Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin

Identifieur interne : 001B41 ( Istex/Corpus ); précédent : 001B40; suivant : 001B42

Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin

Auteurs : Makoto Ito ; Seiji Yamamoto ; Keisuke Nimura ; Kazuya Hiraoka ; Katsuto Tamai ; Yasufumi Kaneda

Source :

RBID : ISTEX:5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D

English descriptors

Abstract

Background: Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system. Methods: To enhance the anti‐cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis‐diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence‐activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored. Results: When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 µg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone. Conclusions: Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both in vitro and in vivo. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti‐cancer protocol. Copyright © 2005 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/jgm.753

Links to Exploration step

ISTEX:5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
<author>
<name sortKey="Ito, Makoto" sort="Ito, Makoto" uniqKey="Ito M" first="Makoto" last="Ito">Makoto Ito</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Seiji" sort="Yamamoto, Seiji" uniqKey="Yamamoto S" first="Seiji" last="Yamamoto">Seiji Yamamoto</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nimura, Keisuke" sort="Nimura, Keisuke" uniqKey="Nimura K" first="Keisuke" last="Nimura">Keisuke Nimura</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hiraoka, Kazuya" sort="Hiraoka, Kazuya" uniqKey="Hiraoka K" first="Kazuya" last="Hiraoka">Kazuya Hiraoka</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tamai, Katsuto" sort="Tamai, Katsuto" uniqKey="Tamai K" first="Katsuto" last="Tamai">Katsuto Tamai</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaneda, Yasufumi" sort="Kaneda, Yasufumi" uniqKey="Kaneda Y" first="Yasufumi" last="Kaneda">Yasufumi Kaneda</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kaneday@gts.med.osaka‐u.ac.jp</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565‐0871, Japan.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D</idno>
<date when="2005" year="2005">2005</date>
<idno type="doi">10.1002/jgm.753</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-GLHFLM13-6/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001B41</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001B41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
<author>
<name sortKey="Ito, Makoto" sort="Ito, Makoto" uniqKey="Ito M" first="Makoto" last="Ito">Makoto Ito</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yamamoto, Seiji" sort="Yamamoto, Seiji" uniqKey="Yamamoto S" first="Seiji" last="Yamamoto">Seiji Yamamoto</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nimura, Keisuke" sort="Nimura, Keisuke" uniqKey="Nimura K" first="Keisuke" last="Nimura">Keisuke Nimura</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hiraoka, Kazuya" sort="Hiraoka, Kazuya" uniqKey="Hiraoka K" first="Kazuya" last="Hiraoka">Kazuya Hiraoka</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tamai, Katsuto" sort="Tamai, Katsuto" uniqKey="Tamai K" first="Katsuto" last="Tamai">Katsuto Tamai</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Kaneda, Yasufumi" sort="Kaneda, Yasufumi" uniqKey="Kaneda Y" first="Yasufumi" last="Kaneda">Yasufumi Kaneda</name>
<affiliation>
<mods:affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: kaneday@gts.med.osaka‐u.ac.jp</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565‐0871, Japan.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">The Journal of Gene Medicine</title>
<title level="j" type="alt">JOURNAL OF GENE MEDICINE, THE</title>
<idno type="ISSN">1099-498X</idno>
<idno type="eISSN">1521-2254</idno>
<imprint>
<biblScope unit="vol">7</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1044">1044</biblScope>
<biblScope unit="page" to="1052">1052</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-08">2005-08</date>
</imprint>
<idno type="ISSN">1099-498X</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1099-498X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Antisense</term>
<term>Antisense oligonucleotides</term>
<term>Apoptosis</term>
<term>Biochem biophys</term>
<term>Cancer cell lines</term>
<term>Cancer cells</term>
<term>Cancer therapy</term>
<term>Cddp</term>
<term>Cddp conc</term>
<term>Cddp sensitivity</term>
<term>Cddp treatment</term>
<term>Cell lines</term>
<term>Cell number</term>
<term>Cisplatin</term>
<term>Copyright</term>
<term>Envelope vector</term>
<term>Hela</term>
<term>Hela cells</term>
<term>Hemagglutinating virus</term>
<term>Human cancer cells</term>
<term>Intraperitoneal injection</term>
<term>John wiley sons</term>
<term>Kaneda</term>
<term>Nhdf</term>
<term>Northern blot analysis</term>
<term>Oligonucleotides</term>
<term>Osaka university</term>
<term>Particle counter</term>
<term>Protein kinase</term>
<term>Protein level</term>
<term>Protein levels</term>
<term>Recombination</term>
<term>Relative cell count</term>
<term>Santa cruz</term>
<term>Scid mice</term>
<term>Similar results</term>
<term>Sirna</term>
<term>Sirna cddp</term>
<term>Sirna medium</term>
<term>Sirna transfer</term>
<term>Standard deviation</term>
<term>Synthetic sirna</term>
<term>Target protein</term>
<term>Transfection</term>
<term>Triplicate samples</term>
<term>Tumor growth</term>
<term>Tumor mass</term>
<term>Various concentrations</term>
<term>Western blot analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system. Methods: To enhance the anti‐cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis‐diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence‐activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored. Results: When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 µg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone. Conclusions: Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both in vitro and in vivo. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti‐cancer protocol. Copyright © 2005 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>sirna</json:string>
<json:string>cddp</json:string>
<json:string>hela</json:string>
<json:string>envelope vector</json:string>
<json:string>hela cells</json:string>
<json:string>cisplatin</json:string>
<json:string>nhdf</json:string>
<json:string>antisense</json:string>
<json:string>john wiley sons</json:string>
<json:string>copyright</json:string>
<json:string>oligonucleotides</json:string>
<json:string>recombination</json:string>
<json:string>cancer cells</json:string>
<json:string>cddp sensitivity</json:string>
<json:string>apoptosis</json:string>
<json:string>transfection</json:string>
<json:string>kaneda</json:string>
<json:string>cell number</json:string>
<json:string>tumor growth</json:string>
<json:string>antisense oligonucleotides</json:string>
<json:string>cell lines</json:string>
<json:string>northern blot analysis</json:string>
<json:string>scid mice</json:string>
<json:string>cancer therapy</json:string>
<json:string>human cancer cells</json:string>
<json:string>intraperitoneal injection</json:string>
<json:string>sirna transfer</json:string>
<json:string>triplicate samples</json:string>
<json:string>sirna medium</json:string>
<json:string>cancer cell lines</json:string>
<json:string>particle counter</json:string>
<json:string>tumor mass</json:string>
<json:string>target protein</json:string>
<json:string>cddp treatment</json:string>
<json:string>protein kinase</json:string>
<json:string>cddp conc</json:string>
<json:string>various concentrations</json:string>
<json:string>osaka university</json:string>
<json:string>protein level</json:string>
<json:string>similar results</json:string>
<json:string>standard deviation</json:string>
<json:string>western blot analysis</json:string>
<json:string>protein levels</json:string>
<json:string>relative cell count</json:string>
<json:string>sirna cddp</json:string>
<json:string>hemagglutinating virus</json:string>
<json:string>santa cruz</json:string>
<json:string>synthetic sirna</json:string>
<json:string>biochem biophys</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Makoto Ito</name>
<affiliations>
<json:string>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Seiji Yamamoto</name>
<affiliations>
<json:string>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Keisuke Nimura</name>
<affiliations>
<json:string>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Kazuya Hiraoka</name>
<affiliations>
<json:string>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Katsuto Tamai</name>
<affiliations>
<json:string>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</json:string>
</affiliations>
</json:item>
<json:item>
<name>Yasufumi Kaneda</name>
<affiliations>
<json:string>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</json:string>
<json:string>E-mail: kaneday@gts.med.osaka‐u.ac.jp</json:string>
<json:string>Correspondence address: Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565‐0871, Japan.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chemotherapy</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>siRNA</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Rad51</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>non‐viral vector</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>drug delivery</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>cancer therapy</value>
</json:item>
</subject>
<articleId>
<json:string>JGM753</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-GLHFLM13-6</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Background: Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system. Methods: To enhance the anti‐cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis‐diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence‐activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored. Results: When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 µg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone. Conclusions: Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both in vitro and in vivo. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti‐cancer protocol. Copyright © 2005 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>5467</pdfWordCount>
<pdfCharCount>33411</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>9</pdfPageCount>
<pdfPageSize>595 x 859 pts</pdfPageSize>
<pdfWordsPerPage>607</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>324</abstractWordCount>
<abstractCharCount>2141</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
<pmid>
<json:string>15756713</json:string>
</pmid>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>The Journal of Gene Medicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1521-2254</json:string>
</doi>
<issn>
<json:string>1099-498X</json:string>
</issn>
<eissn>
<json:string>1521-2254</json:string>
</eissn>
<publisherId>
<json:string>JGM</json:string>
</publisherId>
<volume>7</volume>
<issue>8</issue>
<pages>
<first>1044</first>
<last>1052</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
<json:item>
<value>Research Articles</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2005</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>Osaka University</json:string>
<json:string>Division of Gene Therapy Science</json:string>
<json:string>Animal Committee of Osaka University</json:string>
<json:string>Lafayette, CO</json:string>
<json:string>Charles River Japan, Yokohama, Japan</json:string>
<json:string>Sons, Ltd.</json:string>
<json:string>Japan, Sendai</json:string>
<json:string>Coulter Corporation, Miami</json:string>
<json:string>Ministry of Education, Culture, Sports, Science and Technology of Japan</json:string>
<json:string>Sons, Ltd</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Y. Kaneda</json:string>
<json:string>John Wiley</json:string>
<json:string>C. Hoechst</json:string>
<json:string>M. Ito</json:string>
<json:string>Atsuko Okuno</json:string>
<json:string>Konomi</json:string>
</persName>
<placeName>
<json:string>TX</json:string>
<json:string>Bedford</json:string>
<json:string>Kyoto</json:string>
<json:string>San Diego</json:string>
<json:string>Switzerland</json:string>
<json:string>Toyama</json:string>
<json:string>UK</json:string>
<json:string>Austin</json:string>
<json:string>USA</json:string>
<json:string>Japan</json:string>
<json:string>Santa Cruz</json:string>
<json:string>Basel</json:string>
<json:string>Tokyo</json:string>
<json:string>CA</json:string>
<json:string>MA</json:string>
<json:string>Osaka</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>[18]</json:string>
<json:string>[22]</json:string>
<json:string>[28]</json:string>
<json:string>[25,26]</json:string>
<json:string>[43]</json:string>
<json:string>[27]</json:string>
<json:string>[42]</json:string>
<json:string>[37]</json:string>
<json:string>[40,41]</json:string>
<json:string>[28,29]</json:string>
<json:string>[36]</json:string>
<json:string>M. Ito et al.</json:string>
<json:string>[11,12]</json:string>
<json:string>[35]</json:string>
<json:string>[38,39]</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-GLHFLM13-6</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - medicine, research & experimental</json:string>
<json:string>2 - genetics & heredity</json:string>
<json:string>2 - biotechnology & applied microbiology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - applied sciences</json:string>
<json:string>2 - enabling & strategic technologies</json:string>
<json:string>3 - biotechnology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Health Sciences</json:string>
<json:string>2 - Medicine</json:string>
<json:string>3 - Genetics(clinical)</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Drug Discovery</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Genetics</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Medicine</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences medicales</json:string>
<json:string>4 - tumeurs</json:string>
</inist>
</categories>
<publicationDate>2005</publicationDate>
<copyrightDate>2005</copyrightDate>
<doi>
<json:string>10.1002/jgm.753</json:string>
</doi>
<id>5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-GLHFLM13-6/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-GLHFLM13-6/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/WNG-GLHFLM13-6/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
<title level="a" type="short" xml:lang="en">Rad51 siRNA Delivered by HVJ Envelope Vector</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2005 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2005-08"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
<title level="a" type="short" xml:lang="en">Rad51 siRNA Delivered by HVJ Envelope Vector</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Makoto</forename>
<surname>Ito</surname>
</persName>
<affiliation>
<orgName type="division">Division of Gene Therapy Science</orgName>
<orgName type="department">Graduate School of Medicine</orgName>
<orgName type="institution">Osaka University</orgName>
<address>
<addrLine>2‐2 Yamada‐oka</addrLine>
<addrLine>Suita, Osaka 565 ‐0871, Japan</addrLine>
<country key="JP" xml:lang="en">JAPAN</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Seiji</forename>
<surname>Yamamoto</surname>
</persName>
<affiliation>
<orgName type="division">Division of Gene Therapy Science</orgName>
<orgName type="department">Graduate School of Medicine</orgName>
<orgName type="institution">Osaka University</orgName>
<address>
<addrLine>2‐2 Yamada‐oka</addrLine>
<addrLine>Suita, Osaka 565 ‐0871, Japan</addrLine>
<country key="JP" xml:lang="en">JAPAN</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Keisuke</forename>
<surname>Nimura</surname>
</persName>
<affiliation>
<orgName type="division">Division of Gene Therapy Science</orgName>
<orgName type="department">Graduate School of Medicine</orgName>
<orgName type="institution">Osaka University</orgName>
<address>
<addrLine>2‐2 Yamada‐oka</addrLine>
<addrLine>Suita, Osaka 565 ‐0871, Japan</addrLine>
<country key="JP" xml:lang="en">JAPAN</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<forename type="first">Kazuya</forename>
<surname>Hiraoka</surname>
</persName>
<affiliation>
<orgName type="division">Division of Gene Therapy Science</orgName>
<orgName type="department">Graduate School of Medicine</orgName>
<orgName type="institution">Osaka University</orgName>
<address>
<addrLine>2‐2 Yamada‐oka</addrLine>
<addrLine>Suita, Osaka 565 ‐0871, Japan</addrLine>
<country key="JP" xml:lang="en">JAPAN</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<forename type="first">Katsuto</forename>
<surname>Tamai</surname>
</persName>
<affiliation>
<orgName type="division">Division of Gene Therapy Science</orgName>
<orgName type="department">Graduate School of Medicine</orgName>
<orgName type="institution">Osaka University</orgName>
<address>
<addrLine>2‐2 Yamada‐oka</addrLine>
<addrLine>Suita, Osaka 565 ‐0871, Japan</addrLine>
<country key="JP" xml:lang="en">JAPAN</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005" role="corresp">
<persName>
<forename type="first">Yasufumi</forename>
<surname>Kaneda</surname>
</persName>
<email>kaneday@gts.med.osaka‐u.ac.jp</email>
<affiliation>
<orgName type="division">Division of Gene Therapy Science</orgName>
<orgName type="department">Graduate School of Medicine</orgName>
<orgName type="institution">Osaka University</orgName>
<address>
<addrLine>2‐2 Yamada‐oka</addrLine>
<addrLine>Suita, Osaka 565 ‐0871, Japan</addrLine>
<country key="JP" xml:lang="en">JAPAN</country>
</address>
</affiliation>
</author>
<idno type="istex">5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D</idno>
<idno type="ark">ark:/67375/WNG-GLHFLM13-6</idno>
<idno type="DOI">10.1002/jgm.753</idno>
<idno type="unit">JGM753</idno>
<idno type="toTypesetVersion">file:JGM.JGM753.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">The Journal of Gene Medicine</title>
<title level="j" type="alt">JOURNAL OF GENE MEDICINE, THE</title>
<idno type="pISSN">1099-498X</idno>
<idno type="eISSN">1521-2254</idno>
<idno type="book-DOI">10.1002/(ISSN)1521-2254</idno>
<idno type="book-part-DOI">10.1002/jgm.v7:8</idno>
<idno type="product">JGM</idno>
<imprint>
<biblScope unit="vol">7</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="1044">1044</biblScope>
<biblScope unit="page" to="1052">1052</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2005-08"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.10" when="2019-12-20">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<head>Background</head>
<p>Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system.</p>
<head>Methods</head>
<p>To enhance the anti‐cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis‐diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence‐activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored.</p>
<head>Results</head>
<p>When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 µg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone.</p>
<head>Conclusions</head>
<p>Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both
<hi rend="italic">in vitro</hi>
and
<hi rend="italic">in vivo</hi>
. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti‐cancer protocol. Copyright © 2005 John Wiley & Sons, Ltd.</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">chemotherapy</term>
<term xml:id="kwd2">siRNA</term>
<term xml:id="kwd3">Rad51</term>
<term xml:id="kwd4">non‐viral vector</term>
<term xml:id="kwd5">drug delivery</term>
<term xml:id="kwd6">cancer therapy</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2019-12-20" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-GLHFLM13-6/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1521-2254</doi>
<issn type="print">1099-498X</issn>
<issn type="electronic">1521-2254</issn>
<idGroup>
<id type="product" value="JGM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GENE MEDICINE, THE">The Journal of Gene Medicine</title>
<title type="subtitle">A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications</title>
<title type="short">J. Gene Med.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="80">
<doi origin="wiley" registered="yes">10.1002/jgm.v7:8</doi>
<numberingGroup>
<numbering type="journalVolume" number="7">7</numbering>
<numbering type="journalIssue">8</numbering>
</numberingGroup>
<coverDate startDate="2005-08">August 2005</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="6" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/jgm.753</doi>
<idGroup>
<id type="unit" value="JGM753"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2005 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-09-27"></event>
<event type="manuscriptRevised" date="2004-12-04"></event>
<event type="manuscriptAccepted" date="2005-01-04"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2005-03-08"></event>
<event type="firstOnline" date="2005-03-08"></event>
<event type="publishedOnlineFinalForm" date="2005-08-01"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-04"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-30"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-11-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1044</numbering>
<numbering type="pageLast">1052</numbering>
</numberingGroup>
<correspondenceTo>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565‐0871, Japan.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:JGM.JGM753.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="8"></count>
<count type="tableTotal" number="0"></count>
<count type="referenceTotal" number="43"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
<title type="short" xml:lang="en">Rad51 siRNA Delivered by HVJ Envelope Vector</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Makoto</givenNames>
<familyName>Ito</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Seiji</givenNames>
<familyName>Yamamoto</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Keisuke</givenNames>
<familyName>Nimura</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Kazuya</givenNames>
<familyName>Hiraoka</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af1">
<personName>
<givenNames>Katsuto</givenNames>
<familyName>Tamai</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1" corresponding="yes">
<personName>
<givenNames>Yasufumi</givenNames>
<familyName>Kaneda</familyName>
</personName>
<contactDetails>
<email normalForm="kaneday@gts.med.osaka-u.ac.jp">kaneday@gts.med.osaka‐u.ac.jp</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="JP" type="organization">
<unparsedAffiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">chemotherapy</keyword>
<keyword xml:id="kwd2">siRNA</keyword>
<keyword xml:id="kwd3">Rad51</keyword>
<keyword xml:id="kwd4">non‐viral vector</keyword>
<keyword xml:id="kwd5">drug delivery</keyword>
<keyword xml:id="kwd6">cancer therapy</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Ministry of Education, Culture, Sports, Science and Technology of Japan</fundingAgency>
<fundingNumber>15300163</fundingNumber>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<section xml:id="abs1-1">
<title type="main">Background</title>
<p>Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system.</p>
</section>
<section xml:id="abs1-2">
<title type="main">Methods</title>
<p>To enhance the anti‐cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis‐diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence‐activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored.</p>
</section>
<section xml:id="abs1-3">
<title type="main">Results</title>
<p>When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 µg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone.</p>
</section>
<section xml:id="abs1-4">
<title type="main">Conclusions</title>
<p>Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both
<i>in vitro</i>
and
<i>in vivo</i>
. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti‐cancer protocol. Copyright © 2005 John Wiley & Sons, Ltd.</p>
</section>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Rad51 siRNA Delivered by HVJ Envelope Vector</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin</title>
</titleInfo>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Ito</namePart>
<affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seiji</namePart>
<namePart type="family">Yamamoto</namePart>
<affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Keisuke</namePart>
<namePart type="family">Nimura</namePart>
<affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kazuya</namePart>
<namePart type="family">Hiraoka</namePart>
<affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Katsuto</namePart>
<namePart type="family">Tamai</namePart>
<affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yasufumi</namePart>
<namePart type="family">Kaneda</namePart>
<affiliation>Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565 ‐0871, Japan</affiliation>
<affiliation>E-mail: kaneday@gts.med.osaka‐u.ac.jp</affiliation>
<affiliation>Correspondence address: Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, 2‐2 Yamada‐oka, Suita, Osaka 565‐0871, Japan.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2005-08</dateIssued>
<dateCaptured encoding="w3cdtf">2004-09-27</dateCaptured>
<dateValid encoding="w3cdtf">2005-01-04</dateValid>
<copyrightDate encoding="w3cdtf">2005</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">8</extent>
<extent unit="tables">0</extent>
<extent unit="references">43</extent>
</physicalDescription>
<abstract lang="en">Background: Every cancer therapy appears to be transiently effective for cancer regression, but cancers gradually transform to be resistant to the therapy. Cancers also develop machineries to resist chemotherapy. Short interfering RNA (siRNA) has been evaluated as an attractive and effective tool for suppressing a target protein by specifically digesting its mRNA. Suppression of the machineries using siRNA may enhance the sensitivity to chemotherapy in cancers when combined with an effective delivery system. Methods: To enhance the anti‐cancer effect of chemotherapy, we transferred siRNA against Rad51 into various human cancer cells using the HVJ (hemagglutinating virus of Japan, Sendai virus) envelope vector in the presence or absence of cis‐diamminedichloroplatinum(II) (CDDP, cisplatin). The inhibition of cell growth was assessed by a modified MTT assay, counting cell number, or fluorescence‐activated cell sorting (FACS) analysis after Annexin V labeling. The synthetic Rad51 siRNA was also introduced into subcutaneous tumor masses of HeLa cells in SCID mice with or without intraperitoneal injection of CDDP, and tumor growth was monitored. Results: When synthetic Rad51 siRNA was delivered into HeLa cells using the HVJ envelope vector, no Rad51 transcripts were detected on day 2, and Rad51 protein completely disappeared for 4 days after siRNA transfer. When HeLa cells were incubated with 0.02 µg/ml CDDP for 3 h after siRNA transfer, the number of colonies decreased to approximately 10% of that with scrambled siRNA. The sensitivity to CDDP was enhanced in various human cancer cells, but not in normal human fibroblasts. When Rad51 siRNA was delivered into tumors using the HVJ envelope vector, the Rad51 transcript level was reduced to approximately 25%. Rad51 siRNA combined with CDDP significantly inhibited tumor growth when compared to siRNA or CDDP alone. Conclusions: Rad51 siRNA could enhance the sensitivity to CDDP in cancer cells both in vitro and in vivo. Our results suggest that the combination of CDDP and Rad51 siRNA will be an effective anti‐cancer protocol. Copyright © 2005 John Wiley & Sons, Ltd.</abstract>
<note type="funding">Ministry of Education, Culture, Sports, Science and Technology of Japan - No. 15300163; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>chemotherapy</topic>
<topic>siRNA</topic>
<topic>Rad51</topic>
<topic>non‐viral vector</topic>
<topic>drug delivery</topic>
<topic>cancer therapy</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>The Journal of Gene Medicine</title>
<subTitle>A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Gene Med.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
<topic>Research Articles</topic>
</subject>
<identifier type="ISSN">1099-498X</identifier>
<identifier type="eISSN">1521-2254</identifier>
<identifier type="DOI">10.1002/(ISSN)1521-2254</identifier>
<identifier type="PublisherID">JGM</identifier>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1044</start>
<end>1052</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="cit1">
<titleInfo>
<title>Drug resistance reversal—are we getting closer?</title>
</titleInfo>
<name type="personal">
<namePart type="given">RD</namePart>
<namePart type="family">Baird</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">SB</namePart>
<namePart type="family">Kaye</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Baird RD, Kaye SB. Drug resistance reversal—are we getting closer? Eur J Cancer 2003; 39: 2450–2461.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>2450</start>
<end>2461</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Eur J Cancer</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>2450</start>
<end>2461</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit2">
<titleInfo>
<title>Clinical relevance of the molecular mechanisms of resistance to anti‐cancer drugs</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Links</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Brown</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Links M, Brown R. Clinical relevance of the molecular mechanisms of resistance to anti‐cancer drugs. Expert Rev Mol Med 1999; Oct 25: 1–21.</note>
<part>
<date>1999</date>
<extent unit="pages">
<start>1</start>
<end>21</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Expert Rev Mol Med</title>
</titleInfo>
<part>
<date>1999</date>
<extent unit="pages">
<start>1</start>
<end>21</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit3">
<titleInfo>
<title>Strategies for reversing drug resistance</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Fojo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Bates</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene 1988; 22: 7512–7523.</note>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>7512</start>
<end>7523</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Oncogene</title>
</titleInfo>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>7512</start>
<end>7523</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit4">
<titleInfo>
<title>Evolution of high‐dose cisplatin</title>
</titleInfo>
<name type="personal">
<namePart type="given">WM</namePart>
<namePart type="family">Holleran</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MW</namePart>
<namePart type="family">DeGregorio</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Holleran WM, DeGregorio MW. Evolution of high‐dose cisplatin. Invest New Drugs 1988; 6: 135–142.</note>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>135</start>
<end>142</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Invest New Drugs</title>
</titleInfo>
<part>
<date>1988</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>135</start>
<end>142</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit5">
<titleInfo>
<title>New cisplatin analogues in development</title>
</titleInfo>
<name type="personal">
<namePart type="given">RB</namePart>
<namePart type="family">Weiss</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MC</namePart>
<namePart type="family">Christian</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Weiss RB, Christian MC. New cisplatin analogues in development. Drugs 1993; 46: 360–377.</note>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>46</number>
</detail>
<extent unit="pages">
<start>360</start>
<end>377</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Drugs</title>
</titleInfo>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>46</number>
</detail>
<extent unit="pages">
<start>360</start>
<end>377</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit6">
<titleInfo>
<title>Phase II trial of cisplatin plus temozolomide in recurrent and progressive malignant glioma patients</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Silvani</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Eoli</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Salmaggi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Silvani A, Eoli M, Salmaggi A, et al. Phase II trial of cisplatin plus temozolomide in recurrent and progressive malignant glioma patients. J Neurooncol 2003; 66: 203–208.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>66</number>
</detail>
<extent unit="pages">
<start>203</start>
<end>208</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Neurooncol</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>66</number>
</detail>
<extent unit="pages">
<start>203</start>
<end>208</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit7">
<titleInfo>
<title>Potentiation of sulphur mustard or cisplatin‐induced toxicity by caffeine in Chinese hamster cells correlates with formation of DNA double‐strand breaks during replication on a damaged template</title>
</titleInfo>
<name type="personal">
<namePart type="given">JJ</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">VP</namePart>
<namePart type="family">Kotsaki‐Kovatsi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Roberts JJ, Kotsaki‐Kovatsi VP. Potentiation of sulphur mustard or cisplatin‐induced toxicity by caffeine in Chinese hamster cells correlates with formation of DNA double‐strand breaks during replication on a damaged template. Mutat Res 1986; 165: 207–220.</note>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>165</number>
</detail>
<extent unit="pages">
<start>207</start>
<end>220</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Mutat Res</title>
</titleInfo>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>165</number>
</detail>
<extent unit="pages">
<start>207</start>
<end>220</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit8">
<titleInfo>
<title>Effect of DNA‐damaging agents on DNA replication and cell‐cycle progression of cultured mouse mammary carcinoma cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Kanno</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Hyodo</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Suzuki</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Ohkido</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Kanno S, Hyodo M, Suzuki K, Ohkido M. Effect of DNA‐damaging agents on DNA replication and cell‐cycle progression of cultured mouse mammary carcinoma cells. Jpn J Cancer Res 1985; 76: 289–296.</note>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>76</number>
</detail>
<extent unit="pages">
<start>289</start>
<end>296</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Jpn J Cancer Res</title>
</titleInfo>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>76</number>
</detail>
<extent unit="pages">
<start>289</start>
<end>296</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit9">
<titleInfo>
<title>Multiple pathways of recombination define cellular responses to cisplatin</title>
</titleInfo>
<name type="personal">
<namePart type="given">ZZ</namePart>
<namePart type="family">Zdraveski</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Mello</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MG</namePart>
<namePart type="family">Marinus</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JM</namePart>
<namePart type="family">Essigmann</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Zdraveski ZZ, Mello JA, Marinus MG, Essigmann JM. Multiple pathways of recombination define cellular responses to cisplatin. Chem Biol 2000; 7: 39–50.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>39</start>
<end>50</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Chem Biol</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>39</start>
<end>50</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit10">
<titleInfo>
<title>DNA repair protein level vis‐à‐vis anticancer drug resistance in the human tumor cell lines of the National Cancer Institute drug screening program</title>
</titleInfo>
<name type="personal">
<namePart type="given">Z</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ZP</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Malapesta</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Xu Z, Chen ZP, Malapesta A, et al. DNA repair protein level vis‐à‐vis anticancer drug resistance in the human tumor cell lines of the National Cancer Institute drug screening program. Anticancer Drugs 2002; 13: 511–519.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>511</start>
<end>519</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Anticancer Drugs</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>511</start>
<end>519</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit11">
<titleInfo>
<title>The Fanconi anemia/BRCA pathway</title>
</titleInfo>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">D'Andrea</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Grompe</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">D'Andrea AD, Grompe M. The Fanconi anemia/BRCA pathway. Nat Rev Cancer 2003; 3: 23–34.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>23</start>
<end>34</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nat Rev Cancer</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>23</start>
<end>34</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit12">
<titleInfo>
<title>Principles of tumor suppression</title>
</titleInfo>
<name type="personal">
<namePart type="given">CJ</namePart>
<namePart type="family">Sherr</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Sherr CJ. Principles of tumor suppression. Cell 2004; 116: 235–246.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<extent unit="pages">
<start>235</start>
<end>246</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<extent unit="pages">
<start>235</start>
<end>246</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit13">
<titleInfo>
<title>Homologous recombination and cell cycle checkpoints: Rad51 in tumor progression and therapy resistance</title>
</titleInfo>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Henning</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H‐W</namePart>
<namePart type="family">Sturzbecher</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Henning W, Sturzbecher H‐W. Homologous recombination and cell cycle checkpoints: Rad51 in tumor progression and therapy resistance. Toxicology 2003; 193: 91–109.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>193</number>
</detail>
<extent unit="pages">
<start>91</start>
<end>109</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Toxicology</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>193</number>
</detail>
<extent unit="pages">
<start>91</start>
<end>109</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit14">
<titleInfo>
<title>Reconstitution of the mammalian DNA double‐strand break end‐joining reveals a requirement for an Mre11/Rad50/NBS1‐containing fraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WS</namePart>
<namePart type="family">Dynan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Huang J, Dynan WS. Reconstitution of the mammalian DNA double‐strand break end‐joining reveals a requirement for an Mre11/Rad50/NBS1‐containing fraction. Nucleic Acids Res 2002; 30: 667–674.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>667</start>
<end>674</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>30</number>
</detail>
<extent unit="pages">
<start>667</start>
<end>674</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit15">
<titleInfo>
<title>Cross‐resistance to ionizing radiation in a murine leukemic cell line resistant cis‐dichlorodiammineplatinum(II): role of Ku autoantigen</title>
</titleInfo>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Freit</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Canitrot</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Muller</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Freit P, Canitrot Y, Muller C, et al. Cross‐resistance to ionizing radiation in a murine leukemic cell line resistant cis‐dichlorodiammineplatinum(II): role of Ku autoantigen. Mol Pharmacol 1999; 56: 141–146.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>56</number>
</detail>
<extent unit="pages">
<start>141</start>
<end>146</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Mol Pharmacol</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>56</number>
</detail>
<extent unit="pages">
<start>141</start>
<end>146</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit16">
<titleInfo>
<title>Examining the non‐homologous repair process following cisplatin and radiation treatments</title>
</titleInfo>
<name type="personal">
<namePart type="given">WK</namePart>
<namePart type="family">Myint</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">GP</namePart>
<namePart type="family">Raaphorst</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Myint WK, Ng C, Raaphorst GP. Examining the non‐homologous repair process following cisplatin and radiation treatments. Int J Radiat Biol 2002; 78: 417–424.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>78</number>
</detail>
<extent unit="pages">
<start>417</start>
<end>424</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Int J Radiat Biol</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>78</number>
</detail>
<extent unit="pages">
<start>417</start>
<end>424</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit17">
<titleInfo>
<title>Modification of non‐conservative double‐strand break (DSB) rejoining activity after the induction of cisplatin resistance in human tumour cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">RA</namePart>
<namePart type="family">Britten</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Kuny</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Perdue</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Britten RA, Kuny S, Perdue S. Modification of non‐conservative double‐strand break (DSB) rejoining activity after the induction of cisplatin resistance in human tumour cells. Br J Cancer 1999; 79: 843–849.</note>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>79</number>
</detail>
<extent unit="pages">
<start>843</start>
<end>849</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Br J Cancer</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>79</number>
</detail>
<extent unit="pages">
<start>843</start>
<end>849</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit18">
<titleInfo>
<title>Suppression of a DNA double‐strand break repair gene, Ku70, increases radio‐ and chemosensitivity in a human lung carcinoma cell line</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Omori</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Takiguchi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Suda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Omori S, Takiguchi Y, Suda A, et al. Suppression of a DNA double‐strand break repair gene, Ku70, increases radio‐ and chemosensitivity in a human lung carcinoma cell line. DNA Repair 2002; 29: 299–310.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>299</start>
<end>310</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>DNA Repair</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>29</number>
</detail>
<extent unit="pages">
<start>299</start>
<end>310</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit19">
<titleInfo>
<title>BRCA1 up‐regulation is associated with repair‐mediated resistance to cis‐diamminedichloroplatinum(II)</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Husain</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ES</namePart>
<namePart type="family">Venkatraman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DR</namePart>
<namePart type="family">Spriggs</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Husain A, He G, Venkatraman ES, Spriggs DR. BRCA1 up‐regulation is associated with repair‐mediated resistance to cis‐diamminedichloroplatinum(II). Cancer Res 1998; 58: 1120–1123.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<extent unit="pages">
<start>1120</start>
<end>1123</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>58</number>
</detail>
<extent unit="pages">
<start>1120</start>
<end>1123</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit20">
<titleInfo>
<title>Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Aloyz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">ZY</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Bello</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Aloyz R, Xu ZY, Bello V, et al. Regulation of cisplatin resistance and homologous recombinational repair by the TFIIH subunit XPD. Cancer Res 2002; 62: 5457–5462.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>5457</start>
<end>5462</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>5457</start>
<end>5462</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit21">
<titleInfo>
<title>The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross‐linking agent cisplatin</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">US</namePart>
<namePart type="family">Ear</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">BH</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">RR</namePart>
<namePart type="family">Weichselbaum</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DK</namePart>
<namePart type="family">Bishop</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross‐linking agent cisplatin. J Biol Chem 2000; 275: 23 899–23 903.</note>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>275</number>
</detail>
<extent unit="pages">
<start>23 899</start>
<end>23 903</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>J Biol Chem</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>275</number>
</detail>
<extent unit="pages">
<start>23 899</start>
<end>23 903</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit22">
<titleInfo>
<title>Elevated levels of Rad51 recombination protein in tumor cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Raderschall</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Stout</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Freier</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Suckow</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Schweiger</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Haaf</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Raderschall E, Stout K, Freier S, Suckow V, Schweiger S, Haaf T. Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res 2002; 62: 219–225.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>219</start>
<end>225</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>219</start>
<end>225</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit23">
<titleInfo>
<title>Dicers at RISC; the mechanism of RNAi</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Tijsterman</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">RH</namePart>
<namePart type="family">Plasterk</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Tijsterman M, Plasterk RH. Dicers at RISC; the mechanism of RNAi. Cell 2004; 117: 1–3.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>3</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>3</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit24">
<titleInfo>
<title>siRNAs: applications in functional genomics and potential as therapeutics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Dorsett</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Tuschl</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Dorsett Y, Tuschl T. siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 3: 318–329.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>318</start>
<end>329</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nat Rev Drug Discov</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>318</start>
<end>329</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit25">
<titleInfo>
<title>Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Miyagishi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Hayashi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Taira</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Miyagishi M, Hayashi M, Taira K. Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 2003; 13: 1–7.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>7</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Antisense Nucleic Acid Drug Dev</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>7</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit26">
<titleInfo>
<title>siRNA‐based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Yokota</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Miyagishi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Hino</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Yokota T, Miyagishi M, Hino T, et al. siRNA‐based inhibition specific for mutant SOD1 with single nucleotide alternation in familial ALS, compared with ribozyme and DNA enzyme. Biochem Biophys Res Commun 2004; 314: 283–291.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>314</number>
</detail>
<extent unit="pages">
<start>283</start>
<end>291</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biochem Biophys Res Commun</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>314</number>
</detail>
<extent unit="pages">
<start>283</start>
<end>291</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit27">
<titleInfo>
<title>Ribozyme‐ and siRNA‐mediated mRNA degradation: a general introduction</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Sioud</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Sioud M. Ribozyme‐ and siRNA‐mediated mRNA degradation: a general introduction. Methods Mol Biol 2004; 252: 1–8.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>8</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Methods Mol Biol</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>252</number>
</detail>
<extent unit="pages">
<start>1</start>
<end>8</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit28">
<titleInfo>
<title>HVJ (hemagglutinating virus of Japan) envelope vector as a versatile gene delivery system</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Kaneda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Nakajima</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Nishikawa</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Kaneda Y, Nakajima T, Nishikawa T, et al. HVJ (hemagglutinating virus of Japan) envelope vector as a versatile gene delivery system. Mol Ther 2002; 6: 219–226.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>219</start>
<end>226</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Mol Ther</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>219</start>
<end>226</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit29">
<titleInfo>
<title>Intrathecal injection of HVJ‐E containing HGF gene to cerebrospinal fluid can prevent and ameliorate hearing impairment in rats</title>
</titleInfo>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Oshima</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Shimamura</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Mizuno</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Oshima K, Shimamura M, Mizuno S, et al. Intrathecal injection of HVJ‐E containing HGF gene to cerebrospinal fluid can prevent and ameliorate hearing impairment in rats. FASEB J 2004; 18: 212–214.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>212</start>
<end>214</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>FASEB J</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>212</start>
<end>214</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit30">
<titleInfo>
<title>Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Itoh</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Kawamata</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Harada</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 2003; 422: 173–176.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>422</number>
</detail>
<extent unit="pages">
<start>173</start>
<end>176</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>422</number>
</detail>
<extent unit="pages">
<start>173</start>
<end>176</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit31">
<titleInfo>
<title>Inhibitory effects of novel AP‐1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo</title>
</titleInfo>
<name type="personal">
<namePart type="given">J‐D</namePart>
<namePart type="family">Ahn</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Kaneda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Ahn J‐D, Morishita R, Kaneda Y, et al. Inhibitory effects of novel AP‐1 decoy oligodeoxynucleotides on vascular smooth muscle cell proliferation in vitro and neointimal formation in vivo. Circ Res 2002; 90: 1325–1332.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<extent unit="pages">
<start>1325</start>
<end>1332</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Circ Res</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>90</number>
</detail>
<extent unit="pages">
<start>1325</start>
<end>1332</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit32">
<titleInfo>
<title>Enhanced radiation and chemotherapy‐mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors</title>
</titleInfo>
<name type="personal">
<namePart type="given">SJ</namePart>
<namePart type="family">Collis</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Swartz</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WG</namePart>
<namePart type="family">Nelson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">TL</namePart>
<namePart type="family">DeWeese</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Collis SJ, Swartz MJ, Nelson WG, DeWeese TL. Enhanced radiation and chemotherapy‐mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 2003; 63: 1550–1554.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>1550</start>
<end>1554</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>1550</start>
<end>1554</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit33">
<titleInfo>
<title>An antisense oligonucleotide targeted to human Ku86 messenger RNA sensitizes M059 malignant glioma cells to ionizing radiation, bleomycin, and etoposide but not DNA cross‐linking agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">AL</namePart>
<namePart type="family">Belenkov</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J‐P</namePart>
<namePart type="family">Paiement</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LC</namePart>
<namePart type="family">Panasci</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">BP</namePart>
<namePart type="family">Monia</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">TYK</namePart>
<namePart type="family">Chow</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Belenkov AL, Paiement J‐P, Panasci LC, Monia BP, Chow TYK. An antisense oligonucleotide targeted to human Ku86 messenger RNA sensitizes M059 malignant glioma cells to ionizing radiation, bleomycin, and etoposide but not DNA cross‐linking agents. Cancer Res 2002; 62: 5888–5896.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>5888</start>
<end>5896</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>5888</start>
<end>5896</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit34">
<titleInfo>
<title>Silencing expression of the catalytic subunit of DNA‐dependent protein kinase by small interfering RNA sensitizes human cells for radiation‐induced chromosome damage, cell killing, and mutation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Peng</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Q</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Nagasawa</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Okayasu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">HL</namePart>
<namePart type="family">Liber</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Bedford</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Peng Y, Zhang Q, Nagasawa H, Okayasu R, Liber HL, Bedford JS. Silencing expression of the catalytic subunit of DNA‐dependent protein kinase by small interfering RNA sensitizes human cells for radiation‐induced chromosome damage, cell killing, and mutation. Cancer Res 2002; 62: 6400–6404.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>6400</start>
<end>6404</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>6400</start>
<end>6404</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit35">
<titleInfo>
<title>Cell‐interdependent cisplatin killing by Ku/DNA‐dependent protein kinase signaling transduced through gap junctions</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Jensen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Glazer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Jensen R, Glazer P. Cell‐interdependent cisplatin killing by Ku/DNA‐dependent protein kinase signaling transduced through gap junctions. Proc Natl Acad Sci U S A 2004; 101: 6134–6139.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>101</number>
</detail>
<extent unit="pages">
<start>6134</start>
<end>6139</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Proc Natl Acad Sci U S A</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>101</number>
</detail>
<extent unit="pages">
<start>6134</start>
<end>6139</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit36">
<titleInfo>
<title>Vanillins—a novel family of DNA‐PK inhibitors</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Durant</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Karran</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Durant S, Karran P. Vanillins—a novel family of DNA‐PK inhibitors. Nucleic Acids Res 2003; 31: 5501–5512.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>5501</start>
<end>5512</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>31</number>
</detail>
<extent unit="pages">
<start>5501</start>
<end>5512</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit37">
<titleInfo>
<title>In vitro and in vivo potentiation of radiosensitivity of malignant gliomas by antisense inhibition of the Rad51 gene</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Ohnishi</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Taki</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Hiraga</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Arita</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Morita</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Ohnishi T, Taki T, Hiraga S, Arita N, Morita T. In vitro and in vivo potentiation of radiosensitivity of malignant gliomas by antisense inhibition of the Rad51 gene. Biochem Biophys Res Commun 1998; 245: 319–324.</note>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>245</number>
</detail>
<extent unit="pages">
<start>319</start>
<end>324</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biochem Biophys Res Commun</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>245</number>
</detail>
<extent unit="pages">
<start>319</start>
<end>324</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit38">
<titleInfo>
<title>Retrovirus vector‐mediated stable gene silencing in human cell</title>
</titleInfo>
<name type="personal">
<namePart type="given">CM</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">DP</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WJ</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">CC</namePart>
<namePart type="family">Liang</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Liu CM, Liu DP, Dong WJ, Liang CC. Retrovirus vector‐mediated stable gene silencing in human cell. Biochem Biophys Res Commun 2004; 313: 716–720.</note>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>313</number>
</detail>
<extent unit="pages">
<start>716</start>
<end>720</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Biochem Biophys Res Commun</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>313</number>
</detail>
<extent unit="pages">
<start>716</start>
<end>720</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit39">
<titleInfo>
<title>Lentiviral‐mediated RNA interference</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Abbas‐Terki</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Blanco‐Bose</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N</namePart>
<namePart type="family">Deglon</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Pralong</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Aebischer</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Abbas‐Terki T, Blanco‐Bose W, Deglon N, Pralong W, Aebischer P. Lentiviral‐mediated RNA interference. Hum Gene Ther 2002; 13: 2197–2201.</note>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>2197</start>
<end>2201</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Hum Gene Ther</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>2197</start>
<end>2201</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit40">
<titleInfo>
<title>Gleevec‐mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity</title>
</titleInfo>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Russell</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Brady</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">WE</namePart>
<namePart type="family">Burgan</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Russell JS, Brady K, Burgan WE, et al. Gleevec‐mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 2003; 63: 7377–7383.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>7377</start>
<end>7383</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Res</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>7377</start>
<end>7383</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit41">
<titleInfo>
<title>The role of Rad51 in etoposide (VP16) resistance in small cell lung cancer</title>
</titleInfo>
<name type="personal">
<namePart type="given">LT</namePart>
<namePart type="family">Hansen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Lundin</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Spang‐Thomsen</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">LN</namePart>
<namePart type="family">Peterson</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Helleday</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Hansen LT, Lundin C, Spang‐Thomsen M, Peterson LN, Helleday T. The role of Rad51 in etoposide (VP16) resistance in small cell lung cancer. Int J Cancer 2003; 105: 472–479.</note>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>472</start>
<end>479</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Int J Cancer</title>
</titleInfo>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>105</number>
</detail>
<extent unit="pages">
<start>472</start>
<end>479</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit42">
<titleInfo>
<title>A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53</title>
</titleInfo>
<name type="personal">
<namePart type="given">DS</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Hasty</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Lim DS, Hasty P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 1996; 16: 7133–7143.</note>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>7133</start>
<end>7143</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Mol Cell Biol</title>
</titleInfo>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>7133</start>
<end>7143</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="cit43">
<titleInfo>
<title>Novel immunotherapy for peritoneal dissemination of murine colon cancer with macrophage inflammatory protein‐1β mediated by a tumor‐specific vector, HVJ‐cationic liposomes</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Miyata</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Yamamoto</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Sakamoto</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Morishita</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Kaneda</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<genre>journal-article</genre>
<note type="citation/reference">Miyata T, Yamamoto S, Sakamoto K, Morishita R, Kaneda Y. Novel immunotherapy for peritoneal dissemination of murine colon cancer with macrophage inflammatory protein‐1β mediated by a tumor‐specific vector, HVJ‐cationic liposomes. Cancer Gene Ther 2001; 8: 852–860.</note>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>852</start>
<end>860</end>
</extent>
</part>
<relatedItem type="host">
<titleInfo>
<title>Cancer Gene Ther</title>
</titleInfo>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>852</start>
<end>860</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D</identifier>
<identifier type="ark">ark:/67375/WNG-GLHFLM13-6</identifier>
<identifier type="DOI">10.1002/jgm.753</identifier>
<identifier type="ArticleID">JGM753</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2005 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>Converted from (version ) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2019-11-15</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/WNG-GLHFLM13-6/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001B41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:5FBC2E8437334FEAA3AE96D3A2F6E063AD351F5D
   |texte=   Rad51 siRNA delivered by HVJ envelope vector enhances the anti‐cancer effect of cisplatin
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021