="FN1">1</ce:cross-ref>
</ce:author>
<ce:affiliation>
<ce:textfn>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</ce:textfn>
</ce:affiliation>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>To whom correspondence should be addressed.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="8" month="3" year="1996"></ce:date-received>
<ce:date-accepted day="13" month="6" year="1996"></ce:date-accepted>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>The
<ce:italic>rad21</ce:italic>
gene of
<ce:italic>Schizosaccharomyces pombe</ce:italic>
is involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs of
<ce:italic>rad21</ce:italic>
is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21
<ce:sup>sp</ce:sup>
(mouse homolog of Rad21,
<ce:italic>S. pombe</ce:italic>
) and hHR21
<ce:sup>sp</ce:sup>
(human homolog of Rad21,
<ce:italic>S. pombe</ce:italic>
) predicted proteins were 96% identical, whereas the human and
<ce:italic>S. pombe</ce:italic>
proteins were 25% identical and 47% similar. RNA blot analysis showed that
<ce:italic>mHR21</ce:italic>
<ce:sup>
<ce:italic>sp</ce:italic>
</ce:sup>
mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment.
<ce:italic>hHR21</ce:italic>
<ce:sup>
<ce:italic>sp</ce:italic>
</ce:sup>
mRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of
<ce:italic>hHR21</ce:italic>
<ce:sup>
<ce:italic>sp</ce:italic>
</ce:sup>
transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation.
<ce:italic>In situ</ce:italic>
hybridization showed that
<ce:italic>mHR21</ce:italic>
<ce:sup>
<ce:italic>sp</ce:italic>
</ce:sup>
resided on chromosome 15D3, whereas
<ce:italic>hHR21</ce:italic>
<ce:sup>
<ce:italic>sp</ce:italic>
</ce:sup>
localized to the syntenic 8q24 region. Elevated expression of
<ce:italic>mHR21</ce:italic>
<ce:sup>
<ce:italic>sp</ce:italic>
</ce:sup>
in testis and thymus supports a possible role for the
<ce:italic>rad21</ce:italic>
mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation of
<ce:italic>rad21,</ce:italic>
retained from
<ce:italic>S. pombe</ce:italic>
to human, is consistent with a conservation of function between
<ce:italic>S. pombe</ce:italic>
and human
<ce:italic>rad21</ce:italic>
genes.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Sequence Conservation of the</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michael J.</namePart>
<namePart type="family">McKay</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Troelstra</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">van der</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roland</namePart>
<namePart type="family">Kanaar</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bep</namePart>
<namePart type="family">Smit</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Hagemeijer</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dirk</namePart>
<namePart type="family">Bootsma</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan H.J.</namePart>
<namePart type="family">Hoeijmakers</namePart>
<affiliation>MGC Department of Cell Biology and Genetics, Erasmus University, P.O. Box 1738, 3000DR, Rotterdam, The Netherlands</affiliation>
<description>To whom correspondence should be addressed.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1996</dateIssued>
<copyrightDate encoding="w3cdtf">1996</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Therad21gene ofSchizosaccharomyces pombeis involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs ofrad21is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21sp(mouse homolog of Rad21,S. pombe) and hHR21sp(human homolog of Rad21,S. pombe) predicted proteins were 96% identical, whereas the human andS. pombeproteins were 25% identical and 47% similar. RNA blot analysis showed thatmHR21spmRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1-kb constitutive mRNA transcript, a 2.2-kb transcript was present at a high level in postmeiotic spermatids, while expression of the 3.1-kb mRNA in testis was confined to the meiotic compartment.hHR21spmRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level ofhHR21sptranscripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation.In situhybridization showed thatmHR21spresided on chromosome 15D3, whereashHR21splocalized to the syntenic 8q24 region. Elevated expression ofmHR21spin testis and thymus supports a possible role for therad21mammalian homologs in V(D)J and meiotic recombination, respectively. Cell cycle regulation ofrad21,retained fromS. pombeto human, is consistent with a conservation of function betweenS. pombeand humanrad21genes.</abstract>
<note>Sequence data from this article have been deposited with the GenBank/EMBL Data Libraries under Accession Nos. X98293 and X98294.</note>
<note type="content">Section title: Regular Article</note>
<relatedItem type="host">
<titleInfo>
<title>Genomics</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>YGENO</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1996</dateIssued>
</originInfo>
<identifier type="ISSN">0888-7543</identifier>
<identifier type="PII">S0888-7543(00)X0117-6</identifier>
<part>
<date>1996</date>
<detail type="volume">
<number>36</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>2</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>227</start>
<end>377</end>
</extent>
<extent unit="pages">
<start>305</start>
<end>315</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">EFD60663358B3AF844188F179EE883C3313FC82E</identifier>
<identifier type="ark">ark:/67375/6H6-SS6J20V8-Z</identifier>
<identifier type="DOI">10.1006/geno.1996.0466</identifier>
<identifier type="PII">S0888-7543(96)90466-8</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1996 Academic Press</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Academic Press, ©1996</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-SS6J20V8-Z/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002112 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002112 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:EFD60663358B3AF844188F179EE883C3313FC82E
   |texte=   Sequence Conservation of the rad21 Schizosaccharomyces pombe DNA Double-Strand Break Repair Gene in Human and Mouse
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021