Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Epitope clusters in the major outer membrane protein of Chlamydia trachomatis

Identifieur interne : 001F37 ( Istex/Corpus ); précédent : 001F36; suivant : 001F38

Epitope clusters in the major outer membrane protein of Chlamydia trachomatis

Auteurs : Seon-Kyeong Kim ; Robert Demars

Source :

RBID : ISTEX:970617F7C78E4FEF670AE368A965919E6A279462

English descriptors

Abstract

Abstract: Immunopathology that is caused by re-infection with Chlamydia trachomatis is very common in humans despite regular responses to multiple, often conserved, antibody and T cell epitopes. Recurrent mutations that disrupt T cell epitopes in the major outer membrane protein in clinical isolates and the reduced transcription of HLA genes by infected cells may be evidence for pathogen evasion of protective immune responses. Subunit vaccines containing recently discovered clusters of T cell epitopes in the major outer membrane protein that are presented with diverse HLA allotypes may allow widespread protective immunization while avoiding the suppression of lasting immunity that occurs by unknown mechanisms associated with infection.

Url:
DOI: 10.1016/S0952-7915(00)00237-5

Links to Exploration step

ISTEX:970617F7C78E4FEF670AE368A965919E6A279462

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Epitope clusters in the major outer membrane protein of Chlamydia trachomatis</title>
<author>
<name sortKey="Kim, Seon Kyeong" sort="Kim, Seon Kyeong" uniqKey="Kim S" first="Seon-Kyeong" last="Kim">Seon-Kyeong Kim</name>
<affiliation>
<mods:affiliation>E-mail: seonkim@stanford.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Demars, Robert" sort="Demars, Robert" uniqKey="Demars R" first="Robert" last="Demars">Robert Demars</name>
<affiliation>
<mods:affiliation>E-mail: seonkim@stanford.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:970617F7C78E4FEF670AE368A965919E6A279462</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1016/S0952-7915(00)00237-5</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-0DJ78QC4-2/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001F37</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001F37</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Epitope clusters in the major outer membrane protein of Chlamydia trachomatis</title>
<author>
<name sortKey="Kim, Seon Kyeong" sort="Kim, Seon Kyeong" uniqKey="Kim S" first="Seon-Kyeong" last="Kim">Seon-Kyeong Kim</name>
<affiliation>
<mods:affiliation>E-mail: seonkim@stanford.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Demars, Robert" sort="Demars, Robert" uniqKey="Demars R" first="Robert" last="Demars">Robert Demars</name>
<affiliation>
<mods:affiliation>E-mail: seonkim@stanford.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Current Opinion in Immunology</title>
<title level="j" type="abbrev">COIMMU</title>
<idno type="ISSN">0952-7915</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="429">429</biblScope>
<biblScope unit="page" to="436">436</biblScope>
</imprint>
<idno type="ISSN">0952-7915</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-7915</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chlamydia trachomatis</term>
<term>Drug Discovery</term>
<term>Immunology</term>
<term>MHC</term>
<term>Microbiology</term>
<term>T cell epitopes</term>
<term>epitope cluster</term>
<term>protective immunity</term>
<term>vaccine</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Allotypes</term>
<term>Amino</term>
<term>Antibody responses</term>
<term>Antigenic</term>
<term>Cell epitope</term>
<term>Cell epitopes</term>
<term>Cell responses</term>
<term>Chlamydia</term>
<term>Chlamydia trachomatis</term>
<term>Chlamydial</term>
<term>Ctls</term>
<term>Cytosolic</term>
<term>Cytotoxic</term>
<term>Demars</term>
<term>Epitope</term>
<term>Epitope clusters</term>
<term>Genital</term>
<term>Genital tract infections</term>
<term>Immune</term>
<term>Immunization</term>
<term>Immunol</term>
<term>Immunology</term>
<term>Lymphocyte</term>
<term>Membrane protein</term>
<term>Momp</term>
<term>Mutant</term>
<term>Mutation</term>
<term>Original antigenic</term>
<term>Outer membrane protein</term>
<term>Pathogen</term>
<term>Peptide</term>
<term>Proteasomes</term>
<term>Protective immunity</term>
<term>Recurrent mutations</term>
<term>Serovar</term>
<term>Serovars</term>
<term>Trachomatis</term>
<term>Vaccine</term>
<term>Vaccine development</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Immunopathology that is caused by re-infection with Chlamydia trachomatis is very common in humans despite regular responses to multiple, often conserved, antibody and T cell epitopes. Recurrent mutations that disrupt T cell epitopes in the major outer membrane protein in clinical isolates and the reduced transcription of HLA genes by infected cells may be evidence for pathogen evasion of protective immune responses. Subunit vaccines containing recently discovered clusters of T cell epitopes in the major outer membrane protein that are presented with diverse HLA allotypes may allow widespread protective immunization while avoiding the suppression of lasting immunity that occurs by unknown mechanisms associated with infection.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>epitope</json:string>
<json:string>momp</json:string>
<json:string>chlamydia</json:string>
<json:string>trachomatis</json:string>
<json:string>mutation</json:string>
<json:string>peptide</json:string>
<json:string>cell epitopes</json:string>
<json:string>chlamydia trachomatis</json:string>
<json:string>vaccine</json:string>
<json:string>immunol</json:string>
<json:string>allotypes</json:string>
<json:string>pathogen</json:string>
<json:string>membrane protein</json:string>
<json:string>antigenic</json:string>
<json:string>ctls</json:string>
<json:string>cytotoxic</json:string>
<json:string>lymphocyte</json:string>
<json:string>demars</json:string>
<json:string>chlamydial</json:string>
<json:string>mutant</json:string>
<json:string>epitope clusters</json:string>
<json:string>proteasomes</json:string>
<json:string>serovar</json:string>
<json:string>original antigenic</json:string>
<json:string>serovars</json:string>
<json:string>amino</json:string>
<json:string>cytosolic</json:string>
<json:string>protective immunity</json:string>
<json:string>genital</json:string>
<json:string>immune</json:string>
<json:string>immunology</json:string>
<json:string>genital tract infections</json:string>
<json:string>outer membrane protein</json:string>
<json:string>vaccine development</json:string>
<json:string>recurrent mutations</json:string>
<json:string>cell responses</json:string>
<json:string>cell epitope</json:string>
<json:string>antibody responses</json:string>
<json:string>immunization</json:string>
<json:string>helper cell</json:string>
<json:string>binding motif clusters</json:string>
<json:string>great majority</json:string>
<json:string>momp peptides</json:string>
<json:string>amino acid sequence</json:string>
<json:string>multiple epitopes</json:string>
<json:string>amino acid variations</json:string>
<json:string>cell epitope clusters</json:string>
<json:string>chlamydia trachomatis momp</json:string>
<json:string>immune responses</json:string>
<json:string>subunit vaccines</json:string>
<json:string>different serovars</json:string>
<json:string>challenge infection</json:string>
<json:string>chlamydia trachomatis antigens</json:string>
<json:string>restriction elements</json:string>
<json:string>lymphocyte responses</json:string>
<json:string>infection</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Seon-Kyeong Kim</name>
<affiliations>
<json:string>E-mail: seonkim@stanford.edu</json:string>
<json:string>Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert DeMars</name>
<affiliations>
<json:string>E-mail: seonkim@stanford.edu</json:string>
<json:string>Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Immunity to infection</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Chlamydia trachomatis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>protective immunity</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>T cell epitopes</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>epitope cluster</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>MHC</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>vaccine</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Immunology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Microbiology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Drug Discovery</value>
</json:item>
</subject>
<arkIstex>ark:/67375/6H6-0DJ78QC4-2</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Review article</json:string>
</originalGenre>
<abstract>Abstract: Immunopathology that is caused by re-infection with Chlamydia trachomatis is very common in humans despite regular responses to multiple, often conserved, antibody and T cell epitopes. Recurrent mutations that disrupt T cell epitopes in the major outer membrane protein in clinical isolates and the reduced transcription of HLA genes by infected cells may be evidence for pathogen evasion of protective immune responses. Subunit vaccines containing recently discovered clusters of T cell epitopes in the major outer membrane protein that are presented with diverse HLA allotypes may allow widespread protective immunization while avoiding the suppression of lasting immunity that occurs by unknown mechanisms associated with infection.</abstract>
<qualityIndicators>
<score>8.272</score>
<pdfWordCount>6147</pdfWordCount>
<pdfCharCount>39478</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>8</pdfPageCount>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>106</abstractWordCount>
<abstractCharCount>745</abstractCharCount>
<keywordCount>10</keywordCount>
</qualityIndicators>
<title>Epitope clusters in the major outer membrane protein of Chlamydia trachomatis</title>
<pmid>
<json:string>11498298</json:string>
</pmid>
<pii>
<json:string>S0952-7915(00)00237-5</json:string>
</pii>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Current Opinion in Immunology</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2001</publicationDate>
<issn>
<json:string>0952-7915</json:string>
</issn>
<pii>
<json:string>S0952-7915(00)X0013-1</json:string>
</pii>
<volume>13</volume>
<issue>4</issue>
<pages>
<first>429</first>
<last>436</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2001</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Stanford University</json:string>
<json:string>Elsevier Science Ltd.</json:string>
<json:string>Laboratory of Genetics, University of Wisconsin</json:string>
<json:string>National Institutes of Health</json:string>
<json:string>Laboratory of Genetics of The University of Wisconsin</json:string>
<json:string>NIH</json:string>
<json:string>Yale University</json:string>
<json:string>Health Grants AI34617</json:string>
</orgName>
<orgName_funder>
<json:string>Health Grants AI34617</json:string>
</orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Paula Kavathas</json:string>
<json:string>Henry Mall</json:string>
</persName>
<placeName>
<json:string>Madison</json:string>
<json:string>CA</json:string>
<json:string>WI</json:string>
</placeName>
<ref_url>
<json:string>http://bimas.dcrt.nih.gov/molbio/hla_bind/</json:string>
</ref_url>
<ref_bibl>
<json:string>[61]</json:string>
<json:string>[4]</json:string>
<json:string>[43,44]</json:string>
<json:string>[45]</json:string>
<json:string>[48,49]</json:string>
<json:string>[60]</json:string>
<json:string>[55]</json:string>
<json:string>[31,32]</json:string>
<json:string>[28]</json:string>
<json:string>[1]</json:string>
<json:string>[54]</json:string>
<json:string>[52,53]</json:string>
<json:string>[27]</json:string>
<json:string>[3]</json:string>
<json:string>[9,10]</json:string>
<json:string>[31,59]</json:string>
<json:string>[42]</json:string>
<json:string>[18,19]</json:string>
<json:string>[15]</json:string>
<json:string>[41]</json:string>
<json:string>[47]</json:string>
<json:string>[51]</json:string>
<json:string>[11,12]</json:string>
<json:string>[2]</json:string>
<json:string>[46]</json:string>
<json:string>[16,17]</json:string>
<json:string>[19]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/6H6-0DJ78QC4-2</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - immunology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - clinical medicine</json:string>
<json:string>3 - immunology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Immunology and Microbiology</json:string>
<json:string>3 - Immunology</json:string>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Immunology and Allergy</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
</inist>
</categories>
<publicationDate>2001</publicationDate>
<copyrightDate>2001</copyrightDate>
<doi>
<json:string>10.1016/S0952-7915(00)00237-5</json:string>
</doi>
<id>970617F7C78E4FEF670AE368A965919E6A279462</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-0DJ78QC4-2/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-0DJ78QC4-2/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/6H6-0DJ78QC4-2/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Epitope clusters in the major outer membrane protein of Chlamydia trachomatis</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher scheme="https://scientific-publisher.data.istex.fr">ELSEVIER</publisher>
<availability>
<licence>
<p>©2001 Elsevier Science Ltd</p>
</licence>
<p scheme="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</p>
</availability>
<date>2001</date>
</publicationStmt>
<notesStmt>
<note type="review-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
<note type="content">Section title: Review</note>
<note type="content">Fig. 1: CTL epitope map of MOMP. The mature MOMP protein is 370–374 amino acids long in different Ct strains and is anchored in the lipopolysaccharide (LPS)-containing outer membrane (OM) by five hydrophobic, membrane-spanning CSs (CS1–CS5 from amino terminus to carboxl terminus), which have amino acid sequences that are conserved in different strains. The CSs are linked by four surface-exposed VSs (shown as small, open squares) that vary greatly in amino acid sequence among strains of Ct and include neutralizing-antibody epitopes that define serovars. The positions on MOMP of nonamer CTL epitope sequences that are presented with HLA-A2, -B35, -B51 or -B62 ([26•,27]; Table 1) are labeled using arrows; the epitopes are classified using the residue numbers of their amino termini. (Schematic adapted from [11].)</note>
<note type="content">Fig. 2: MOMP CTL epitopes are located in HLA class I binding motif clusters. Nine-mer peptides from MOMP that have binding motifs for HLA-A1, -A2, -A3, -A11, -A24, -B7, -B8, -B27, -B35, -B44, -B51 or -B62 were identified with a National Institutes of Health (NIH) algorithm (http://bimas.dcrt.nih.gov/molbio/hla_bind/). Peptides that scored higher than 5 in predicted binding ability are shown as empty bars in their order along MOMP (the numbers above the MOMP CS/VS domain structure are amino acid positions). Black bars represent eight CTL epitopes that we identified in genital tract infections [26•,27] and two CTL epitopes (in CS1 and CS3) identified by others in ocular trachoma [30] (see Table 1). Hatched bars represent 16–22-mer peptides that induce proliferation of T helper cells from genitally infected individuals [28,29•]. The core epitopes in most of the Th-stimulatory peptides have not yet been defined; individual peptides shown may contain multiple core epitopes, as exemplified by the MOMP249–268 sequence shown in Fig. 3. Several Th-epitope-containing peptides identified by others [31,59] nearly coincide with those depicted and are not shown. VSs and CSs are as in [60].</note>
<note type="content">Fig. 3: CTL and Th epitopes are co-clustered in MOMP (see Fig. 1 for details of MOMP structure). The CTL epitope MOMP155, which spans VS2 and CS3, overlaps a Th-epitope-containing peptide (see Table 1) and is included within a sequence that was proposed to contain a human B cell epitope [50], the amino acid sequence of which has not been reported; (a) all of these epitopes are specifically associated with VS2 (boxed). (b) The amino acid sequence of MOMP249–268 is shown (in single-letter code); it has the largest number of human T cell epitopes reported for an antigenic 20-mer. The peptides that bind various common HLA allotypes are shown and include five known class I (HLA-B62, -B35 and -A2)-restricted minimal CTL epitopes [26•,27] and at least six known HLA class II (DR)-restricted minimal Th epitopes [28].</note>
<note type="content">Table 1: CTL epitopes overlap Th epitopes in C. trachomatis MOMP.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Epitope clusters in the major outer membrane protein of Chlamydia trachomatis</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Seon-Kyeong</forename>
<surname>Kim</surname>
</persName>
<email>seonkim@stanford.edu</email>
<affiliation>Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Robert</forename>
<surname>DeMars</surname>
</persName>
<email>seonkim@stanford.edu</email>
<affiliation>Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA</affiliation>
</author>
<idno type="istex">970617F7C78E4FEF670AE368A965919E6A279462</idno>
<idno type="ark">ark:/67375/6H6-0DJ78QC4-2</idno>
<idno type="DOI">10.1016/S0952-7915(00)00237-5</idno>
<idno type="PII">S0952-7915(00)00237-5</idno>
</analytic>
<monogr>
<title level="j">Current Opinion in Immunology</title>
<title level="j" type="abbrev">COIMMU</title>
<idno type="pISSN">0952-7915</idno>
<idno type="PII">S0952-7915(00)X0013-1</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="2001"></date>
<biblScope unit="volume">13</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="429">429</biblScope>
<biblScope unit="page" to="436">436</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2001</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>Abstract: Immunopathology that is caused by re-infection with Chlamydia trachomatis is very common in humans despite regular responses to multiple, often conserved, antibody and T cell epitopes. Recurrent mutations that disrupt T cell epitopes in the major outer membrane protein in clinical isolates and the reduced transcription of HLA genes by infected cells may be evidence for pathogen evasion of protective immune responses. Subunit vaccines containing recently discovered clusters of T cell epitopes in the major outer membrane protein that are presented with diverse HLA allotypes may allow widespread protective immunization while avoiding the suppression of lasting immunity that occurs by unknown mechanisms associated with infection.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>article-category</head>
<item>
<term>Immunity to infection</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Chlamydia trachomatis</term>
</item>
<item>
<term>protective immunity</term>
</item>
<item>
<term>T cell epitopes</term>
</item>
<item>
<term>epitope cluster</term>
</item>
<item>
<term>MHC</term>
</item>
<item>
<term>vaccine</term>
</item>
</list>
</keywords>
</textClass>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Immunology</term>
</item>
<item>
<term>Microbiology</term>
</item>
<item>
<term>Drug Discovery</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2001">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-0DJ78QC4-2/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="rev" xml:lang="en">
<item-info>
<jid>COIMMU</jid>
<aid>00000237</aid>
<ce:pii>S0952-7915(00)00237-5</ce:pii>
<ce:doi>10.1016/S0952-7915(00)00237-5</ce:doi>
<ce:copyright type="full-transfer" year="2001">Elsevier Science Ltd</ce:copyright>
<ce:doctopics>
<ce:doctopic>
<ce:text>Immunity to infection</ce:text>
</ce:doctopic>
</ce:doctopics>
</item-info>
<head>
<ce:dochead>
<ce:textfn>Review</ce:textfn>
</ce:dochead>
<ce:title>Epitope clusters in the major outer membrane protein of
<ce:italic>Chlamydia trachomatis</ce:italic>
</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>Seon-Kyeong</ce:given-name>
<ce:surname>Kim</ce:surname>
<ce:cross-ref refid="AFF1">
<ce:sup>a</ce:sup>
</ce:cross-ref>
<ce:e-address type="email">seonkim@stanford.edu</ce:e-address>
</ce:author>
<ce:author>
<ce:given-name>Robert</ce:given-name>
<ce:surname>DeMars</ce:surname>
<ce:cross-ref refid="AFF2">
<ce:sup>b</ce:sup>
</ce:cross-ref>
<ce:e-address type="email">ridemars@facstaff.wisc.edu</ce:e-address>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA</ce:textfn>
</ce:affiliation>
</ce:author-group>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>Immunopathology that is caused by re-infection with
<ce:italic>Chlamydia trachomatis</ce:italic>
is very common in humans despite regular responses to multiple, often conserved, antibody and T cell epitopes. Recurrent mutations that disrupt T cell epitopes in the major outer membrane protein in clinical isolates and the reduced transcription of HLA genes by infected cells may be evidence for pathogen evasion of protective immune responses. Subunit vaccines containing recently discovered clusters of T cell epitopes in the major outer membrane protein that are presented with diverse HLA allotypes may allow widespread protective immunization while avoiding the suppression of lasting immunity that occurs by unknown mechanisms associated with infection.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Chlamydia trachomatis</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>protective immunity</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>T cell epitopes</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>epitope cluster</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>MHC</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>vaccine</ce:text>
</ce:keyword>
</ce:keywords>
<ce:keywords class="idt">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Immunology</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Microbiology</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Drug Discovery</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Epitope clusters in the major outer membrane protein of Chlamydia trachomatis</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Epitope clusters in the major outer membrane protein of</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seon-Kyeong</namePart>
<namePart type="family">Kim</namePart>
<affiliation>E-mail: seonkim@stanford.edu</affiliation>
<affiliation>Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, CA 94305, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">DeMars</namePart>
<affiliation>E-mail: seonkim@stanford.edu</affiliation>
<affiliation>Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="Review article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
<copyrightDate encoding="w3cdtf">2001</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: Immunopathology that is caused by re-infection with Chlamydia trachomatis is very common in humans despite regular responses to multiple, often conserved, antibody and T cell epitopes. Recurrent mutations that disrupt T cell epitopes in the major outer membrane protein in clinical isolates and the reduced transcription of HLA genes by infected cells may be evidence for pathogen evasion of protective immune responses. Subunit vaccines containing recently discovered clusters of T cell epitopes in the major outer membrane protein that are presented with diverse HLA allotypes may allow widespread protective immunization while avoiding the suppression of lasting immunity that occurs by unknown mechanisms associated with infection.</abstract>
<note type="content">Section title: Review</note>
<note type="content">Fig. 1: CTL epitope map of MOMP. The mature MOMP protein is 370–374 amino acids long in different Ct strains and is anchored in the lipopolysaccharide (LPS)-containing outer membrane (OM) by five hydrophobic, membrane-spanning CSs (CS1–CS5 from amino terminus to carboxl terminus), which have amino acid sequences that are conserved in different strains. The CSs are linked by four surface-exposed VSs (shown as small, open squares) that vary greatly in amino acid sequence among strains of Ct and include neutralizing-antibody epitopes that define serovars. The positions on MOMP of nonamer CTL epitope sequences that are presented with HLA-A2, -B35, -B51 or -B62 ([26•,27]; Table 1) are labeled using arrows; the epitopes are classified using the residue numbers of their amino termini. (Schematic adapted from [11].)</note>
<note type="content">Fig. 2: MOMP CTL epitopes are located in HLA class I binding motif clusters. Nine-mer peptides from MOMP that have binding motifs for HLA-A1, -A2, -A3, -A11, -A24, -B7, -B8, -B27, -B35, -B44, -B51 or -B62 were identified with a National Institutes of Health (NIH) algorithm (http://bimas.dcrt.nih.gov/molbio/hla_bind/). Peptides that scored higher than 5 in predicted binding ability are shown as empty bars in their order along MOMP (the numbers above the MOMP CS/VS domain structure are amino acid positions). Black bars represent eight CTL epitopes that we identified in genital tract infections [26•,27] and two CTL epitopes (in CS1 and CS3) identified by others in ocular trachoma [30] (see Table 1). Hatched bars represent 16–22-mer peptides that induce proliferation of T helper cells from genitally infected individuals [28,29•]. The core epitopes in most of the Th-stimulatory peptides have not yet been defined; individual peptides shown may contain multiple core epitopes, as exemplified by the MOMP249–268 sequence shown in Fig. 3. Several Th-epitope-containing peptides identified by others [31,59] nearly coincide with those depicted and are not shown. VSs and CSs are as in [60].</note>
<note type="content">Fig. 3: CTL and Th epitopes are co-clustered in MOMP (see Fig. 1 for details of MOMP structure). The CTL epitope MOMP155, which spans VS2 and CS3, overlaps a Th-epitope-containing peptide (see Table 1) and is included within a sequence that was proposed to contain a human B cell epitope [50], the amino acid sequence of which has not been reported; (a) all of these epitopes are specifically associated with VS2 (boxed). (b) The amino acid sequence of MOMP249–268 is shown (in single-letter code); it has the largest number of human T cell epitopes reported for an antigenic 20-mer. The peptides that bind various common HLA allotypes are shown and include five known class I (HLA-B62, -B35 and -A2)-restricted minimal CTL epitopes [26•,27] and at least six known HLA class II (DR)-restricted minimal Th epitopes [28].</note>
<note type="content">Table 1: CTL epitopes overlap Th epitopes in C. trachomatis MOMP.</note>
<subject>
<genre>article-category</genre>
<topic>Immunity to infection</topic>
</subject>
<subject lang="en">
<genre>Keywords</genre>
<topic>Chlamydia trachomatis</topic>
<topic>protective immunity</topic>
<topic>T cell epitopes</topic>
<topic>epitope cluster</topic>
<topic>MHC</topic>
<topic>vaccine</topic>
</subject>
<subject lang="en">
<genre>Keywords</genre>
<topic>Immunology</topic>
<topic>Microbiology</topic>
<topic>Drug Discovery</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Current Opinion in Immunology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>COIMMU</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">2001</dateIssued>
</originInfo>
<identifier type="ISSN">0952-7915</identifier>
<identifier type="PII">S0952-7915(00)X0013-1</identifier>
<part>
<date>2001</date>
<detail type="volume">
<number>13</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>4</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>375</start>
<end>510</end>
</extent>
<extent unit="pages">
<start>429</start>
<end>436</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">970617F7C78E4FEF670AE368A965919E6A279462</identifier>
<identifier type="ark">ark:/67375/6H6-0DJ78QC4-2</identifier>
<identifier type="DOI">10.1016/S0952-7915(00)00237-5</identifier>
<identifier type="PII">S0952-7915(00)00237-5</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2001 Elsevier Science Ltd</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science Ltd, ©2001</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/6H6-0DJ78QC4-2/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F37 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001F37 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:970617F7C78E4FEF670AE368A965919E6A279462
   |texte=   Epitope clusters in the major outer membrane protein of Chlamydia trachomatis
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021