Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome

Identifieur interne : 001D41 ( Istex/Corpus ); précédent : 001D40; suivant : 001D42

Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome

Auteurs : Elena Babaylova ; Dmitri Graifer ; Alexey Malygin ; Joachim Stahl ; Ivan Shatsky ; Galina Karpova

Source :

RBID : ISTEX:805AC4A22351CB8A1E9DBE931E61818622C07E34

Abstract

The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.

Url:
DOI: 10.1093/nar/gkn1026

Links to Exploration step

ISTEX:805AC4A22351CB8A1E9DBE931E61818622C07E34

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
<author>
<name sortKey="Babaylova, Elena" sort="Babaylova, Elena" uniqKey="Babaylova E" first="Elena" last="Babaylova">Elena Babaylova</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Graifer, Dmitri" sort="Graifer, Dmitri" uniqKey="Graifer D" first="Dmitri" last="Graifer">Dmitri Graifer</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malygin, Alexey" sort="Malygin, Alexey" uniqKey="Malygin A" first="Alexey" last="Malygin">Alexey Malygin</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stahl, Joachim" sort="Stahl, Joachim" uniqKey="Stahl J" first="Joachim" last="Stahl">Joachim Stahl</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shatsky, Ivan" sort="Shatsky, Ivan" uniqKey="Shatsky I" first="Ivan" last="Shatsky">Ivan Shatsky</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karpova, Galina" sort="Karpova, Galina" uniqKey="Karpova G" first="Galina" last="Karpova">Galina Karpova</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: karpova@niboch.nsc.ru</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*To whom correspondence should be addressed. Tel: +7 383 335 62 29; Fax: +7 383 333 36 77; Email: karpova@niboch.nsc.ru</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:805AC4A22351CB8A1E9DBE931E61818622C07E34</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1093/nar/gkn1026</idno>
<idno type="url">https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001D41</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001D41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
<author>
<name sortKey="Babaylova, Elena" sort="Babaylova, Elena" uniqKey="Babaylova E" first="Elena" last="Babaylova">Elena Babaylova</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Graifer, Dmitri" sort="Graifer, Dmitri" uniqKey="Graifer D" first="Dmitri" last="Graifer">Dmitri Graifer</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Malygin, Alexey" sort="Malygin, Alexey" uniqKey="Malygin A" first="Alexey" last="Malygin">Alexey Malygin</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Stahl, Joachim" sort="Stahl, Joachim" uniqKey="Stahl J" first="Joachim" last="Stahl">Joachim Stahl</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Shatsky, Ivan" sort="Shatsky, Ivan" uniqKey="Shatsky I" first="Ivan" last="Shatsky">Ivan Shatsky</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Karpova, Galina" sort="Karpova, Galina" uniqKey="Karpova G" first="Galina" last="Karpova">Galina Karpova</name>
<affiliation>
<mods:affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: karpova@niboch.nsc.ru</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>*To whom correspondence should be addressed. Tel: +7 383 335 62 29; Fax: +7 383 333 36 77; Email: karpova@niboch.nsc.ru</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Nucleic Acids Research</title>
<idno type="ISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">2009</date>
<date type="e-published">2009</date>
<biblScope unit="vol">37</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1141">1141</biblScope>
<biblScope unit="page" to="1151">1151</biblScope>
</imprint>
<idno type="ISSN">0305-1048</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0305-1048</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.</div>
</front>
</TEI>
<istex>
<corpusName>oup</corpusName>
<keywords>
<teeft>
<json:string>subunit</json:string>
<json:string>ire</json:string>
<json:string>ribosomal</json:string>
<json:string>ribosome</json:string>
<json:string>ribosomal protein</json:string>
<json:string>derivative</json:string>
<json:string>mrna</json:string>
<json:string>ire derivative</json:string>
<json:string>rrna</json:string>
<json:string>iiid</json:string>
<json:string>binary</json:string>
<json:string>iiie</json:string>
<json:string>ribosomal subunit</json:string>
<json:string>binary complex</json:string>
<json:string>subdomain</json:string>
<json:string>viral</json:string>
<json:string>apical</json:string>
<json:string>derivatized</json:string>
<json:string>azide</json:string>
<json:string>alkylation</json:string>
<json:string>codon</json:string>
<json:string>alkylating</json:string>
<json:string>datum</json:string>
<json:string>apical loop</json:string>
<json:string>nucleic acid research</json:string>
<json:string>photoactivatable</json:string>
<json:string>primer</json:string>
<json:string>nucleotide</json:string>
<json:string>oligomer</json:string>
<json:string>adduct</json:string>
<json:string>covalent</json:string>
<json:string>hairpin</json:string>
<json:string>eukaryotic</json:string>
<json:string>oligomers</json:string>
<json:string>biol</json:string>
<json:string>alkylating group</json:string>
<json:string>ire derivatized</json:string>
<json:string>rna</json:string>
<json:string>covalent adduct</json:string>
<json:string>nucleic</json:string>
<json:string>subdomain iiid</json:string>
<json:string>primer extension</json:string>
<json:string>ribosomal complex</json:string>
<json:string>initiation complex</json:string>
<json:string>hairpin iiie</json:string>
<json:string>ribosomal component</json:string>
<json:string>hairpin iiid</json:string>
<json:string>human ribosome</json:string>
<json:string>translation initiation</json:string>
<json:string>virus internal ribosome entry site</json:string>
<json:string>subdomain iiie</json:string>
<json:string>internal ribosome entry site</json:string>
<json:string>helper oligomers</json:string>
<json:string>oligomer complementary</json:string>
<json:string>photoactivatable group</json:string>
<json:string>internal ribosomal entry site</json:string>
<json:string>hepatitis</json:string>
<json:string>sequence complementary</json:string>
<json:string>initiation codon</json:string>
<json:string>internal initiation</json:string>
<json:string>junction iiiabc</json:string>
<json:string>untranslated region</json:string>
<json:string>oligonucleotide derivative</json:string>
<json:string>azide group</json:string>
<json:string>ire alkylation</json:string>
<json:string>ire binding</json:string>
<json:string>ire domain</json:string>
<json:string>initiation factor</json:string>
<json:string>alkylating derivative</json:string>
<json:string>molecular environment</json:string>
<json:string>prokaryotic counterpart</json:string>
<json:string>mrna exit site</json:string>
<json:string>mrna analogue</json:string>
<json:string>solvent side</json:string>
<json:string>phosphoramide bond</json:string>
<json:string>protein</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Elena Babaylova</name>
<affiliations>
<json:string>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Dmitri Graifer</name>
<affiliations>
<json:string>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Alexey Malygin</name>
<affiliations>
<json:string>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Joachim Stahl</name>
<affiliations>
<json:string>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Ivan Shatsky</name>
<affiliations>
<json:string>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</json:string>
</affiliations>
</json:item>
<json:item>
<name>Galina Karpova</name>
<affiliations>
<json:string>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</json:string>
<json:string>E-mail: karpova@niboch.nsc.ru</json:string>
<json:string>*To whom correspondence should be addressed. Tel: +7 383 335 62 29; Fax: +7 383 333 36 77; Email: karpova@niboch.nsc.ru</json:string>
</affiliations>
</json:item>
</author>
<articleId>
<json:string>gkn1026</json:string>
</articleId>
<arkIstex>ark:/67375/HXZ-95TV1SWJ-L</arkIstex>
<language>
<json:string>unknown</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.</abstract>
<qualityIndicators>
<score>6.8</score>
<pdfWordCount>7125</pdfWordCount>
<pdfCharCount>44083</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>612.283 x 790.866 pts</pdfPageSize>
<pdfWordsPerPage>648</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>150</abstractWordCount>
<abstractCharCount>943</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Nucleic Acids Research</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>0305-1048</json:string>
</issn>
<eissn>
<json:string>1362-4962</json:string>
</eissn>
<publisherId>
<json:string>nar</json:string>
</publisherId>
<volume>37</volume>
<issue>4</issue>
<pages>
<first>1141</first>
<last>1151</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Molecular Biology</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/HXZ-95TV1SWJ-L</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - developmental biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1093/nar/gkn1026</json:string>
</doi>
<id>805AC4A22351CB8A1E9DBE931E61818622C07E34</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Oxford University Press</publisher>
<availability>
<licence>© 2009 The Author(s)</licence>
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
</availability>
<date type="e-published">2009</date>
<date type="Copyright" when="2009">2009</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
<author xml:id="author-0000">
<persName>
<surname>Babaylova</surname>
<forename type="first">Elena</forename>
</persName>
<affiliation>
<orgName type="institution">Institute of Chemical Biology and Fundamental Medicine</orgName>
<orgName type="institution">Siberian Branch of the Russian Academy of Sciences</orgName>
<address>
<addrLine>Novosibirsk</addrLine>
<addrLine>630090</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
<addrLine>Max-Delbrück-Centrum für Molekulare Medizin (MDC)</addrLine>
<addrLine>Berlin-Buch</addrLine>
<addrLine>13092 Berlin</addrLine>
<addrLine>Germany and Belozersky Institute of Physico-Chemical Biology</addrLine>
<addrLine>Moscow State University</addrLine>
<addrLine>Moscow</addrLine>
<addrLine>119899</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<surname>Graifer</surname>
<forename type="first">Dmitri</forename>
</persName>
<affiliation>
<orgName type="institution">Institute of Chemical Biology and Fundamental Medicine</orgName>
<orgName type="institution">Siberian Branch of the Russian Academy of Sciences</orgName>
<address>
<addrLine>Novosibirsk</addrLine>
<addrLine>630090</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
<addrLine>Max-Delbrück-Centrum für Molekulare Medizin (MDC)</addrLine>
<addrLine>Berlin-Buch</addrLine>
<addrLine>13092 Berlin</addrLine>
<addrLine>Germany and Belozersky Institute of Physico-Chemical Biology</addrLine>
<addrLine>Moscow State University</addrLine>
<addrLine>Moscow</addrLine>
<addrLine>119899</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<surname>Malygin</surname>
<forename type="first">Alexey</forename>
</persName>
<affiliation>
<orgName type="institution">Institute of Chemical Biology and Fundamental Medicine</orgName>
<orgName type="institution">Siberian Branch of the Russian Academy of Sciences</orgName>
<address>
<addrLine>Novosibirsk</addrLine>
<addrLine>630090</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
<addrLine>Max-Delbrück-Centrum für Molekulare Medizin (MDC)</addrLine>
<addrLine>Berlin-Buch</addrLine>
<addrLine>13092 Berlin</addrLine>
<addrLine>Germany and Belozersky Institute of Physico-Chemical Biology</addrLine>
<addrLine>Moscow State University</addrLine>
<addrLine>Moscow</addrLine>
<addrLine>119899</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<surname>Stahl</surname>
<forename type="first">Joachim</forename>
</persName>
<affiliation>
<orgName type="institution">Institute of Chemical Biology and Fundamental Medicine</orgName>
<orgName type="institution">Siberian Branch of the Russian Academy of Sciences</orgName>
<address>
<addrLine>Novosibirsk</addrLine>
<addrLine>630090</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
<addrLine>Max-Delbrück-Centrum für Molekulare Medizin (MDC)</addrLine>
<addrLine>Berlin-Buch</addrLine>
<addrLine>13092 Berlin</addrLine>
<addrLine>Germany and Belozersky Institute of Physico-Chemical Biology</addrLine>
<addrLine>Moscow State University</addrLine>
<addrLine>Moscow</addrLine>
<addrLine>119899</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<surname>Shatsky</surname>
<forename type="first">Ivan</forename>
</persName>
<affiliation>
<orgName type="institution">Institute of Chemical Biology and Fundamental Medicine</orgName>
<orgName type="institution">Siberian Branch of the Russian Academy of Sciences</orgName>
<address>
<addrLine>Novosibirsk</addrLine>
<addrLine>630090</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
<addrLine>Max-Delbrück-Centrum für Molekulare Medizin (MDC)</addrLine>
<addrLine>Berlin-Buch</addrLine>
<addrLine>13092 Berlin</addrLine>
<addrLine>Germany and Belozersky Institute of Physico-Chemical Biology</addrLine>
<addrLine>Moscow State University</addrLine>
<addrLine>Moscow</addrLine>
<addrLine>119899</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<surname>Karpova</surname>
<forename type="first">Galina</forename>
</persName>
<affiliation>
<orgName type="institution">Institute of Chemical Biology and Fundamental Medicine</orgName>
<orgName type="institution">Siberian Branch of the Russian Academy of Sciences</orgName>
<address>
<addrLine>Novosibirsk</addrLine>
<addrLine>630090</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
<addrLine>Max-Delbrück-Centrum für Molekulare Medizin (MDC)</addrLine>
<addrLine>Berlin-Buch</addrLine>
<addrLine>13092 Berlin</addrLine>
<addrLine>Germany and Belozersky Institute of Physico-Chemical Biology</addrLine>
<addrLine>Moscow State University</addrLine>
<addrLine>Moscow</addrLine>
<addrLine>119899</addrLine>
<country key="RU" xml:lang="en">RUSSIAN FEDERATION</country>
</address>
</affiliation>
</author>
<idno type="istex">805AC4A22351CB8A1E9DBE931E61818622C07E34</idno>
<idno type="ark">ark:/67375/HXZ-95TV1SWJ-L</idno>
<idno type="DOI">10.1093/nar/gkn1026</idno>
<idno type="publisher-id">gkn1026</idno>
</analytic>
<monogr>
<title level="j" type="main">Nucleic Acids Research</title>
<idno type="publisher-id">nar</idno>
<idno type="hwp">nar</idno>
<idno type="pISSN">0305-1048</idno>
<idno type="eISSN">1362-4962</idno>
<imprint>
<publisher>Oxford University Press</publisher>
<date type="published">2009</date>
<date type="e-published">2009</date>
<biblScope unit="vol">37</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="1141">1141</biblScope>
<biblScope unit="page" to="1151">1151</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="subject">
<term>Molecular Biology</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus oup, element #text not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">nar</journal-id>
<journal-id journal-id-type="hwp">nar</journal-id>
<journal-title>Nucleic Acids Research</journal-title>
<issn pub-type="ppub">0305-1048</issn>
<issn pub-type="epub">1362-4962</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1093/nar/gkn1026</article-id>
<article-id pub-id-type="publisher-id">gkn1026</article-id>
<article-categories>
<subj-group>
<subject>Molecular Biology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Babaylova</surname>
<given-names>Elena</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Graifer</surname>
<given-names>Dmitri</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Malygin</surname>
<given-names>Alexey</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Stahl</surname>
<given-names>Joachim</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Shatsky</surname>
<given-names>Ivan</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>3</sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Karpova</surname>
<given-names>Galina</given-names>
</name>
<xref ref-type="aff" rid="AFF1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="COR1">*</xref>
</contrib>
</contrib-group>
<aff id="AFF1">
<sup>1</sup>
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia,
<sup>2</sup>
Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and
<sup>3</sup>
Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</aff>
<author-notes>
<corresp id="COR1">*To whom correspondence should be addressed. Tel:
<phone>+7 383 335 62 29</phone>
; Fax:
<fax>+7 383 333 36 77</fax>
; Email:
<email>karpova@niboch.nsc.ru</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>3</month>
<year>2009</year>
</pub-date>
<pub-date pub-type="epub">
<day>7</day>
<month>1</month>
<year>2009</year>
</pub-date>
<volume>37</volume>
<issue>4</issue>
<fpage>1141</fpage>
<lpage>1151</lpage>
<history>
<date date-type="received">
<day>11</day>
<month>9</month>
<year>2008</year>
</date>
<date date-type="rev-recd">
<day>19</day>
<month>11</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>9</day>
<month>12</month>
<year>2008</year>
</date>
</history>
<permissions>
<copyright-statement>© 2009 The Author(s)</copyright-statement>
<copyright-year>2009</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc/2.0/uk/">
<p>This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.</p>
</license>
</permissions>
<abstract>
<p>The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.</p>
</abstract>
</article-meta>
</front>
<body>
<sec sec-type="intro">
<title>INTRODUCTION</title>
<p>Hepatitis C virus (HCV) is one of the most dangerous human pathogens. It infects about 180 million people worldwide (
<xref ref-type="bibr" rid="B1">1</xref>
) and can lead to cirrhosis, hepatocellular carcinoma and other damages of the liver (
<xref ref-type="bibr" rid="B2">2</xref>
,
<xref ref-type="bibr" rid="B3">3</xref>
). HCV is a flavivirus whose genome consists of one positive 9600 nucleotide-long RNA strand lacking a cap at the 5′-terminus (
<xref ref-type="bibr" rid="B4">4</xref>
). One of the key steps of the HCV life cycle in human host cells is initiation of viral RNA translation. It is mediated by a specific highly structured motif comprising nucleotides 40–372 of the viral RNA; it includes the 5′ untranslated region and the adjacent part of the coding sequence, and is known as IRES (Internal Ribosomal Entry Site) (
<xref ref-type="bibr" rid="B5 B6 B7">5–7</xref>
) (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). The HCV IRES is responsible for cap-independent internal initiation of translation; it is an alternative to the conventional mechanism generally used by capped eukaryotic cellular mRNAs involving a number of initiation factors that provide association of the mRNA to the cap, leading 40S ribosome binding and scanning to the initiation codon (
<xref ref-type="bibr" rid="B6">6</xref>
). The organization of domains and several RNA motifs in the domains are conserved among different strains of HCV and related viruses of the
<italic>Flaviridae</italic>
family (
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B8">8</xref>
,
<xref ref-type="bibr" rid="B9">9</xref>
). The HCV IRES folds under physiological ionic conditions into a defined 3D structure whose integrity is essential for efficient IRES-mediated translation (
<xref ref-type="bibr" rid="B10">10</xref>
); spatial structures of the HCV IRES domains have already been resolved by X-ray crystallography and NMR (
<xref ref-type="bibr" rid="B11">11</xref>
).
<fig id="F1">
<label>Figure 1.</label>
<caption>
<p>Structural organization of the HCV IRES (
<xref ref-type="bibr" rid="B7">7</xref>
), the initiation AUG codon is underlined. RNA sequences complementary to deoxy-oligomers used for site-specific modification of the HCV IRES are marked with thick lines with arrows indicating the 5′-phosphates derivatized with alkylating groups. RNA sequences complementary to helper oligomers used together with the alkylating derivatives are marked with dotted lines. Nucleotides of the HCV IRES cross-linked to the oligonucleotide derivatives are shaded.</p>
</caption>
<graphic xlink:href="gkn1026f1"></graphic>
</fig>
</p>
<p>The sequence of events leading to the formation of 80S initiation complex with IRES competent for the start of viral RNA translation is well known (
<xref ref-type="bibr" rid="B12 B13 B14">12–14</xref>
). The functional roles of individual IRES domains and subdomains have been studied using mutant IRESes (
<xref ref-type="bibr" rid="B6">6</xref>
,
<xref ref-type="bibr" rid="B12 B13 B14 B15 B16">12–16</xref>
), cross-linking with chemically reactive derivatives of oligonucleotides complementary to target RNA sequences (
<xref ref-type="bibr" rid="B17">17</xref>
), and enzymatic and chemical footprinting (
<xref ref-type="bibr" rid="B15">15</xref>
,
<xref ref-type="bibr" rid="B16">16</xref>
,
<xref ref-type="bibr" rid="B18">18</xref>
). According to the generally accepted model, in the first step of the assembly of the 80S initiation complex, the HCV IRES forms a stable binary complex with the 40S subunit where the initiation codon is positioned on the P site without any initiation factors. Binary complex formation crucially depends on the basal portion of domain III (mainly hairpins IIId and IIIe) and on the four-way junction IIIabc (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). Thereafter, eIF3 and the ternary complex (eIF2•Met-tRNA
<sub>i</sub>
<sup>Met</sup>
•GTP) assemble to form a 48S preinitiation complex; binding of eIF3 is mediated by domain IIIb and four-way junction IIIabc. Binding of eIF5 to this complex promotes hydrolysis of eIF2-bound GTP and subsequent release of eIF2•GDP, which is modulated by HCV IRES domain II (
<xref ref-type="bibr" rid="B14">14</xref>
). Finally, the release of the remaining factor eIF3 requires eIF5B and GTP hydrolysis and occurs during joining of the 60S subunit to form the 80S initiation complex.</p>
<p>Knowledge concerning the ribosomal components responsible for binding of HCV IRES is important to understand the mechanism of translation initiation of the viral RNA and could be essential for the development of novel efficient therapies for HCV. However, the structural organization of the IRES-binding site on the 40S subunit is less studied than the functional role of the domains, and the resulting data are rather contradictory. Direct UV-induced cross-linking of HCV IRES to the 40S subunit revealed ribosomal protein S5 as the only target for cross-linking (
<xref ref-type="bibr" rid="B19">19</xref>
). Other investigators using HCV IRES with uridines randomly substituted by 4-thiouridines reported cross-linked proteins S2, S3, S10, S15, S16/S18 and S27 (
<xref ref-type="bibr" rid="B20">20</xref>
). These studies highlighted a set of proteins that could surround the 5′-terminal part of HCV RNA, but did not provide information on the specific ribosomal proteins neighboring particular RNA nucleotides. Based on the cross-linking results and the data on inability of 40S subunits from lower eukaryotes to bind HCV IRES, it was suggested that the IRES-binding site on the 40S subunit is formed by protein sequences specific of higher eukaryotes rather than by the 18S rRNA that is fairly similar between yeast and human (78% identity) [(
<xref ref-type="bibr" rid="B20">20</xref>
) and refs therein].</p>
<p>Cryo-electron microscopic (cryo-EM) visualization of HCV IRES in its complexes with the 40S subunit (
<xref ref-type="bibr" rid="B21">21</xref>
) and the 80S ribosome (
<xref ref-type="bibr" rid="B22">22</xref>
) provided a general idea of the positioning of the IRES on the ribosome; two ribosomal proteins, namely, S5 on the head of the subunit interface and S14 on the platform were mapped close to the apex of domain II of the IRES (
<xref ref-type="bibr" rid="B22">22</xref>
). However, domain II in contrast to subdomains IIId/e and the four-way junction IIIabc is not essential for binding of HCV IRES to 40S subunit (see above). Thus, ribosomal proteins that could contact keystone structural elements of HCV IRES leading to its high affinity for the 40S subunit remained unknown.</p>
<p>Highly sensitive tools to investigate the molecular environments of RNA ligands bound to the ribosome are RNA derivatives bearing a perfluorophenyl azide cross-linker at specific locations. Using a set of short mRNA analogues bearing such groups at the specific locations, the structure of the mRNA-binding channel of the human 80S ribosome has been studied in detail (
<xref ref-type="bibr" rid="B23 B24 B25 B26">23–26</xref>
). The data on ribosomal components neighboring mRNA nucleotides in positions −9 to +12 with respect to the first nucleotide of the P site codon were recently confirmed in a study of 48S initiation complexes using mRNAs bearing 4-thiouridines capable of forming ‘zero-length’ cross-links (
<xref ref-type="bibr" rid="B27">27</xref>
). This additionally demonstrated that perfluorophenyl azide-modified RNAs provide correct and adequate information on the structures of binding sites of various RNA ligands bound to the mammalian ribosome. Recently, we suggested a novel strategy that makes it possible to selective introduce perfluorophenyl azide groups into long structured RNAs (
<xref ref-type="bibr" rid="B28">28</xref>
). This strategy is based on the site-specific alkylation of an RNA with [4-(
<italic>N</italic>
-2-chloroethyl-
<italic>N</italic>
-methylamino)benzyl]phosphoramide derivatives of oligodeoxyribonucleotides complementary to a sequence adjacent to the target site. After hydrolysis of the phosphoramide bond in the covalent adduct formed, aryl azide moiety is selectively introduced at the liberated benzylamine group. Using HCV IRES derivative bearing the cross-linker at A296 in hairpin IIIe for a site-directed cross-linking study on human ribosomes, we determined the ribosomal components neighboring this keystone subdomain in the binary complex of the IRES with the 40S subunit. This approach makes it possible to monitor the molecular environment of each of structural elements of the IRES on the ribosome at every step of translation initiation of the viral RNA.</p>
<p>In this study, applying the strategy based on site-specific modification, we obtained HCV IRES derivatives bearing a perfluorophenyl azide group at various nucleotides in hairpin IIId or in the apex of domain II (
<xref ref-type="fig" rid="F1">Figure 1</xref>
), and with the use of these derivatives determined the ribosomal components neighboring these nucleotides in the binary complex of HCV IRES with the human 40S ribosomal subunit. The results obtained show which ribosomal components neighbor the structural elements of HCV IRES critical for its binding to the 40S subunit and which components surround the apex of domain II that is located close to the ribosomal surface based on cryo-EM data.</p>
</sec>
<sec sec-type="materials|methods">
<title>MATERIALS AND METHODS</title>
<p>Acrylamide,
<italic>N</italic>
,
<italic>N</italic>
′-methylene-
<italic>bis</italic>
-acrylamide and urea were purchased from AppliChem, ribonucleoside triphosphates were from Sigma, Sephadex G-75 from Pharmacia and T7 RNA polymerase from NEB. DNA oligomers complementary to definite sequences of the HCV IRES were synthesized in the Laboratory of Medical Chemistry (Institute of Chemical Biology and Fundamental Medicine SB RAS), [α-
<sup>32</sup>
P]GTP (1 mCi/nmol), 4-(
<italic>N</italic>
-2-chloroethyl-
<italic>N</italic>
-methylamino)benzylamine (ClRCH
<sub>2</sub>
NH
<sub>2</sub>
) and
<italic>N</italic>
-oxysuccinimide ester of 4-azidotetrafluorobenzoic acid were synthesized in the Laboratory of Biotechnology of this Institute.</p>
<sec>
<title>Preparation of labeled HCV IRES RNA</title>
<p>The fragment corresponding to HCV RNA nucleotides 40–372 was obtained by
<italic>in vitro</italic>
transcription of plasmid pXL40-372.NS (
<xref ref-type="bibr" rid="B29">29</xref>
) linearized by BamH1 (‘Fermentas’, Lietuva) as described (
<xref ref-type="bibr" rid="B17">17</xref>
) using [α-
<sup>32</sup>
P]GTP. It was isolated and examined as described (
<xref ref-type="bibr" rid="B28">28</xref>
). The specific radioactivity of the RNA transcript was typically about 25 000 cpm/pmol.</p>
</sec>
<sec sec-type="intro">
<title>Introduction of perfluorophenyl azide groups into the IRES</title>
<p>4-(
<italic>N</italic>
-2-chloroethyl-
<italic>N</italic>
-methylamino)benzyl-5′-phosphoramides of oligodeoxyribonucleotides were synthesized and purified as described (
<xref ref-type="bibr" rid="B17">17</xref>
). Site-specific modification of the HCV IRES was carried out as described (
<xref ref-type="bibr" rid="B28">28</xref>
) starting with 300 pmol of the RNA transcript. Isolation of the RNA modified with deoxy-oligomers derivatives, determination of the modified RNA nucleotides, hydrolysis of the phosphoramide bond in the deoxyribonucleotide derivatives attached to the RNA, selective introduction of perfluorophenyl azides at the aliphatic amine groups liberated after hydrolysis and purification of the photoactivatable derivatives of HCV IRES were carried out as described (
<xref ref-type="bibr" rid="B28">28</xref>
).</p>
</sec>
<sec sec-type="methods">
<title>Ribosomes, ribosomal complexes and cross-linking procedures</title>
<p>40S ribosomal subunits with intact rRNA were isolated from unfrozen human placenta as indicated (
<xref ref-type="bibr" rid="B30">30</xref>
). Prior to use, the subunits were re-activated by incubation in binding buffer A (20 mM Tris–HCl, pH 7.5, 100 mM KCl, 2.5 mM MgCl
<sub>2</sub>
and 0.25 mM spermidine) at 37°C for 10 min. Binary complexes of HCV IRES and 40S subunits were obtained by incubating the subunits (2.0 × 10
<sup>−6</sup>
M if not specified otherwise) with IRES (0.5 × 10
<sup>−6</sup>
M if not specified otherwise) in buffer A at 37°C for 10 min. The extent of binding of the 5′-
<sup>32</sup>
P-labeled RNAs to 40S subunits was examined by the nitrocellulose filtration assay using alkali pretreated filters as described (
<xref ref-type="bibr" rid="B31">31</xref>
). In the experiments on the determination of cross-linked ribosomal proteins, the binary complexes were formed starting from 10–20 pmol of the derivatized HCV IRES. UV-irradiation of the complexes was carried out according to (
<xref ref-type="bibr" rid="B25">25</xref>
). The distribution of the cross-linked labeled IRES between the rRNA and ribosomal proteins was examined by centrifugation in a 5–20% sucrose density gradient in the presence of SDS and EDTA as described (
<xref ref-type="bibr" rid="B32">32</xref>
).</p>
</sec>
<sec>
<title>Isolation and identification of ribosomal proteins cross-linked to HCV IRES derivatives</title>
<p>To isolate ribosomal proteins, the irradiated complexes were treated under conditions for dissociation of the subunits into the rRNA and proteins and exhaustively hydrolyzed with RNases A and T1 according to (
<xref ref-type="bibr" rid="B28">28</xref>
). The proteins were separated from oligoribonucleotides by gel-filtration and analyzed by 1D and 2D PAGE as described (
<xref ref-type="bibr" rid="B28">28</xref>
). To analyze cross-linked proteins by immunoprecipitation, we used rabbit antibodies against proteins S2 and S3, goat antibodies against proteins S3a and S13/S16 and sheep antibodies against protein S14 obtained as described (
<xref ref-type="bibr" rid="B33">33</xref>
). These antibodies did not cross-react with other 40S proteins. Irradiated binary complexes of the
<sup>32</sup>
P-labeled IRES derivatives and 40S subunits were supplied with 2-mercaptoethanol, SDS and EDTA to final concentrations of 0.2%, 0.1% and 10 mM, respectively, together with 100 pmol of unlabeled IRES. The mixture was incubated at 37°C for 10 min to dissociate the subunits into rRNA and proteins and then diluted with TBS (20 mM Tris–HCl, pH 7.5, 150 mM NaCl and 0.4% Triton X-100). The antibodies were immobilized on protein-G-Sepharose (Fluka) by stirring 20 μl of the sorbent suspension with 5–20 μl of a solution containing 50 mM Tris–HCl, pH 9.0, 4 M urea and 0.3 mg antibodies for 2 h at 0°C. The supernatant was discarded and the sorbent was washed three times with 100 μl TBS. To prevent unspecific binding of RNAs and cross-linked proteins to protein-G-Sepharose, the washed sorbent with immobilized antibodies was supplied with 20 μl of a solution containing 1 A
<sub>260</sub>
unit of total
<italic>Escherichia coli</italic>
tRNA and bovine serum albumin (final concentration of 0.5 mg/ml); the mixture was incubated 1 h at 0°C with stirring. The supernatant was discarded and the sorbent was mixed with a solution containing cross-linked proteins and incubated for 3 h at 0°C. The sorbent with bound cross-linked proteins was pelleted by low-speed centrifugation, washed five times with TBS buffer (100 μl each time) and their radioactivity was measured by Cherenkoff counting. The values obtained with antibodies in a control experiment with unmodified IRES were subtracted from the values obtained with IRES derivatives.</p>
</sec>
</sec>
<sec sec-type="results">
<title>RESULTS</title>
<sec>
<title>HCV IRES derivatives</title>
<p>To introduce photoactivatable perfluorophenyl azide groups into hairpin IIId or the apex of domain II of the IRES (
<xref ref-type="fig" rid="F1">Figure 1</xref>
), an approach based on the site-specific alkylation of RNA with phosphoramide derivatives of deoxyribonucleotides described previously (
<xref ref-type="bibr" rid="B28">28</xref>
) and schematically shown in
<xref ref-type="fig" rid="F2">Figure 2</xref>
a was applied. To increase the yield of IRES alkylation with the derivatives of deoxy-oligomers complementary to sequences 259–276 and 62–81, helper oligomers were used that facilitate binding of oligomers bearing the alkylating group to the structured RNA [see (
<xref ref-type="bibr" rid="B34">34</xref>
) and Refs. therein] (
<xref ref-type="fig" rid="F1">Figures 1</xref>
and
<xref ref-type="fig" rid="F2">2</xref>
b). Helpers were not used in the experiments with the derivative of oligomer complementary to sequence 248–267 since the yield of HCV IRES alkylation was sufficiently high. The covalent adducts resulting from IRES alkylation with the oligonucleotide derivatives were separated from unmodified RNA by denaturing PAGE on an 8% gel (the respective electrophoregrams are not shown). Generally, about 50% of the RNA was converted into the covalent adduct in the course of alkylation.
<fig id="F2">
<label>Figure 2.</label>
<caption>
<p>Scheme of site-specific introduction of a photoactivatable group into specific RNA sites based on the site-specific alkylation of the RNA with [4-(
<italic>N</italic>
-2-chloroethyl-
<italic>N</italic>
-methylamino)benzyl]-phosphoramides of oligodeoxyribonucleotides. (
<bold>a</bold>
) Order of chemical reactions. (
<bold>b</bold>
) Nucleotide sequence of HCV IRES. Target sequences for the deoxy-oligomer derivatives are given in bold, the respective complementary oligodeoxyribonucleotides are shown with either gray or black lines under the sequence, and the letters ‘p’ indicate the terminal 5′-phosphates derivatized with alkylating groups. Helper oligomers are shown by dotted lines. Lines with arrows above the sequence indicate primers used for reverse transcription (arrows show the direction of primer extension). RNA sequences complementary to the primers are given in italics. Either gray or black vertical arrows show cross-linked nucleotides.</p>
</caption>
<graphic xlink:href="gkn1026f2"></graphic>
</fig>
</p>
<p>To identify modified IRES nucleotides, reverse transcription was used that makes it possible to detect modified nucleotides by stop or pause of primer extension. The modification site is generally assumed to be the nucleotide 5′ of the primer extension stop site. Therefore, stops at A276 (
<xref ref-type="fig" rid="F3">Figure 3</xref>
a, left panel, lane 1), U264 (left panel, lane 2) and C84 (right panel, lane 3) correspond to modified A275, G263 and C83, respectively (
<xref ref-type="fig" rid="F1">Figures 1</xref>
and
<xref ref-type="fig" rid="F2">2</xref>
b). With HCV IRES alkylated with the derivative of oligomer complementary to sequence 248–267, a weaker stop at G263 was also observed (
<xref ref-type="fig" rid="F3">Figure 3</xref>
a, left panel, lane 2). This signal could not be assigned to the primer extension stop caused by the modification of U262 since uridine is unable to react with aromatic 2-chloroethyl amines at nearly neutral pH (
<xref ref-type="bibr" rid="B35">35</xref>
). Thus, the signal at nucleotide in position 263 was assigned to a pause of reverse transcription that could occur at guanine alkylated on the N7 atom, which is not involved in Watson–Crick base pairing. One could expect that in the heteroduplex of the HCV IRES with the derivative of oligomer complementary to sequence 248–267 the alkylating group is located closer to nucleotides G265–267 rather than to G263 (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). The unusual target of alkylation in this case might be due to peculiarities of the spatial structure of the IRES and also to the low reactivity of guanines in oligoG fragments towards alkylation with aromatic 2-chloroethyl amines (
<xref ref-type="bibr" rid="B36">36</xref>
). Weaker stops with the derivative of oligomer complementary to sequence 62–81 probably correspond to minor alkylation sites adjacent to C83 (taking into account the discussion above, these are G82 and A81).
<fig id="F3">
<label>Figure 3.</label>
<caption>
<p>Identification of sites of cross-linking of oligonucleotide derivatives to the HCV IRES by reverse transcription and binding properties of the HCV IRES derivatives. (
<bold>a</bold>
) Extension of [5′-
<sup>32</sup>
P]-labeled primers complementary to the HCV IRES sequences 331–350 (left panel) and 103–120 (right panel). Lanes 1, 2 and 3, primer extension on HCV IRES alkylated with derivatives of deoxy-oligomers complementary to the sequences 259–276, 248–267 and 62–81, respectively. Lanes K, primer extension with control HCV IRES incubated under conditions of alkylation but without oligomer derivatives. Lanes U, G, C, A, sequencing of HCV IRES. Arrows indicate positions of the reverse transcription stops caused by the cross-links. (
<bold>b</bold>
) Isotherms of binding of control unmodified HCV IRES (K
<italic>)</italic>
and its derivatives containing a perfluorophenyl azide group at A275, G263 or C83 to 40S subunits (1, 2 and 3, respectively). The initial concentration of the HCV IRES or its derivatives was 1.0 × 10
<sup>−7</sup>
M. Relative error was about 10%.</p>
</caption>
<graphic xlink:href="gkn1026f3"></graphic>
</fig>
</p>
<p>To introduce a photoactivatable moiety on modified RNA nucleotides, the phosphoramide bond in the covalent adducts obtained from
<sup>32</sup>
P-labeled IRES was hydrolyzed under mild acidic conditions (pH 4.1) that resulted in the release of the aliphatic amino group −RCH
<sub>2</sub>
NH
<sub>2</sub>
linked to the RNA. The modified IRES RNAs were purified by denaturing 8% PAGE and the −RCH
<sub>2</sub>
NH
<sub>2</sub>
moieties were selectively derivatized by treatment with the N-oxysuccinimide ester of 4-azidotetrafluorobenzoic acid. HCV IRES derivatives bearing photoactivatable groups at nucleotides A275, G263 or C83 were thus obtained (
<xref ref-type="fig" rid="F1">Figures 1</xref>
and
<xref ref-type="fig" rid="F2">2</xref>
b). These derivatives were used in the cross-linking experiments with human 40S ribosomal subunits in parallel with control HCV IRES (K) treated under identical conditions but without addition of alkylating derivatives of oligodeoxyribonucleotides.</p>
</sec>
<sec>
<title>Binding and cross-linking of photoactivatable HCV IRES derivatives to 40S subunits</title>
<p>Filter retention assays revealed that the affinities of HCV IRES derivatives bearing the cross-linker at A275, G263 or C83 to 40S subunits were similar to each other and did not significantly differ from that of unmodified IRES (
<xref ref-type="fig" rid="F3">Figure 3</xref>
b) as was shown previously with HCV IRES similarly derivatized at the nucleotides A296 and G87 (
<xref ref-type="bibr" rid="B28">28</xref>
). For the cross-linking experiments, saturating concentrations of 40S subunits were used. To obtain the cross-links, the binary complexes of the IRES derivatives and the 40S subunits were irradiated with mild UV light (>280 nm). Subsequent analyses of the distribution of the radioactive label between the rRNA and the ribosomal proteins after centrifugation in sucrose density gradients containing SDS and EDTA did not reveal radioactivity in the fractions containing 18S rRNA (the respective sedimentation profiles are not presented). Radioactivity was found only in the top fractions containing proteins and IRES not cross-linked to ribosomal components. Therefore, none of the HCV IRES derivatives cross-linked to the rRNA.</p>
</sec>
<sec>
<title>Identification of ribosomal proteins cross-linked to the photoactivatable HCV IRES derivatives</title>
<p>Ribosomal proteins cross-linked to derivatives of the IRES were first resolved by 1D SDS–PAGE. Prior to analysis, the RNA cross-linked to proteins was exhaustively hydrolyzed with RNases A and T1; ribosomal proteins were separated from labeled oligoribonucleotides resulting from hydrolysis by gel-filtration under strongly denaturing conditions (6 M guanidine chloride) to decrease possible effects related to unspecific binding of oligoribonucleotides to the proteins. The results presented in
<xref ref-type="fig" rid="F4">Figure 4</xref>
show that all IRES derivatives cross-linked mainly to two protein groups corresponding to the bands ‘
<italic>x</italic>
’ in the upper and ‘
<italic>y</italic>
’ in the lower parts of the gel, the intensities of the bands depending on the location of the cross-linker in the IRES. With the IRES derivatized at C83, the yield of cross-linking was significantly lower than with the two other derivatives (
<xref ref-type="fig" rid="F4">Figure 4</xref>
). It should be also noted that in the lane corresponding to the control RNA (lane K), weak diffuse bands appeared at positions similar to those of ‘
<italic>x</italic>
’ and ‘
<italic>y</italic>
’. These bands clearly originated from a small portion of unspecific complexes of ribosomal proteins with labeled oligoribonucleotides resulting from hydrolysis of the IRES and remaining in the protein fraction after gel-filtration (see above), and not separated from the proteins even under conditions of SDS–PAGE.
<fig id="F4">
<label>Figure 4.</label>
<caption>
<p>Autoradiogram of the 40S ribosomal proteins cross-linked to the
<sup>32</sup>
P-labeled derivatives of HCV IRES by 1D PAGE in the presence of SDS. Nucleotides bearing the cross-linker are indicated. Lane K, proteins isolated from an irradiated control complex of unmodified HCV IRES with 40S subunits. Lane TP40, silver stained gel; positions of the 40S ribosomal proteins are indicated (
<xref ref-type="bibr" rid="B43">43</xref>
,
<xref ref-type="bibr" rid="B44">44</xref>
).</p>
</caption>
<graphic xlink:href="gkn1026f4"></graphic>
</fig>
</p>
<p>To identify candidate cross-linked proteins, we took into account our previous data (
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
) allowing evaluation of the effect of oligoribonucleotides cross-linked to ribosomal proteins based on their electrophoretic mobilities. Moreover, exhaustive hydrolysis of HCV IRES with RNases A and T1 should produce fragments ApA*pApGp, G*pUp and C*pCp/C*p (asterisks indicate modified nucleotides) cross-linked to proteins in the case of the HCV IRES derivatized at the A275, G263 and C83, respectively (
<xref ref-type="fig" rid="F1">Figures 1</xref>
and
<xref ref-type="fig" rid="F2">2</xref>
b). These fragments somewhat decrease the electrophoretic mobility of the cross-linked proteins (the greater the molecular mass of the protein, the lower the effect of the cross-linked oligomer). Considering all these factors, one could suggest that bands ‘
<italic>x</italic>
’ might correspond to cross-linked proteins S2/S3a and less probably to protein S6, and bands ‘
<italic>y</italic>
’ to cross-linked proteins S14/S16/S19/S23/S26. With the IRES derivatized at A275 and at G263, a minor band in the middle of the electrophoregram was also detected; its position with respect to proteins S9, S7 and S5 was very similar to that of cross-linked S5 in the experiments with the IRES derivatized at A296 (
<xref ref-type="bibr" rid="B28">28</xref>
). With IRES modified at A275 an additional weak band could be seen at position corresponding to a single protein p40, which was shown earlier to cross-link to A296 in subdomain IIIe (
<xref ref-type="bibr" rid="B28">28</xref>
).</p>
<p>Cross-linked protein(s) were more precisely identified resolving them after exhaustive hydrolysis of HCV IRES with RNAses A and T1 by ‘basic-SDS’ 2D PAGE (separation in the first dimension was at pH 8.3, and in the second dimension at pH 6.75 in the presence of SDS), the results are presented in
<xref ref-type="fig" rid="F5">Figure 5</xref>
. Cross-linked proteins were identified considering that in the electrophoretic system used, oligoribonucleotide fragments cross-linked to proteins decrease their mobilities in the first dimension but barely affect their migration in the second dimension. Consequently, the radioactive spot of the cross-linked protein should be somewhat shifted to the left of the corresponding stained spot of the unmodified protein. The extents of the shifts were evaluated based on data of our previous studies on cross-linking of short mRNA analogues to ribosomes (
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
). The results showed that HCV IRES derivatized at the A275 and the G263 cross-linked to the same three groups of proteins, namely, to S3/S3a (less probably, S2), S10/S15/S14 and S13/S16 (much less probably, S25), the distribution of cross-links between these groups depended on the location of the cross-linker in the HCV IRES (
<xref ref-type="fig" rid="F5">Figure 5</xref>
a and b). With C83-modified IRES, only two spots corresponding to cross-linked proteins S10/S15/S14 and S13/S16 were detected (
<xref ref-type="fig" rid="F5">Figure 5</xref>
c). Given the results of the 1D gels (
<xref ref-type="fig" rid="F4">Figure 4</xref>
), more exact identification of the cross-linked proteins could be performed. In the group S13/S16/S25, only protein S16 was actually cross-linked since S13 and S25 were not among the candidate cross-linked proteins (see above). For the same reason, proteins S10 and S15 could be excluded from the group S10/S15/S14 and the only cross-linked protein was S14. Similarly, protein S3a could be identified as the only cross-linked protein in the group S3/S3a. Thus, combining the data of 1D and 2D PAGE made it possible to conclude that all HCV IRES derivatives used here cross-linked mainly to proteins S14 and S16, and the derivatives bearing the modifying group at A275 or G263 also cross-linked to protein S3a (
<xref ref-type="fig" rid="F5">Figure 5</xref>
d).
<fig id="F5">
<label>Figure 5.</label>
<caption>
<p>Analysis by 2D PAGE of proteins cross-linked to
<sup>32</sup>
P-labeled HCV IRES derivatives in the binary complexes with the 40S subunits. (
<bold>a–c</bold>
), The autoradiograms correspond to the experiments with HCV IRES derivatives containing the cross-linker at nucleotide A275, G263 or C83 (marked in the respective panels). (
<bold>d</bold>
), Coomassie stained gel corresponding to (b) (as example); the positions of the proteins are indicated (
<xref ref-type="bibr" rid="B44">44</xref>
,
<xref ref-type="bibr" rid="B45">45</xref>
). The locations of the radioactive spots corresponding to the cross-linked proteins are indicated on the stained gel by dotted lines. The cross-linked proteins are highlighted by an asterisk (*), and are also in bold in (d).</p>
</caption>
<graphic xlink:href="gkn1026f5"></graphic>
</fig>
</p>
<p>The identity of the cross-linked proteins S3a, S14 and S16 was confirmed by immunoprecipitation using specific antibodies. In parallel, immunoprecipitation with antibodies against proteins S2 and S3 whose modification was practically excluded on the basis of the comparison of the results of 1D and 2D PAGE analysis was carried out as control. The results shown in
<xref ref-type="fig" rid="F6">Figure 6</xref>
are in a good accordance with the data of 1D and 2D PAGE separations discussed above (
<xref ref-type="fig" rid="F5">Figure 5</xref>
) and confirm cross-linking of the HCV IRES derivatives to ribosomal proteins S3a, S14 and S16.
<fig id="F6">
<label>Figure 6.</label>
<caption>
<p>Analysis of 40S proteins cross-linked to
<sup>32</sup>
P-labeled HCV IRES derivatives (nucleotides bearing the cross-linker are indicated at the top) by immunoprecipitation usin
<underline>g</underline>
antibodies against mammalian 40S ribosomal proteins (indicated at the bottom).</p>
</caption>
<graphic xlink:href="gkn1026f6"></graphic>
</fig>
</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>DISCUSSION</title>
<sec sec-type="intro">
<title>Choice of sequences within the HCV IRES for the site-specific introduction of cross-linker and binding properties of the derivatized IRES</title>
<p>The criteria for the choice of derivatives of oligonucleotides for introduction of cross-linker into the HCV IRES were based on our earlier data on alkylation of the IRES with the derivatives of oligodeoxyribonucleotides complementary to its specific sequences and testing abilities of the resulting covalent adducts to bind to the 40S subunits (
<xref ref-type="bibr" rid="B17">17</xref>
). The oligos were 20-mers that was enough to enable them to form relatively stable heteroduplexes specifically with the target sequences, and contained an alkylating group at the 5′-termini. This group generally modifies RNA nucleotides near the 5′-end of the oligomer bound to the RNA, the more accessible is target RNA sequence, the higher is yield of the covalent adduct (
<xref ref-type="bibr" rid="B34">34</xref>
). To increase the yields of the covalent adducts, we used helper oligomers to disrupt the IRES secondary structure in the target region and thus to facilitate formation of the heteroduplexes with alkylating derivatives. We found that affinity of 40S subunits for the HCV IRES covalent adducts bearing deoxy oligomers complementary to sequences in hairpin IIId and IIIe was drastically lower than that for the unmodified IRES (
<xref ref-type="bibr" rid="B17">17</xref>
). In contrast, attachment of a deoxy oligomer complementary to the apical loop of domain II barely affected the affinity of the IRES for the 40S subunits (
<xref ref-type="bibr" rid="B17">17</xref>
). These results confirmed earlier data (
<xref ref-type="bibr" rid="B12 B13 B14 B15 B16">12–16</xref>
,
<xref ref-type="bibr" rid="B18">18</xref>
) that HCV IRES subdomains IIId and IIIe are the main determinants for binding to 40S subunits and that domain II does not contribute to the binding. Based on all these, we chose target RNA sequences for site-specific introduction of the cross-linker (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). Two of them were in hairpin IIId [hairpin IIIe has been studied in our previous report (
<xref ref-type="bibr" rid="B28">28</xref>
)] and third one was mainly in the stem of domain II to introduce cross-linker to the middle of the apical loop [since IRES derivative with a photoactivatable group on the G87 used in our previous study (
<xref ref-type="bibr" rid="B28">28</xref>
) did not cross-linked to the 40S subunit].</p>
<p>Binding experiments showed that introduction of an aryl azide cross-linker at nucleotides C83, G263 and A275 almost did not affect affinity of the HCV IRES to the 40S subunits (
<xref ref-type="fig" rid="F3">Figure 3</xref>
b). This implies that HCV IRES modified at these nucleotides retained its functional activity in the binding to the 40S subunit. This conclusion could be done on the IRES modified at nucleotides G263 or A275 in subdomain IIId critical for the binding to the 40S subunit as well as on the IRES modified at the C83 in domain II, which is not essential for the binding since apical hairpins of domain II and subdomain IIId adopt similar folds (
<xref ref-type="bibr" rid="B37">37</xref>
). Besides, apical hairpin of domain II does not interact with other subdomains of the IRES (
<xref ref-type="bibr" rid="B37">37</xref>
) so modification in the loop should not affect the IRES spatial structure.</p>
</sec>
<sec>
<title>Ribosomal components neighboring the HCV IRES on the 40S subunit</title>
<p>Two proteins cross-linked to HCV IRES derivatives, S3a and S16, were found previously to also cross-link using the derivative bearing perfluorophenyl azide at A296 in subdomain IIIe (
<xref ref-type="bibr" rid="B28">28</xref>
). Besides, this latter derivative as mentioned above, cross-linked to proteins S5 and p40 but much more strongly than the HCV IRES derivatives used here that bore the modifying group in subdomain IIId suggesting that these proteins are closer to hairpin IIIe than to IIId. On the other hand, cross-linking to protein S14 was not found with HCV IRES bearing the modifying group in hairpin IIIe (
<xref ref-type="bibr" rid="B28">28</xref>
), which implies that this protein likely neighbors subdomain IIId and the apical loop of domain II but not subdomain IIIe. We failed to find any cross-links of HCV IRES derivatized at the G87 (in the upper part of the stem of domain II) with the 40S subunit in the binary complex (
<xref ref-type="bibr" rid="B28">28</xref>
), in contrast to the derivative bearing the same cross-linker at C83 (in the apical loop of domain II) used here (
<xref ref-type="fig" rid="F1">Figure 1</xref>
). This is a notable result since a distance between the C83 and the G87 is within the length of the cross-linker (14 Å) used in this study (
<xref ref-type="bibr" rid="B28">28</xref>
). Therefore, we have a basis to suggest that a distance between the C83 and the 40S subunit does fall within the range of cross-linker action while the distance from the G87 to the subunit does not. This means that the apical loop of domain II in the binary complex is located closer to the 40S subunit than the stem of this domain.</p>
<p>The results obtained in the present study and in our previous report (
<xref ref-type="bibr" rid="B28">28</xref>
) significantly differ from data of two earlier reports on the determination of the 40S subunit components neighboring the IRES as a whole during initiation of the viral RNA translation discussed in the Introduction (
<xref ref-type="bibr" rid="B19">19</xref>
,
<xref ref-type="bibr" rid="B20">20</xref>
). In the article by Otto
<italic>et al.</italic>
(
<xref ref-type="bibr" rid="B20">20</xref>
), proteins S2, S3, S10, S15, S16/S18 and S27 were reported to be cross-linked, of which S3, S2 and S27 were the major targets. It is now clear that a significant part of this set of proteins, namely, proteins S2, S3 and S15, belongs to the environment of the mRNA at the decoding site and downstream of it. This is based on data on cross-linking of these proteins in 80S ribosomal complexes to unstructured mRNA analogues with perfluorophenyl azide-modified nucleotides in positions +4 to +12 (
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
) or with 4-thiouridines in positions +4 to +7 (
<xref ref-type="bibr" rid="B38">38</xref>
) with respect to the first nucleotide of the P site codon. Recently these results were confirmed with 4-thiouridine-containing mRNAs in the 48S/80S initiation complexes, in which the modified nucleotide in position +11 cross-linked to proteins S3 and S2, and in positions +4/+5 cross-linked to protein S15 (
<xref ref-type="bibr" rid="B27">27</xref>
). On the cryo-EM images of the 40S subunit (
<xref ref-type="bibr" rid="B39">39</xref>
), locations of proteins S2 and S3 are similar to those of their prokaryotic counterparts S5p and S3p in the 30S subunit that form the mRNA entry site, and S15 lies on the intersubunit side of the small subunit. All these point to unlikely neighborhood of the mentioned proteins and the 5′-untranslated part of HCV IRES. Thus, we have all reasons to suggest that proteins S2, S3 and S15 found in the report (
<xref ref-type="bibr" rid="B20">20</xref>
) cross-linked not to the 5′-untranslated region of the HCV IRES but to the part of the coding sequence domain IV according to the structure presented in (
<xref ref-type="bibr" rid="B8">8</xref>
) that could contain 4-thiouridines in positions +2, +10 and +13. Consequently, only proteins S10, S16/S18 and S27 can be considered as cross-linked to the 5′-untranslated region of the HCV RNA in the binary complex. This set overlaps the set found here only by protein S16. One possible explanation for this discrepancy is that proteins S10 and S27 could be cross-linked to 4-thiouridines located in IRES positions far from C83, G263, A275 or A296 that bore perfluorophenyl azide cross-linkers. As for the data presented in (
<xref ref-type="bibr" rid="B19">19</xref>
), they cannot be compared directly with our results because in the former experiments, mixtures of HCV IRES and HeLa cytoplasmic extracts but not the purified binary complexes were used for irradiation. This did not make it possible to specify which steps of HCV RNA translation were monitored.</p>
<p>Our results reported here and previously (
<xref ref-type="bibr" rid="B28">28</xref>
) provide a view of the molecular environment of subdomains IIId/e, the main determinants for HCV IRES binding to the 40S subunit, and of the apical loop of domain II, which was suggested to locate close to the head of the subunit near protein S5 and the mRNA exit site on the basis of cryo-EM data (
<xref ref-type="bibr" rid="B22">22</xref>
). According to our results, protein S14 neighbors both sides of the stem of subdomain IIId and the apical loop of domain II, protein S16 is located close to both hairpins IIId/e and to the apical loop of domain II, protein S3a neighbors hairpins IIId/e, and proteins S5 and p40 are mainly close to subdomain IIIe. Remarkably, no cross-links to the 18S rRNA were detected confirming the earlier suggestion that ribosomal proteins but not the 18S rRNA play the main role in binding of the HCV IRES to the 40S subunit (
<xref ref-type="bibr" rid="B20">20</xref>
).</p>
<p>The sets of ribosomal proteins cross-linked to perfluorophenyl azide-derivatized HCV IRES partially overlapped the sets of proteins cross-linked in the 80S ribosomal complexes to mRNA analogues that bore similar cross-linkers at nucleotides in positions −9 to +12 (
<xref ref-type="bibr" rid="B25">25</xref>
,
<xref ref-type="bibr" rid="B26">26</xref>
). Only protein S14 cross-linked both to HCV IRES derivatives and to mRNA analogues bearing cross-linkers in positions −6 to −9 (
<xref ref-type="bibr" rid="B25">25</xref>
). Protein S14 was also cross-linked to mRNAs bearing 4-thiouridine in the mentioned positions; besides, protein S5 was cross-linked to 4-thiouridines in positions −3/−4 (
<xref ref-type="bibr" rid="B27">27</xref>
). Proteins S5 and S14 are homologous to prokaryotic S7p and S11p, respectively that are known as constituents of the 30S ribosomal exit site of the mRNA (
<xref ref-type="bibr" rid="B40">40</xref>
). Thus, the HCV IRES site has minor overlap with the mRNA-binding channel and is located near the mRNA exit site.</p>
</sec>
<sec>
<title>Location of HCV IRES on the 40S subunit</title>
<p>We applied our cross-linking results to the cryo-EM model of the mammalian 40S ribosomal subunit (
<xref ref-type="bibr" rid="B39">39</xref>
) (
<xref ref-type="fig" rid="F7">Figure 7</xref>
a) and compared the location of the IRES cross-linked to the proteins with its position on the 40S subunit in the binary complex deduced from cryo-EM data (
<xref ref-type="bibr" rid="B21">21</xref>
) (
<xref ref-type="fig" rid="F7">Figure 7</xref>
b). Cryo-EM data on the 80S ribosomal complex with HCV IRES (
<xref ref-type="bibr" rid="B22">22</xref>
) were not considered since this complex reflects other steps of initiation of viral RNA translation. It should be noted that comparison of our results with cryo-EM-derived data has its limitations since only positions of the conserved parts of ribosomal proteins could be mapped on the models derived from cryo-EM data, while the IRES likely interacts with higher eukaryote-specific sequences of the proteins (
<xref ref-type="bibr" rid="B20">20</xref>
) (mentioned in the Introduction section). Nevertheless, the cross-linking results as a whole are in good agreement with the data obtained by cryo-EM reconstitution of the binary complex of HCV IRES with the 40S subunit (compare
<xref ref-type="fig" rid="F7">Figure 7</xref>
a and b). Clearly, all the cross-linked proteins are located mainly on the solvent side of the 40S subunit opposite the beak around the cleft between the head and the body, near a site homologous to the mRNA exit site in the 30S subunit and overlapping the E site. The only pronounced dissimilarity between our cross-linking results and the cryo-EM data is that protein S5 appears to neighbor subdomain IIIe (
<xref ref-type="bibr" rid="B28">28</xref>
) rather than domain II (
<xref ref-type="bibr" rid="B21">21</xref>
). This in fact is not a real discrepancy because the absence of cross-link cannot indicate lack of interaction [for a detailed discussion, see (
<xref ref-type="bibr" rid="B28">28</xref>
)], and our results do not exclude possible interaction of protein S5 with domain II of HCV IRES.
<fig id="F7">
<label>Figure 7.</label>
<caption>
<p>Structural model of the mammalian 40S ribosomal subunit (
<bold>a</bold>
) and of the complex of the 40S subunit with HCV IRES (
<bold>b</bold>
) obtained from cryo-EM data. View from the solvent side. (a) Model of the 40S subunit of the elongating ribosome [adapted from (
<xref ref-type="bibr" rid="B39">39</xref>
), PDB accession number 2ZKQ]. Locations of ribosomal proteins cross-linked to HCV IRES nucleotides belonging to domain II and subdomains IIId (this study) and IIIe (
<xref ref-type="bibr" rid="B17">17</xref>
) are shown (p40 in orange, S5 in purple, S14 in dark blue and S16 in red), prokaryotic homologues of these proteins are indicated in brackets. All other proteins that have prokaryotic counterparts are shown in green and proteins specific for eukaryotes are not shown; gray balls represent the 18S rRNA. (b) Surface representation of the 40S ribosomal subunit in complex with the HCV IRES [adapted from (
<xref ref-type="bibr" rid="B21">21</xref>
)]. The cryo-EM map is in yellow. The difference map corresponding to the HCV IRES is superimposed and presented in purple. The suggested location of hairpins IIId/e is boxed. Asterics show sites of conformational changes in the 40S subunit caused by HCV IRES binding.</p>
</caption>
<graphic xlink:href="gkn1026f7"></graphic>
</fig>
</p>
<p>Protein S3a neighboring the HCV IRES according to our data has no prokaryotic counterparts, and therefore its position on the eukaryotic 40S subunit remains unknown. It is conceivable that this protein is located in the same region of the subunit as p40, S5, S14 and S16, namely on the solvent side of the head far from the beak. On the cryo-EM map of the mammalian 40S ribosomal subunit, density corresponding to eukaryote-specific proteins appears close to proteins S14, S5 and p40 (
<xref ref-type="bibr" rid="B39">39</xref>
). A protein density located at the platform near proteins S14 and p40 most likely conforms position of S3a since earlier immunoelectron microscopy studies showed that antibodies against S3a bound at the mentioned region (
<xref ref-type="bibr" rid="B41">41</xref>
).</p>
<p>Thus, our cross-linking results provide significant novel information on the organization of the HCV IRES-binding site on the 40S ribosomal subunit in the binary complex, which forms during the first step of translation initiation of the viral RNA, highlighting the key role played by the ribosomal proteins p40, S3a, S5, S14 and S16 in the organization of this site. The binding sites of various IRESes on the 40S subunit could be significantly different. For instance, in contrast to the HCV IRES, Cricket paralysis virus (CrPV) IRES is located entirely in the mRNA-binding cleft, reaching into the P and A sites (
<xref ref-type="bibr" rid="B42">42</xref>
). Nevertheless, both IRES-binding sites share some extent of similarity: both CrPV IRES and HCV IRES neighbor protein S5 and moreover, the CrPV IRES is located close to S16 as seen upon comparing the models presented in (
<xref ref-type="bibr" rid="B21">21</xref>
,
<xref ref-type="bibr" rid="B39">39</xref>
,
<xref ref-type="bibr" rid="B42">42</xref>
). It is reasonable to suggest also that proteins play a key role in the formation of the 40S ribosomal-binding site not only for HCV IRES but also for other IRESes. However, we cannot extend this suggestion to the later steps of initiation of translation of viral RNAs since in the 80S ribosomal complex with HCV IRES, close proximity of the IRES with 18S rRNA helices was detected (
<xref ref-type="bibr" rid="B22">22</xref>
).</p>
</sec>
</sec>
<sec>
<title>FUNDING</title>
<p>This work was supported by the Russian Foundation for Basic Research (grant #08-04-00508 to G.K.) and the Presidium of Russian Academy of Sciences (Program on Molecular and Cell Biology). The Open Access publication charges were waived by Oxford University Press.</p>
<p>
<italic>Conflict of interest statement</italic>
. None declared.</p>
</sec>
</body>
<back>
<ack>
<title>ACKNOWLEDGEMENTS</title>
<p>We gratefully thank Anne-Lise Haenni for critical reading of this manuscript.</p>
</ack>
<ref-list>
<title>REFERENCES</title>
<ref id="B1">
<label>1</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brocard</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Paulous</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Komarova</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Deveaux</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Kean</surname>
<given-names>KM</given-names>
</name>
</person-group>
<article-title>Evidence that PTB does not stimulate HCV IRES-driven translation</article-title>
<source>Virus Genes</source>
<year>2007</year>
<volume>35</volume>
<fpage>5</fpage>
<lpage>15</lpage>
</nlm-citation>
</ref>
<ref id="B2">
<label>2</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wasley</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Alter</surname>
<given-names>MJ</given-names>
</name>
</person-group>
<article-title>Epidemiology of hepatitis C: geographic differences and temporal trends</article-title>
<source>Semin. Liver Dis.</source>
<year>2000</year>
<volume>20</volume>
<fpage>1</fpage>
<lpage>16</lpage>
</nlm-citation>
</ref>
<ref id="B3">
<label>3</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pawlotsky</surname>
<given-names>JM</given-names>
</name>
</person-group>
<article-title>Pathophysiology of hepatitis C virus infection and related liver disease</article-title>
<source>Trends Microbiol.</source>
<year>2004</year>
<volume>12</volume>
<fpage>96</fpage>
<lpage>102</lpage>
</nlm-citation>
</ref>
<ref id="B4">
<label>4</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rosenberg</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Recent advances in the molecular biology of hepatitis C virus</article-title>
<source>J. Mol. Biol.</source>
<year>2001</year>
<volume>313</volume>
<fpage>451</fpage>
<lpage>464</lpage>
</nlm-citation>
</ref>
<ref id="B5">
<label>5</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsukiyama-Kohara</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Iizuka</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Kohara</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Nomoto</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Internal ribosome entry site within hepatitis C virus RNA</article-title>
<source>J. Virol.</source>
<year>1992</year>
<volume>66</volume>
<fpage>1476</fpage>
<lpage>1483</lpage>
</nlm-citation>
</ref>
<ref id="B6">
<label>6</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pestova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Shatsky</surname>
<given-names>IN</given-names>
</name>
<name>
<surname>Fletcher</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Hellen</surname>
<given-names>C.UT</given-names>
</name>
</person-group>
<article-title>A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs</article-title>
<source>Genes Dev.</source>
<year>1998</year>
<volume>12</volume>
<fpage>67</fpage>
<lpage>83</lpage>
</nlm-citation>
</ref>
<ref id="B7">
<label>7</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hellen</surname>
<given-names>C.UT</given-names>
</name>
<name>
<surname>Sarnow</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Internal ribosome entry sites in eukaryotic mRNA molecules</article-title>
<source>Genes Dev.</source>
<year>2001</year>
<volume>15</volume>
<fpage>1593</fpage>
<lpage>1612</lpage>
</nlm-citation>
</ref>
<ref id="B8">
<label>8</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honda</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Beard</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Ping</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Lemon</surname>
<given-names>SM</given-names>
</name>
</person-group>
<article-title>A phylogenetically conserved stem-loop structure at the 50 border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation</article-title>
<source>J. Virol.</source>
<year>1999</year>
<volume>73</volume>
<fpage>1165</fpage>
<lpage>1174</lpage>
</nlm-citation>
</ref>
<ref id="B9">
<label>9</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pestova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Hellen</surname>
<given-names>CU</given-names>
</name>
</person-group>
<article-title>Internal initiation of translation of bovine viral diarrhea virus RNA</article-title>
<source>Virology</source>
<year>1999</year>
<volume>258</volume>
<fpage>249</fpage>
<lpage>256</lpage>
</nlm-citation>
</ref>
<ref id="B10">
<label>10</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kieft</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jubin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Doudna</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold</article-title>
<source>J. Mol. Biol.</source>
<year>1999</year>
<volume>292</volume>
<fpage>513</fpage>
<lpage>529</lpage>
</nlm-citation>
</ref>
<ref id="B11">
<label>11</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pisarev</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Shirokikh</surname>
<given-names>NE</given-names>
</name>
<name>
<surname>Hellen</surname>
<given-names>C.UT</given-names>
</name>
</person-group>
<article-title>Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites</article-title>
<source>C.R. Biologies</source>
<year>2005</year>
<volume>328</volume>
<fpage>589</fpage>
<lpage>605</lpage>
</nlm-citation>
</ref>
<ref id="B12">
<label>12</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otto</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>The pathway of HCV IRES-mediated translation initiation</article-title>
<source>Cell</source>
<year>2004</year>
<volume>119</volume>
<fpage>369</fpage>
<lpage>380</lpage>
</nlm-citation>
</ref>
<ref id="B13">
<label>13</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ji</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Leary</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Doudna</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>16990</fpage>
<lpage>16995</lpage>
</nlm-citation>
</ref>
<ref id="B14">
<label>14</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Locker</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Easton</surname>
<given-names>LE</given-names>
</name>
<name>
<surname>Lukavsky</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly</article-title>
<source>EMBO J.</source>
<year>2007</year>
<volume>26</volume>
<fpage>795</fpage>
<lpage>805</lpage>
</nlm-citation>
</ref>
<ref id="B15">
<label>15</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolupaeva</surname>
<given-names>VG</given-names>
</name>
<name>
<surname>Pestova</surname>
<given-names>TV</given-names>
</name>
<name>
<surname>Hellen</surname>
<given-names>CU</given-names>
</name>
</person-group>
<article-title>An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus</article-title>
<source>J. Virol.</source>
<year>2000</year>
<volume>74</volume>
<fpage>6242</fpage>
<lpage>6250</lpage>
</nlm-citation>
</ref>
<ref id="B16">
<label>16</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kieft</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Jubin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Doudna</surname>
<given-names>JA</given-names>
</name>
</person-group>
<article-title>Mechanism of ribosome recruitment by hepatitis C IRES RNA</article-title>
<source>RNA</source>
<year>2001</year>
<volume>7</volume>
<fpage>194</fpage>
<lpage>206</lpage>
</nlm-citation>
</ref>
<ref id="B17">
<label>17</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malygin</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Laletina</surname>
<given-names>ES</given-names>
</name>
<name>
<surname>Shatsky</surname>
<given-names>IN</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>An approach to identify the functionally important RNA sites by complementary addressed modification</article-title>
<source>Molecular Biology</source>
<year>2003</year>
<volume>37</volume>
<fpage>873</fpage>
<lpage>879</lpage>
<comment>(translated from Molekulyarnaya Biologiya 37, 1027–1034)</comment>
</nlm-citation>
</ref>
<ref id="B18">
<label>18</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lytle</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Robertson</surname>
<given-names>HD</given-names>
</name>
</person-group>
<article-title>Domains on the hepatitis C virus internal ribosome entry site for 40S subunit binding</article-title>
<source>RNA</source>
<year>2002</year>
<volume>8</volume>
<fpage>1045</fpage>
<lpage>1055</lpage>
</nlm-citation>
</ref>
<ref id="B19">
<label>19</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fukushi</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Okada</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kageyama</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Hoshino</surname>
<given-names>FB</given-names>
</name>
<name>
<surname>Katayama</surname>
<given-names>K</given-names>
</name>
</person-group>
<article-title>Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus</article-title>
<source>J. Biol. Chem.</source>
<year>2001</year>
<volume>276</volume>
<fpage>20824</fpage>
<lpage>20826</lpage>
</nlm-citation>
</ref>
<ref id="B20">
<label>20</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Otto</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Lukavsky</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Lancaster</surname>
<given-names>AM</given-names>
</name>
<name>
<surname>Sarnow</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction</article-title>
<source>RNA</source>
<year>2002</year>
<volume>8</volume>
<fpage>913</fpage>
<lpage>923</lpage>
</nlm-citation>
</ref>
<ref id="B21">
<label>21</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spahn</surname>
<given-names>C.MT</given-names>
</name>
<name>
<surname>Kieft</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Grassucci</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Penczek</surname>
<given-names>PA</given-names>
</name>
<name>
<surname>Zhou</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Doudna</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit</article-title>
<source>Science</source>
<year>2001</year>
<volume>291</volume>
<fpage>1959</fpage>
<lpage>1962</lpage>
</nlm-citation>
</ref>
<ref id="B22">
<label>22</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boehringer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Thermann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Ostareck-Lederer</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Stark</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES</article-title>
<source>Structure</source>
<year>2005</year>
<volume>13</volume>
<fpage>1695</fpage>
<lpage>1706</lpage>
</nlm-citation>
</ref>
<ref id="B23">
<label>23</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demeshkina</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Repkova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ven’yaminova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P and E sites, respectively: a cross-linking study with mRNA analogues carrying aryl azide group at either the uracil or the guanine residue</article-title>
<source>RNA</source>
<year>2000</year>
<volume>6</volume>
<fpage>1727</fpage>
<lpage>1736</lpage>
</nlm-citation>
</ref>
<ref id="B24">
<label>24</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Demeshkina</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Laletina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Meschaninova</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ven’yaminova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Positioning of mRNA codons with respect to 18S rRNA at the P and E sites of human ribosome</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2003</year>
<volume>1627</volume>
<fpage>39</fpage>
<lpage>46</lpage>
</nlm-citation>
</ref>
<ref id="B25">
<label>25</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graifer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Molotkov</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Styazhkina</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Demeshkina</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Bulygin</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Eremina</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Laletina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ven'yaminova</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Variable and conserved elements of human ribosomes surrounding the mRNA at the decoding and upstream sites</article-title>
<source>Nucleic Acids Res.</source>
<year>2004</year>
<volume>32</volume>
<fpage>3282</fpage>
<lpage>3293</lpage>
</nlm-citation>
</ref>
<ref id="B26">
<label>26</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molotkov</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Popugaeva</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Bulygin</surname>
<given-names>KN</given-names>
</name>
<name>
<surname>Meschaninova</surname>
<given-names>MI</given-names>
</name>
<name>
<surname>Ven’yaminova</surname>
<given-names>AG</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>mRNA 3′ of the A site bound codon is located close to protein S3 on the human 80S ribosome</article-title>
<source>RNA Biology</source>
<year>2006</year>
<volume>3</volume>
<fpage>122</fpage>
<lpage>129</lpage>
</nlm-citation>
</ref>
<ref id="B27">
<label>27</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pisarev</surname>
<given-names>AV</given-names>
</name>
<name>
<surname>Kolupaeva</surname>
<given-names>VG</given-names>
</name>
<name>
<surname>Yusupov</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Hellen</surname>
<given-names>C.UT</given-names>
</name>
<name>
<surname>Pestova</surname>
<given-names>TV</given-names>
</name>
</person-group>
<article-title>Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes</article-title>
<source>EMBO J.</source>
<year>2008</year>
<volume>27</volume>
<fpage>1609</fpage>
<lpage>1621</lpage>
</nlm-citation>
</ref>
<ref id="B28">
<label>28</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Laletina</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Malygin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Ivanov</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Shatsky</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit</article-title>
<source>Nucleic Acids Res.</source>
<year>2006</year>
<volume>34</volume>
<fpage>2027</fpage>
<lpage>2036</lpage>
</nlm-citation>
</ref>
<ref id="B29">
<label>29</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reinolds</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Kaminsky</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kettinen</surname>
<given-names>HJ</given-names>
</name>
<name>
<surname>Grace</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Clarke</surname>
<given-names>BE</given-names>
</name>
<name>
<surname>Carroll</surname>
<given-names>AR</given-names>
</name>
<name>
<surname>Rowlands</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Jackson</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Unique features of internal initiation of hepatitis C virus RNA translation</article-title>
<source>Embo J.</source>
<year>1995</year>
<volume>14</volume>
<fpage>6010</fpage>
<lpage>6020</lpage>
</nlm-citation>
</ref>
<ref id="B30">
<label>30</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matasova</surname>
<given-names>NB</given-names>
</name>
<name>
<surname>Myltseva</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Zenkova</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Vladimirov</surname>
<given-names>SN</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>Isolation of ribosomal subunits containing intact rRNA from human placenta. Estimation of functional activity of 80S ribosomes</article-title>
<source>Analyt. Biochem.</source>
<year>1991</year>
<volume>198</volume>
<fpage>219</fpage>
<lpage>223</lpage>
</nlm-citation>
</ref>
<ref id="B31">
<label>31</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Graifer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Malygin</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Matasova</surname>
<given-names>NB</given-names>
</name>
<name>
<surname>Mundus</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Zenkova</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>Studying functional significance of the sequence 980-1061 in the central domain of human 18S rRNA using complementary DNA probes</article-title>
<source>Biochim. Biophys. Acta</source>
<year>1997</year>
<volume>1350</volume>
<fpage>335</fpage>
<lpage>344</lpage>
</nlm-citation>
</ref>
<ref id="B32">
<label>32</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malygin</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Graifer</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Bulygin</surname>
<given-names>KN</given-names>
</name>
<name>
<surname>Zenkova</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Yamkovoy</surname>
<given-names>VI</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>Arrangement of mRNA at the decoding site of human ribosomes. 18S rRNA nucleotides and ribosomal proteins cross-linked to oligouridylate derivatives with alkylating groups at either the 3′ or the 5′-termini</article-title>
<source>Eur. J. Biochem.</source>
<year>1994</year>
<volume>226</volume>
<fpage>715</fpage>
<lpage>723</lpage>
</nlm-citation>
</ref>
<ref id="B33">
<label>33</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Noll</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Theise</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bielka</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Studies on proteins of animal ribosomes. XVIII. Reaction of ribosomes and ribosomal proteins with antibodies against ribosomal proteins</article-title>
<source>Acta Biol. Med. Germ.</source>
<year>1974</year>
<volume>33</volume>
<fpage>547</fpage>
<lpage>553</lpage>
</nlm-citation>
</ref>
<ref id="B34">
<label>34</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bulygin</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Malygin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Westermann</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Site-specific modification of 4.5S RNA apical domain by complementary oligodeoxynucleotides carrying an alkylating group</article-title>
<source>Eur. J. Biochem.</source>
<year>1998</year>
<volume>251</volume>
<fpage>175</fpage>
<lpage>180</lpage>
</nlm-citation>
</ref>
<ref id="B35">
<label>35</label>
<nlm-citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>W.CJ</given-names>
</name>
</person-group>
<source>Biological Alkylating Agents</source>
<year>1962</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Butterworths and Co., Ltd.</publisher-name>
<comment>, pp. 51–63</comment>
</nlm-citation>
</ref>
<ref id="B36">
<label>36</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vlassov</surname>
<given-names>VV</given-names>
</name>
<name>
<surname>Skobeltsyna</surname>
<given-names>LM</given-names>
</name>
</person-group>
<article-title>Studying macrostructure of tRNA
<sup>Phe</sup>
(
<italic>E.coli</italic>
) by chemical modifications</article-title>
<source>Bioorgan. Khim.</source>
<year>1978</year>
<volume>4</volume>
<fpage>550</fpage>
<lpage>561</lpage>
</nlm-citation>
</ref>
<ref id="B37">
<label>37</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lukavsky</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Otto</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>JD</given-names>
</name>
</person-group>
<article-title>Structure of HCV IRES domain II determined by NMR</article-title>
<source>Nat. Struct. Biol.</source>
<year>2003</year>
<volume>10</volume>
<fpage>1033</fpage>
<lpage>1038</lpage>
</nlm-citation>
</ref>
<ref id="B38">
<label>38</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bulygin</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Chavatte</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Frolova</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Favre</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>The first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30 and S15</article-title>
<source>Biochemistry</source>
<year>2005</year>
<volume>44</volume>
<fpage>2153</fpage>
<lpage>2162</lpage>
</nlm-citation>
</ref>
<ref id="B39">
<label>39</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chandramouli</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Topf</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Menetret</surname>
<given-names>J.-F</given-names>
</name>
<name>
<surname>Eswar</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Cannone</surname>
<given-names>JJ</given-names>
</name>
<name>
<surname>Gutell</surname>
<given-names>RR</given-names>
</name>
<name>
<surname>Sali</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Akey</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Structure of the Mammalian 80S Ribosome at 8.7 Å Resolution</article-title>
<source>Structure</source>
<year>2008</year>
<volume>16</volume>
<fpage>535</fpage>
<lpage>548</lpage>
</nlm-citation>
</ref>
<ref id="B40">
<label>40</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yusupova</surname>
<given-names>G.Zh.</given-names>
</name>
<name>
<surname>Yusupov</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Cate</surname>
<given-names>J.HD</given-names>
</name>
<name>
<surname>Noller</surname>
<given-names>HF</given-names>
</name>
</person-group>
<article-title>The path of messenger RNA through the ribosome</article-title>
<source>Cell</source>
<year>2001</year>
<volume>106</volume>
<fpage>233</fpage>
<lpage>241</lpage>
</nlm-citation>
</ref>
<ref id="B41">
<label>41</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lutsch</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stahl</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Kargel</surname>
<given-names>H.-J</given-names>
</name>
<name>
<surname>Noll</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Bielka</surname>
<given-names>H</given-names>
</name>
</person-group>
<article-title>Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver</article-title>
<source>Eur. J. Cell. Biol.</source>
<year>1990</year>
<volume>51</volume>
<fpage>140</fpage>
<lpage>150</lpage>
</nlm-citation>
</ref>
<ref id="B42">
<label>42</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Spahn</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Jan</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Mulder</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Grassucci</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Sarnow</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Frank</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor</article-title>
<source>Cell</source>
<year>2004</year>
<volume>118</volume>
<fpage>465</fpage>
<lpage>475</lpage>
</nlm-citation>
</ref>
<ref id="B43">
<label>43</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Collatz</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Ulbrich</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Tsurugi</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lightfoot</surname>
<given-names>HN</given-names>
</name>
<name>
<surname>MacKinlay</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Lin</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Wool</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Isolation of eukaryotic ribosomal proteins</article-title>
<source>J. Biol. Chem.</source>
<year>1977</year>
<volume>252</volume>
<fpage>9071</fpage>
<lpage>9080</lpage>
</nlm-citation>
</ref>
<ref id="B44">
<label>44</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malygin</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Shaulo</surname>
<given-names>DD</given-names>
</name>
<name>
<surname>Karpova</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>Proteins S7, S10, S16 and S19 of the human 40S ribosomal subunit are most resistant to dissociation by salt</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2000</year>
<volume>1494</volume>
<fpage>213</fpage>
<lpage>216</lpage>
</nlm-citation>
</ref>
<ref id="B45">
<label>45</label>
<nlm-citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Madjar</surname>
<given-names>J.-J</given-names>
</name>
<name>
<surname>Arpin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Buisson</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Reboud</surname>
<given-names>J.-P</given-names>
</name>
</person-group>
<article-title>Spot position of rat liver ribosomal proteins by four different two-dimensional electrophoresis in polyacrylamide gel</article-title>
<source>Mol. Gen. Genet.</source>
<year>1979</year>
<volume>171</volume>
<fpage>121</fpage>
<lpage>134</lpage>
</nlm-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Babaylova</namePart>
<affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dmitri</namePart>
<namePart type="family">Graifer</namePart>
<affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexey</namePart>
<namePart type="family">Malygin</namePart>
<affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Stahl</namePart>
<affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Shatsky</namePart>
<affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="given">Galina</namePart>
<namePart type="family">Karpova</namePart>
<affiliation>Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin-Buch, 13092 Berlin, Germany and Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119899, Russia</affiliation>
<affiliation>E-mail: karpova@niboch.nsc.ru</affiliation>
<affiliation>*To whom correspondence should be addressed. Tel: +7 383 335 62 29; Fax: +7 383 333 36 77; Email: karpova@niboch.nsc.ru</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>Oxford University Press</publisher>
<dateIssued encoding="w3cdtf">2009-03</dateIssued>
<dateCreated encoding="w3cdtf">2008-12-09</dateCreated>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<abstract>The 5′-untranslated region of the hepatitis C virus (HCV) RNA contains a highly structured motif called IRES (Internal Ribosome Entry Site) responsible for the cap-independent initiation of the viral RNA translation. At first, the IRES binds to the 40S subunit without any initiation factors so that the initiation AUG codon falls into the P site. Here using an original site-directed cross-linking strategy, we identified 40S subunit components neighboring subdomain IIId, which is critical for HCV IRES binding to the subunit, and apical loop of domain II, which was suggested to contact the 40S subunit from data on cryo-electron microscopy of ribosomal complexes containing the HCV IRES. HCV IRES derivatives that bear a photoactivatable group at nucleotide A275 or at G263 in subdomain IIId cross-link to ribosomal proteins S3a, S14 and S16, and HCV IRES derivatized at the C83 in the apex of domain II cross-link to proteins S14 and S16.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Research</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<topic>Molecular Biology</topic>
</subject>
<identifier type="ISSN">0305-1048</identifier>
<identifier type="eISSN">1362-4962</identifier>
<identifier type="PublisherID">nar</identifier>
<identifier type="PublisherID-hwp">nar</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>1141</start>
<end>1151</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B1">
<titleInfo>
<title>Evidence that PTB does not stimulate HCV IRES-driven translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Brocard</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Paulous</namePart>
</name>
<name type="personal">
<namePart type="given">AV</namePart>
<namePart type="family">Komarova</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Deveaux</namePart>
</name>
<name type="personal">
<namePart type="given">KM</namePart>
<namePart type="family">Kean</namePart>
</name>
<genre>journal</genre>
<note>BrocardMPaulousSKomarovaAVDeveauxVKeanKMEvidence that PTB does not stimulate HCV IRES-driven translationVirus Genes200735515</note>
<relatedItem type="host">
<titleInfo>
<title>Virus Genes</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>5</start>
<end>15</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B2">
<titleInfo>
<title>Epidemiology of hepatitis C: geographic differences and temporal trends</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Wasley</namePart>
</name>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Alter</namePart>
</name>
<genre>journal</genre>
<note>WasleyAAlterMJEpidemiology of hepatitis C: geographic differences and temporal trendsSemin. Liver Dis.200020116</note>
<relatedItem type="host">
<titleInfo>
<title>Semin. Liver Dis.</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>16</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B3">
<titleInfo>
<title>Pathophysiology of hepatitis C virus infection and related liver disease</title>
</titleInfo>
<name type="personal">
<namePart type="given">JM</namePart>
<namePart type="family">Pawlotsky</namePart>
</name>
<genre>journal</genre>
<note>PawlotskyJMPathophysiology of hepatitis C virus infection and related liver diseaseTrends Microbiol.20041296102</note>
<relatedItem type="host">
<titleInfo>
<title>Trends Microbiol.</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>96</start>
<end>102</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B4">
<titleInfo>
<title>Recent advances in the molecular biology of hepatitis C virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Rosenberg</namePart>
</name>
<genre>journal</genre>
<note>RosenbergSRecent advances in the molecular biology of hepatitis C virusJ. Mol. Biol.2001313451464</note>
<relatedItem type="host">
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>313</number>
</detail>
<extent unit="pages">
<start>451</start>
<end>464</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B5">
<titleInfo>
<title>Internal ribosome entry site within hepatitis C virus RNA</title>
</titleInfo>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Tsukiyama-Kohara</namePart>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Iizuka</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Kohara</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Nomoto</namePart>
</name>
<genre>journal</genre>
<note>Tsukiyama-KoharaKIizukaNKoharaMNomotoAInternal ribosome entry site within hepatitis C virus RNAJ. Virol.19926614761483</note>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>66</number>
</detail>
<extent unit="pages">
<start>1476</start>
<end>1483</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B6">
<titleInfo>
<title>A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs</title>
</titleInfo>
<name type="personal">
<namePart type="given">TV</namePart>
<namePart type="family">Pestova</namePart>
</name>
<name type="personal">
<namePart type="given">IN</namePart>
<namePart type="family">Shatsky</namePart>
</name>
<name type="personal">
<namePart type="given">SP</namePart>
<namePart type="family">Fletcher</namePart>
</name>
<name type="personal">
<namePart type="given">RJ</namePart>
<namePart type="family">Jackson</namePart>
</name>
<name type="personal">
<namePart type="given">C.UT</namePart>
<namePart type="family">Hellen</namePart>
</name>
<genre>journal</genre>
<note>PestovaTVShatskyINFletcherSPJacksonRJHellenC.UTA prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAsGenes Dev.1998126783</note>
<relatedItem type="host">
<titleInfo>
<title>Genes Dev.</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>67</start>
<end>83</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B7">
<titleInfo>
<title>Internal ribosome entry sites in eukaryotic mRNA molecules</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.UT</namePart>
<namePart type="family">Hellen</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Sarnow</namePart>
</name>
<genre>journal</genre>
<note>HellenC.UTSarnowPInternal ribosome entry sites in eukaryotic mRNA moleculesGenes Dev.20011515931612</note>
<relatedItem type="host">
<titleInfo>
<title>Genes Dev.</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>1593</start>
<end>1612</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B8">
<titleInfo>
<title>A phylogenetically conserved stem-loop structure at the 50 border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Honda</namePart>
</name>
<name type="personal">
<namePart type="given">MR</namePart>
<namePart type="family">Beard</namePart>
</name>
<name type="personal">
<namePart type="given">LH</namePart>
<namePart type="family">Ping</namePart>
</name>
<name type="personal">
<namePart type="given">SM</namePart>
<namePart type="family">Lemon</namePart>
</name>
<genre>journal</genre>
<note>HondaMBeardMRPingLHLemonSMA phylogenetically conserved stem-loop structure at the 50 border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translationJ. Virol.19997311651174</note>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>73</number>
</detail>
<extent unit="pages">
<start>1165</start>
<end>1174</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B9">
<titleInfo>
<title>Internal initiation of translation of bovine viral diarrhea virus RNA</title>
</titleInfo>
<name type="personal">
<namePart type="given">TV</namePart>
<namePart type="family">Pestova</namePart>
</name>
<name type="personal">
<namePart type="given">CU</namePart>
<namePart type="family">Hellen</namePart>
</name>
<genre>journal</genre>
<note>PestovaTVHellenCUInternal initiation of translation of bovine viral diarrhea virus RNAVirology1999258249256</note>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>258</number>
</detail>
<extent unit="pages">
<start>249</start>
<end>256</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B10">
<titleInfo>
<title>The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold</title>
</titleInfo>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Kieft</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Zhou</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Jubin</namePart>
</name>
<name type="personal">
<namePart type="given">MG</namePart>
<namePart type="family">Murray</namePart>
</name>
<name type="personal">
<namePart type="given">JY</namePart>
<namePart type="family">Lau</namePart>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Doudna</namePart>
</name>
<genre>journal</genre>
<note>KieftJSZhouKJubinRMurrayMGLauJYDoudnaJAThe hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary foldJ. Mol. Biol.1999292513529</note>
<relatedItem type="host">
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>292</number>
</detail>
<extent unit="pages">
<start>513</start>
<end>529</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B11">
<titleInfo>
<title>Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites</title>
</titleInfo>
<name type="personal">
<namePart type="given">AV</namePart>
<namePart type="family">Pisarev</namePart>
</name>
<name type="personal">
<namePart type="given">NE</namePart>
<namePart type="family">Shirokikh</namePart>
</name>
<name type="personal">
<namePart type="given">C.UT</namePart>
<namePart type="family">Hellen</namePart>
</name>
<genre>journal</genre>
<note>PisarevAVShirokikhNEHellenC.UTTranslation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sitesC.R. Biologies2005328589605</note>
<relatedItem type="host">
<titleInfo>
<title>C.R. Biologies</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>328</number>
</detail>
<extent unit="pages">
<start>589</start>
<end>605</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B12">
<titleInfo>
<title>The pathway of HCV IRES-mediated translation initiation</title>
</titleInfo>
<name type="personal">
<namePart type="given">GA</namePart>
<namePart type="family">Otto</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Puglisi</namePart>
</name>
<genre>journal</genre>
<note>OttoGAPuglisiJDThe pathway of HCV IRES-mediated translation initiationCell2004119369380</note>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>119</number>
</detail>
<extent unit="pages">
<start>369</start>
<end>380</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B13">
<titleInfo>
<title>Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Ji</namePart>
</name>
<name type="personal">
<namePart type="given">CS</namePart>
<namePart type="family">Fraser</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Yu</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Leary</namePart>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Doudna</namePart>
</name>
<genre>journal</genre>
<note>JiHFraserCSYuYLearyJDoudnaJACoordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNAProc. Natl Acad. Sci. USA20041011699016995</note>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>101</number>
</detail>
<extent unit="pages">
<start>16990</start>
<end>16995</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B14">
<titleInfo>
<title>HCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assembly</title>
</titleInfo>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Locker</namePart>
</name>
<name type="personal">
<namePart type="given">LE</namePart>
<namePart type="family">Easton</namePart>
</name>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Lukavsky</namePart>
</name>
<genre>journal</genre>
<note>LockerNEastonLELukavskyPJHCV and CSFV IRES domain II mediate eIF2 release during 80S ribosome assemblyEMBO J.200726795805</note>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>26</number>
</detail>
<extent unit="pages">
<start>795</start>
<end>805</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B15">
<titleInfo>
<title>An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">VG</namePart>
<namePart type="family">Kolupaeva</namePart>
</name>
<name type="personal">
<namePart type="given">TV</namePart>
<namePart type="family">Pestova</namePart>
</name>
<name type="personal">
<namePart type="given">CU</namePart>
<namePart type="family">Hellen</namePart>
</name>
<genre>journal</genre>
<note>KolupaevaVGPestovaTVHellenCUAn enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virusJ. Virol.20007462426250</note>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>6242</start>
<end>6250</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B16">
<titleInfo>
<title>Mechanism of ribosome recruitment by hepatitis C IRES RNA</title>
</titleInfo>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Kieft</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Zhou</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Jubin</namePart>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Doudna</namePart>
</name>
<genre>journal</genre>
<note>KieftJSZhouKJubinRDoudnaJAMechanism of ribosome recruitment by hepatitis C IRES RNARNA20017194206</note>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>194</start>
<end>206</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B17">
<titleInfo>
<title>An approach to identify the functionally important RNA sites by complementary addressed modification</title>
</titleInfo>
<name type="personal">
<namePart type="given">AA</namePart>
<namePart type="family">Malygin</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">ES</namePart>
<namePart type="family">Laletina</namePart>
</name>
<name type="personal">
<namePart type="given">IN</namePart>
<namePart type="family">Shatsky</namePart>
</name>
<name type="personal">
<namePart type="given">GG</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>(translated from Molekulyarnaya Biologiya 37, 1027–1034)</note>
<note>MalyginAAGraiferDMLaletinaESShatskyINKarpovaGGAn approach to identify the functionally important RNA sites by complementary addressed modificationMolecular Biology200337873879(translated from Molekulyarnaya Biologiya 37, 1027–1034)</note>
<relatedItem type="host">
<titleInfo>
<title>Molecular Biology</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>873</start>
<end>879</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B18">
<titleInfo>
<title>Domains on the hepatitis C virus internal ribosome entry site for 40S subunit binding</title>
</titleInfo>
<name type="personal">
<namePart type="given">JR</namePart>
<namePart type="family">Lytle</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Wu</namePart>
</name>
<name type="personal">
<namePart type="given">HD</namePart>
<namePart type="family">Robertson</namePart>
</name>
<genre>journal</genre>
<note>LytleJRWuLRobertsonHDDomains on the hepatitis C virus internal ribosome entry site for 40S subunit bindingRNA2002810451055</note>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1045</start>
<end>1055</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B19">
<titleInfo>
<title>Ribosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Fukushi</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Okada</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Stahl</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Kageyama</namePart>
</name>
<name type="personal">
<namePart type="given">FB</namePart>
<namePart type="family">Hoshino</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Katayama</namePart>
</name>
<genre>journal</genre>
<note>FukushiSOkadaMStahlJKageyamaTHoshinoFBKatayamaKRibosomal protein S5 interacts with the internal ribosomal entry site of hepatitis C virusJ. Biol. Chem.20012762082420826</note>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>276</number>
</detail>
<extent unit="pages">
<start>20824</start>
<end>20826</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B20">
<titleInfo>
<title>Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">GA</namePart>
<namePart type="family">Otto</namePart>
</name>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Lukavsky</namePart>
</name>
<name type="personal">
<namePart type="given">AM</namePart>
<namePart type="family">Lancaster</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Sarnow</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Puglisi</namePart>
</name>
<genre>journal</genre>
<note>OttoGALukavskyPJLancasterAMSarnowPPuglisiJDRibosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interactionRNA20028913923</note>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>913</start>
<end>923</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B21">
<titleInfo>
<title>Hepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunit</title>
</titleInfo>
<name type="personal">
<namePart type="given">C.MT</namePart>
<namePart type="family">Spahn</namePart>
</name>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Kieft</namePart>
</name>
<name type="personal">
<namePart type="given">RA</namePart>
<namePart type="family">Grassucci</namePart>
</name>
<name type="personal">
<namePart type="given">PA</namePart>
<namePart type="family">Penczek</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Zhou</namePart>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Doudna</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Frank</namePart>
</name>
<genre>journal</genre>
<note>SpahnC.MTKieftJSGrassucciRAPenczekPAZhouKDoudnaJAFrankJHepatitis C virus IRES RNA-induced changes in the conformation of the 40S ribosomal subunitScience200129119591962</note>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>291</number>
</detail>
<extent unit="pages">
<start>1959</start>
<end>1962</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B22">
<titleInfo>
<title>Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES</title>
</titleInfo>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Boehringer</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Thermann</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ostareck-Lederer</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Lewis</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Stark</namePart>
</name>
<genre>journal</genre>
<note>BoehringerDThermannROstareck-LedererALewisJDStarkHStructure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRESStructure20051316951706</note>
<relatedItem type="host">
<titleInfo>
<title>Structure</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1695</start>
<end>1706</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B23">
<titleInfo>
<title>Nucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P and E sites, respectively: a cross-linking study with mRNA analogues carrying aryl azide group at either the uracil or the guanine residue</title>
</titleInfo>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Demeshkina</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Repkova</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ven’yaminova</namePart>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>DemeshkinaNRepkovaMVen’yaminovaAGraiferDKarpovaGNucleotides of 18S rRNA surrounding mRNA codons at the human ribosomal A, P and E sites, respectively: a cross-linking study with mRNA analogues carrying aryl azide group at either the uracil or the guanine residueRNA2000617271736</note>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>1727</start>
<end>1736</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B24">
<titleInfo>
<title>Positioning of mRNA codons with respect to 18S rRNA at the P and E sites of human ribosome</title>
</titleInfo>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Demeshkina</namePart>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Laletina</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Meschaninova</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ven’yaminova</namePart>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>DemeshkinaNLaletinaEMeschaninovaMVen’yaminovaAGraiferDKarpovaGPositioning of mRNA codons with respect to 18S rRNA at the P and E sites of human ribosomeBiochim. Biophys. Acta200316273946</note>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>1627</number>
</detail>
<extent unit="pages">
<start>39</start>
<end>46</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B25">
<titleInfo>
<title>Variable and conserved elements of human ribosomes surrounding the mRNA at the decoding and upstream sites</title>
</titleInfo>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Molotkov</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Styazhkina</namePart>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Demeshkina</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Bulygin</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Eremina</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ivanov</namePart>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Laletina</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ven'yaminova</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>GraiferDMolotkovMStyazhkinaVDemeshkinaNBulyginKEreminaAIvanovALaletinaEVen'yaminovaAKarpovaGVariable and conserved elements of human ribosomes surrounding the mRNA at the decoding and upstream sitesNucleic Acids Res.20043232823293</note>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>3282</start>
<end>3293</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B26">
<titleInfo>
<title>mRNA 3′ of the A site bound codon is located close to protein S3 on the human 80S ribosome</title>
</titleInfo>
<name type="personal">
<namePart type="given">MV</namePart>
<namePart type="family">Molotkov</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">EA</namePart>
<namePart type="family">Popugaeva</namePart>
</name>
<name type="personal">
<namePart type="given">KN</namePart>
<namePart type="family">Bulygin</namePart>
</name>
<name type="personal">
<namePart type="given">MI</namePart>
<namePart type="family">Meschaninova</namePart>
</name>
<name type="personal">
<namePart type="given">AG</namePart>
<namePart type="family">Ven’yaminova</namePart>
</name>
<name type="personal">
<namePart type="given">GG</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>MolotkovMVGraiferDMPopugaevaEABulyginKNMeschaninovaMIVen’yaminovaAGKarpovaGGmRNA 3′ of the A site bound codon is located close to protein S3 on the human 80S ribosomeRNA Biology20063122129</note>
<relatedItem type="host">
<titleInfo>
<title>RNA Biology</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>122</start>
<end>129</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B27">
<titleInfo>
<title>Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes</title>
</titleInfo>
<name type="personal">
<namePart type="given">AV</namePart>
<namePart type="family">Pisarev</namePart>
</name>
<name type="personal">
<namePart type="given">VG</namePart>
<namePart type="family">Kolupaeva</namePart>
</name>
<name type="personal">
<namePart type="given">MM</namePart>
<namePart type="family">Yusupov</namePart>
</name>
<name type="personal">
<namePart type="given">C.UT</namePart>
<namePart type="family">Hellen</namePart>
</name>
<name type="personal">
<namePart type="given">TV</namePart>
<namePart type="family">Pestova</namePart>
</name>
<genre>journal</genre>
<note>PisarevAVKolupaevaVGYusupovMMHellenC.UTPestovaTVRibosomal position and contacts of mRNA in eukaryotic translation initiation complexesEMBO J.20082716091621</note>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>27</number>
</detail>
<extent unit="pages">
<start>1609</start>
<end>1621</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B28">
<titleInfo>
<title>Proteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunit</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Laletina</namePart>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Malygin</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Ivanov</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Shatsky</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>LaletinaEGraiferDMalyginAIvanovAShatskyIKarpovaGProteins surrounding hairpin IIIe of the hepatitis C virus internal ribosome entry site on the human 40S ribosomal subunitNucleic Acids Res.20063420272036</note>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>34</number>
</detail>
<extent unit="pages">
<start>2027</start>
<end>2036</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B29">
<titleInfo>
<title>Unique features of internal initiation of hepatitis C virus RNA translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">JE</namePart>
<namePart type="family">Reinolds</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Kaminsky</namePart>
</name>
<name type="personal">
<namePart type="given">HJ</namePart>
<namePart type="family">Kettinen</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Grace</namePart>
</name>
<name type="personal">
<namePart type="given">BE</namePart>
<namePart type="family">Clarke</namePart>
</name>
<name type="personal">
<namePart type="given">AR</namePart>
<namePart type="family">Carroll</namePart>
</name>
<name type="personal">
<namePart type="given">DJ</namePart>
<namePart type="family">Rowlands</namePart>
</name>
<name type="personal">
<namePart type="given">RJ</namePart>
<namePart type="family">Jackson</namePart>
</name>
<genre>journal</genre>
<note>ReinoldsJEKaminskyAKettinenHJGraceKClarkeBECarrollARRowlandsDJJacksonRJUnique features of internal initiation of hepatitis C virus RNA translationEmbo J.19951460106020</note>
<relatedItem type="host">
<titleInfo>
<title>Embo J.</title>
</titleInfo>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>6010</start>
<end>6020</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B30">
<titleInfo>
<title>Isolation of ribosomal subunits containing intact rRNA from human placenta. Estimation of functional activity of 80S ribosomes</title>
</titleInfo>
<name type="personal">
<namePart type="given">NB</namePart>
<namePart type="family">Matasova</namePart>
</name>
<name type="personal">
<namePart type="given">SV</namePart>
<namePart type="family">Myltseva</namePart>
</name>
<name type="personal">
<namePart type="given">MA</namePart>
<namePart type="family">Zenkova</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">SN</namePart>
<namePart type="family">Vladimirov</namePart>
</name>
<name type="personal">
<namePart type="given">GG</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>MatasovaNBMyltsevaSVZenkovaMAGraiferDMVladimirovSNKarpovaGGIsolation of ribosomal subunits containing intact rRNA from human placenta. Estimation of functional activity of 80S ribosomesAnalyt. Biochem.1991198219223</note>
<relatedItem type="host">
<titleInfo>
<title>Analyt. Biochem.</title>
</titleInfo>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>198</number>
</detail>
<extent unit="pages">
<start>219</start>
<end>223</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B31">
<titleInfo>
<title>Studying functional significance of the sequence 980-1061 in the central domain of human 18S rRNA using complementary DNA probes</title>
</titleInfo>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">AA</namePart>
<namePart type="family">Malygin</namePart>
</name>
<name type="personal">
<namePart type="given">NB</namePart>
<namePart type="family">Matasova</namePart>
</name>
<name type="personal">
<namePart type="given">DA</namePart>
<namePart type="family">Mundus</namePart>
</name>
<name type="personal">
<namePart type="given">MA</namePart>
<namePart type="family">Zenkova</namePart>
</name>
<name type="personal">
<namePart type="given">GG</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>GraiferDMMalyginAAMatasovaNBMundusDAZenkovaMAKarpovaGGStudying functional significance of the sequence 980-1061 in the central domain of human 18S rRNA using complementary DNA probesBiochim. Biophys. Acta19971350335344</note>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>1350</number>
</detail>
<extent unit="pages">
<start>335</start>
<end>344</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B32">
<titleInfo>
<title>Arrangement of mRNA at the decoding site of human ribosomes. 18S rRNA nucleotides and ribosomal proteins cross-linked to oligouridylate derivatives with alkylating groups at either the 3′ or the 5′-termini</title>
</titleInfo>
<name type="personal">
<namePart type="given">AA</namePart>
<namePart type="family">Malygin</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Graifer</namePart>
</name>
<name type="personal">
<namePart type="given">KN</namePart>
<namePart type="family">Bulygin</namePart>
</name>
<name type="personal">
<namePart type="given">MA</namePart>
<namePart type="family">Zenkova</namePart>
</name>
<name type="personal">
<namePart type="given">VI</namePart>
<namePart type="family">Yamkovoy</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Stahl</namePart>
</name>
<name type="personal">
<namePart type="given">GG</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>MalyginAAGraiferDMBulyginKNZenkovaMAYamkovoyVIStahlJKarpovaGGArrangement of mRNA at the decoding site of human ribosomes. 18S rRNA nucleotides and ribosomal proteins cross-linked to oligouridylate derivatives with alkylating groups at either the 3′ or the 5′-terminiEur. J. Biochem.1994226715723</note>
<relatedItem type="host">
<titleInfo>
<title>Eur. J. Biochem.</title>
</titleInfo>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>226</number>
</detail>
<extent unit="pages">
<start>715</start>
<end>723</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B33">
<titleInfo>
<title>Studies on proteins of animal ribosomes. XVIII. Reaction of ribosomes and ribosomal proteins with antibodies against ribosomal proteins</title>
</titleInfo>
<name type="personal">
<namePart type="given">F</namePart>
<namePart type="family">Noll</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Theise</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Bielka</namePart>
</name>
<genre>journal</genre>
<note>NollFTheiseHBielkaHStudies on proteins of animal ribosomes. XVIII. Reaction of ribosomes and ribosomal proteins with antibodies against ribosomal proteinsActa Biol. Med. Germ.197433547553</note>
<relatedItem type="host">
<titleInfo>
<title>Acta Biol. Med. Germ.</title>
</titleInfo>
<part>
<date>1974</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<extent unit="pages">
<start>547</start>
<end>553</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B34">
<titleInfo>
<title>Site-specific modification of 4.5S RNA apical domain by complementary oligodeoxynucleotides carrying an alkylating group</title>
</titleInfo>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Bulygin</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Malygin</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Karpova</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Westermann</namePart>
</name>
<genre>journal</genre>
<note>BulyginKMalyginAKarpovaGWestermannPSite-specific modification of 4.5S RNA apical domain by complementary oligodeoxynucleotides carrying an alkylating groupEur. J. Biochem.1998251175180</note>
<relatedItem type="host">
<titleInfo>
<title>Eur. J. Biochem.</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>251</number>
</detail>
<extent unit="pages">
<start>175</start>
<end>180</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B35">
<titleInfo>
<title>Biological Alkylating Agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">W.CJ</namePart>
<namePart type="family">Ross</namePart>
</name>
<originInfo>
<publisher>Butterworths and Co., Ltd.. </publisher>
<place>
<placeTerm type="text">London</placeTerm>
</place>
</originInfo>
<genre>book</genre>
<note>, pp. 51–63</note>
<note>RossW.CJBiological Alkylating Agents1962LondonButterworths and Co., Ltd., pp. 51–63</note>
<part>
<date>1962</date>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="B36">
<titleInfo>
<title>Studying macrostructure of tRNAPhe (E.coli) by chemical modifications</title>
</titleInfo>
<name type="personal">
<namePart type="given">VV</namePart>
<namePart type="family">Vlassov</namePart>
</name>
<name type="personal">
<namePart type="given">LM</namePart>
<namePart type="family">Skobeltsyna</namePart>
</name>
<genre>journal</genre>
<note>VlassovVVSkobeltsynaLMStudying macrostructure of tRNAPhe (E.coli) by chemical modificationsBioorgan. Khim.19784550561</note>
<relatedItem type="host">
<titleInfo>
<title>Bioorgan. Khim.</title>
</titleInfo>
<part>
<date>1978</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>550</start>
<end>561</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B37">
<titleInfo>
<title>Structure of HCV IRES domain II determined by NMR</title>
</titleInfo>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Lukavsky</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Kim</namePart>
</name>
<name type="personal">
<namePart type="given">GA</namePart>
<namePart type="family">Otto</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Puglisi</namePart>
</name>
<genre>journal</genre>
<note>LukavskyPJKimIOttoGAPuglisiJDStructure of HCV IRES domain II determined by NMRNat. Struct. Biol.20031010331038</note>
<relatedItem type="host">
<titleInfo>
<title>Nat. Struct. Biol.</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>1033</start>
<end>1038</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B38">
<titleInfo>
<title>The first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30 and S15</title>
</titleInfo>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Bulygin</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Chavatte</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Frolova</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Karpova</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Favre</namePart>
</name>
<genre>journal</genre>
<note>BulyginKChavatteLFrolovaLKarpovaGFavreAThe first position of a codon placed in the A site of the human 80S ribosome contacts nucleotide C1696 of the 18S rRNA as well as proteins S2, S3, S3a, S30 and S15Biochemistry20054421532162</note>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>44</number>
</detail>
<extent unit="pages">
<start>2153</start>
<end>2162</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B39">
<titleInfo>
<title>Structure of the Mammalian 80S Ribosome at 8.7 Å Resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Chandramouli</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Topf</namePart>
</name>
<name type="personal">
<namePart type="given">J.-F</namePart>
<namePart type="family">Menetret</namePart>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Eswar</namePart>
</name>
<name type="personal">
<namePart type="given">JJ</namePart>
<namePart type="family">Cannone</namePart>
</name>
<name type="personal">
<namePart type="given">RR</namePart>
<namePart type="family">Gutell</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Sali</namePart>
</name>
<name type="personal">
<namePart type="given">CW</namePart>
<namePart type="family">Akey</namePart>
</name>
<genre>journal</genre>
<note>ChandramouliPTopfMMenetretJ.-FEswarNCannoneJJGutellRRSaliAAkeyCWStructure of the Mammalian 80S Ribosome at 8.7 Å ResolutionStructure200816535548</note>
<relatedItem type="host">
<titleInfo>
<title>Structure</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>535</start>
<end>548</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B40">
<titleInfo>
<title>The path of messenger RNA through the ribosome</title>
</titleInfo>
<name type="personal">
<namePart type="given">G.Zh.</namePart>
<namePart type="family">Yusupova</namePart>
</name>
<name type="personal">
<namePart type="given">MM</namePart>
<namePart type="family">Yusupov</namePart>
</name>
<name type="personal">
<namePart type="given">J.HD</namePart>
<namePart type="family">Cate</namePart>
</name>
<name type="personal">
<namePart type="given">HF</namePart>
<namePart type="family">Noller</namePart>
</name>
<genre>journal</genre>
<note>YusupovaG.Zh.YusupovMMCateJ.HDNollerHFThe path of messenger RNA through the ribosomeCell2001106233241</note>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>106</number>
</detail>
<extent unit="pages">
<start>233</start>
<end>241</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B41">
<titleInfo>
<title>Immunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liver</title>
</titleInfo>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Lutsch</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Stahl</namePart>
</name>
<name type="personal">
<namePart type="given">H.-J</namePart>
<namePart type="family">Kargel</namePart>
</name>
<name type="personal">
<namePart type="given">F</namePart>
<namePart type="family">Noll</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Bielka</namePart>
</name>
<genre>journal</genre>
<note>LutschGStahlJKargelH.-JNollFBielkaHImmunoelectron microscopic studies on the location of ribosomal proteins on the surface of the 40S ribosomal subunit from rat liverEur. J. Cell. Biol.199051140150</note>
<relatedItem type="host">
<titleInfo>
<title>Eur. J. Cell. Biol.</title>
</titleInfo>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>51</number>
</detail>
<extent unit="pages">
<start>140</start>
<end>150</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B42">
<titleInfo>
<title>Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor</title>
</titleInfo>
<name type="personal">
<namePart type="given">CM</namePart>
<namePart type="family">Spahn</namePart>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Jan</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Mulder</namePart>
</name>
<name type="personal">
<namePart type="given">RA</namePart>
<namePart type="family">Grassucci</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Sarnow</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Frank</namePart>
</name>
<genre>journal</genre>
<note>SpahnCMJanEMulderAGrassucciRASarnowPFrankJCryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factorCell2004118465475</note>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>118</number>
</detail>
<extent unit="pages">
<start>465</start>
<end>475</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B43">
<titleInfo>
<title>Isolation of eukaryotic ribosomal proteins</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Collatz</namePart>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Ulbrich</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Tsurugi</namePart>
</name>
<name type="personal">
<namePart type="given">HN</namePart>
<namePart type="family">Lightfoot</namePart>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">MacKinlay</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Lin</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Wool</namePart>
</name>
<genre>journal</genre>
<note>CollatzEUlbrichNTsurugiKLightfootHNMacKinlayWLinAWoolIIsolation of eukaryotic ribosomal proteinsJ. Biol. Chem.197725290719080</note>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<part>
<date>1977</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>9071</start>
<end>9080</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B44">
<titleInfo>
<title>Proteins S7, S10, S16 and S19 of the human 40S ribosomal subunit are most resistant to dissociation by salt</title>
</titleInfo>
<name type="personal">
<namePart type="given">AA</namePart>
<namePart type="family">Malygin</namePart>
</name>
<name type="personal">
<namePart type="given">DD</namePart>
<namePart type="family">Shaulo</namePart>
</name>
<name type="personal">
<namePart type="given">GG</namePart>
<namePart type="family">Karpova</namePart>
</name>
<genre>journal</genre>
<note>MalyginAAShauloDDKarpovaGGProteins S7, S10, S16 and S19 of the human 40S ribosomal subunit are most resistant to dissociation by saltBiochim. Biophys. Acta20001494213216</note>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>1494</number>
</detail>
<extent unit="pages">
<start>213</start>
<end>216</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="B45">
<titleInfo>
<title>Spot position of rat liver ribosomal proteins by four different two-dimensional electrophoresis in polyacrylamide gel</title>
</titleInfo>
<name type="personal">
<namePart type="given">J.-J</namePart>
<namePart type="family">Madjar</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Arpin</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Buisson</namePart>
</name>
<name type="personal">
<namePart type="given">J.-P</namePart>
<namePart type="family">Reboud</namePart>
</name>
<genre>journal</genre>
<note>MadjarJ.-JArpinMBuissonMReboudJ.-PSpot position of rat liver ribosomal proteins by four different two-dimensional electrophoresis in polyacrylamide gelMol. Gen. Genet.1979171121134</note>
<relatedItem type="host">
<titleInfo>
<title>Mol. Gen. Genet.</title>
</titleInfo>
<part>
<date>1979</date>
<detail type="volume">
<caption>vol.</caption>
<number>171</number>
</detail>
<extent unit="pages">
<start>121</start>
<end>134</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">805AC4A22351CB8A1E9DBE931E61818622C07E34</identifier>
<identifier type="ark">ark:/67375/HXZ-95TV1SWJ-L</identifier>
<identifier type="DOI">10.1093/nar/gkn1026</identifier>
<identifier type="ArticleID">gkn1026</identifier>
<accessCondition type="use and reproduction" contentType="copyright">© 2009 The Author(s)</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-GTWS0RDP-M">oup</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-16</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/record.json</uri>
</json:item>
</metadata>
<covers>
<json:item>
<extension>html</extension>
<original>true</original>
<mimetype>text/html</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/covers.html</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/805AC4A22351CB8A1E9DBE931E61818622C07E34/covers/tiff</uri>
</json:item>
</covers>
<annexes>
<json:item>
<extension>gif</extension>
<original>true</original>
<mimetype>image/gif</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/annexes.gif</uri>
</json:item>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/HXZ-95TV1SWJ-L/annexes.jpeg</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001D41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:805AC4A22351CB8A1E9DBE931E61818622C07E34
   |texte=   Positioning of subdomain IIId and apical loop of domain II of the hepatitis C IRES on the human 40S ribosome
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021