Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides

Identifieur interne : 001A94 ( Istex/Corpus ); précédent : 001A93; suivant : 001A95

4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides

Auteurs : Tomoko Hamma ; Paul S. Miller

Source :

RBID : ISTEX:D22D50DF700312506B9A74AAE89CFC7812D22C6D

Abstract

Oligo-2‘-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2‘-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 °C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2‘-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ−oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ−oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.

Url:
DOI: 10.1021/bc025638+

Links to Exploration step

ISTEX:D22D50DF700312506B9A74AAE89CFC7812D22C6D

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
<author>
<name sortKey="Hamma, Tomoko" sort="Hamma, Tomoko" uniqKey="Hamma T" first="Tomoko" last="Hamma">Tomoko Hamma</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Division of Basic Science, Fred HutchinsonCancer Research Center, 1100 Fairview Avenue North Mail StopA3-015, Seattle, WA 98109.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Paul S" sort="Miller, Paul S" uniqKey="Miller P" first="Paul S." last="Miller">Paul S. Miller</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Corresponding author. Phone:  410-955-3489. Fax:  410-955-2926. E-mail:  pmiller@jhsph.edu.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D22D50DF700312506B9A74AAE89CFC7812D22C6D</idno>
<date when="2003" year="2003">2003</date>
<idno type="doi">10.1021/bc025638+</idno>
<idno type="url">https://api.istex.fr/ark:/67375/TPS-P7LNH6TZ-J/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001A94</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001A94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
<author>
<name sortKey="Hamma, Tomoko" sort="Hamma, Tomoko" uniqKey="Hamma T" first="Tomoko" last="Hamma">Tomoko Hamma</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Current address:  Division of Basic Science, Fred HutchinsonCancer Research Center, 1100 Fairview Avenue North Mail StopA3-015, Seattle, WA 98109.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Miller, Paul S" sort="Miller, Paul S" uniqKey="Miller P" first="Paul S." last="Miller">Paul S. Miller</name>
<affiliation>
<mods:affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation> Corresponding author. Phone:  410-955-3489. Fax:  410-955-2926. E-mail:  pmiller@jhsph.edu.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="ISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2003</date>
<date type="published">2003</date>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="320">320</biblScope>
<biblScope unit="page" to="330">330</biblScope>
</imprint>
<idno type="ISSN">1043-1802</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1043-1802</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Oligo-2‘-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2‘-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 °C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2‘-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ−oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ−oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.</div>
</front>
</TEI>
<istex>
<corpusName>acs</corpusName>
<keywords>
<teeft>
<json:string>oligonucleotides</json:string>
<json:string>chem</json:string>
<json:string>oligonucleotide</json:string>
<json:string>aminooxy</json:string>
<json:string>acetonitrile</json:string>
<json:string>peptide</json:string>
<json:string>oligomer</json:string>
<json:string>room temperature</json:string>
<json:string>spectrometry</json:string>
<json:string>hplc</json:string>
<json:string>mmol</json:string>
<json:string>quinoline</json:string>
<json:string>aminooxy group</json:string>
<json:string>bioconjugate</json:string>
<json:string>phosphoramidite</json:string>
<json:string>oligomers</json:string>
<json:string>bioconjugate chem</json:string>
<json:string>duplex</json:string>
<json:string>mass spectrometry</json:string>
<json:string>aldehyde</json:string>
<json:string>binding affinity</json:string>
<json:string>oxime</json:string>
<json:string>chloroform</json:string>
<json:string>reactive</json:string>
<json:string>phase hplc</json:string>
<json:string>adduct</json:string>
<json:string>calcd</json:string>
<json:string>quinoline ring</json:string>
<json:string>cytosine</json:string>
<json:string>ketone</json:string>
<json:string>aqueous acetonitrile</json:string>
<json:string>antisense</json:string>
<json:string>methanol</json:string>
<json:string>linear gradient</json:string>
<json:string>conjugation</json:string>
<json:string>derivative</json:string>
<json:string>carbonate</json:string>
<json:string>hamma</json:string>
<json:string>reaction mixture</json:string>
<json:string>bromoacetone</json:string>
<json:string>biochemistry</json:string>
<json:string>nucleic acid</json:string>
<json:string>lett</json:string>
<json:string>nucleic</json:string>
<json:string>column chromatography</json:string>
<json:string>molecular weight</json:string>
<json:string>potassium carbonate</json:string>
<json:string>cysteine residue</json:string>
<json:string>apparent dissociation constant</json:string>
<json:string>antisense oligonucleotides</json:string>
<json:string>tetrahedron lett</json:string>
<json:string>ethyl acetate</json:string>
<json:string>acetic acid</json:string>
<json:string>emission maximum</json:string>
<json:string>sodium phosphate</json:string>
<json:string>sodium chloride</json:string>
<json:string>michael adduct</json:string>
<json:string>silica</json:string>
<json:string>monomethoxytrityl chloride</json:string>
<json:string>binding mode</json:string>
<json:string>mass spectrum</json:string>
<json:string>dimethyloxime derivative</json:string>
<json:string>retention time</json:string>
<json:string>centrifuge tube</json:string>
<json:string>base pair</json:string>
<json:string>chemoselective ligation</json:string>
<json:string>ammonium hydroxide</json:string>
<json:string>double bond</json:string>
<json:string>last base pair</json:string>
<json:string>deae sephadex column</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>HAMMA Tomoko</name>
<affiliations>
<json:string>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</json:string>
<json:string>Current address:  Division of Basic Science, Fred HutchinsonCancer Research Center, 1100 Fairview Avenue North Mail StopA3-015, Seattle, WA 98109.</json:string>
</affiliations>
</json:item>
<json:item>
<name>MILLER Paul S.</name>
<affiliations>
<json:string>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</json:string>
<json:string>Corresponding author. Phone:  410-955-3489. Fax:  410-955-2926. E-mail:  pmiller@jhsph.edu.</json:string>
</affiliations>
</json:item>
</author>
<arkIstex>ark:/67375/TPS-P7LNH6TZ-J</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Oligo-2‘-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2‘-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 °C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2‘-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ−oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ−oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>8135</pdfWordCount>
<pdfCharCount>52786</pdfCharCount>
<pdfVersion>1.2</pdfVersion>
<pdfPageCount>11</pdfPageCount>
<pdfPageSize>612 x 792 pts (letter)</pdfPageSize>
<pdfWordsPerPage>740</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>302</abstractWordCount>
<abstractCharCount>2154</abstractCharCount>
<keywordCount>0</keywordCount>
</qualityIndicators>
<title>4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Bioconjugate Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<issn>
<json:string>1043-1802</json:string>
</issn>
<eissn>
<json:string>1520-4812</json:string>
</eissn>
<volume>14</volume>
<issue>2</issue>
<pages>
<first>320</first>
<last>330</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<ark>
<json:string>ark:/67375/TPS-P7LNH6TZ-J</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - chemistry, organic</json:string>
<json:string>2 - chemistry, multidisciplinary</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
<json:string>2 - biochemical research methods</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - chemistry</json:string>
<json:string>3 - organic chemistry</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemistry</json:string>
<json:string>3 - Organic Chemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmaceutical Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Pharmacology, Toxicology and Pharmaceutics</json:string>
<json:string>3 - Pharmacology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Engineering</json:string>
<json:string>3 - Biomedical Engineering</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Chemical Engineering</json:string>
<json:string>3 - Bioengineering</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biotechnology</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2003</publicationDate>
<copyrightDate>2003</copyrightDate>
<doi>
<json:string>10.1021/bc025638+</json:string>
</doi>
<id>D22D50DF700312506B9A74AAE89CFC7812D22C6D</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-P7LNH6TZ-J/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-P7LNH6TZ-J/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-P7LNH6TZ-J/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/TPS-P7LNH6TZ-J/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>American Chemical Society</publisher>
<availability>
<licence>Copyright © 2003 American Chemical Society</licence>
<p>American Chemical Society</p>
</availability>
<date type="published">2003</date>
<date type="Copyright" when="2003">2003</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
<author xml:id="author-0000">
<persName>
<surname>Hamma</surname>
<forename type="first">Tomoko</forename>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biochemistry and Molecular Biology</orgName>
<orgName type="department">Bloomberg School of Public Health</orgName>
<orgName type="institution">Johns Hopkins University</orgName>
<address>
<addrLine>615 North Wolfe Street</addrLine>
<addrLine>Baltimore</addrLine>
<addrLine>Maryland 21205</addrLine>
</address>
</affiliation>
<note place="foot" n="bc0256381AF2">
<ref></ref>
<p>  Current address:  Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North Mail Stop A3-015, Seattle, WA 98109.</p>
</note>
</author>
<author xml:id="author-0001" role="corresp">
<persName>
<surname>Miller</surname>
<forename type="first">Paul S.</forename>
</persName>
<affiliation>
<orgName type="laboratory">Department of Biochemistry and Molecular Biology</orgName>
<orgName type="department">Bloomberg School of Public Health</orgName>
<orgName type="institution">Johns Hopkins University</orgName>
<address>
<addrLine>615 North Wolfe Street</addrLine>
<addrLine>Baltimore</addrLine>
<addrLine>Maryland 21205</addrLine>
</address>
</affiliation>
<affiliation role="corresp"> Corresponding author. Phone:  410-955-3489. Fax:  410-955-2926. E-mail:  pmiller@jhsph.edu.</affiliation>
</author>
<idno type="istex">D22D50DF700312506B9A74AAE89CFC7812D22C6D</idno>
<idno type="ark">ark:/67375/TPS-P7LNH6TZ-J</idno>
<idno type="DOI">10.1021/bc025638+</idno>
</analytic>
<monogr>
<title level="j" type="main">Bioconjugate Chemistry</title>
<title level="j" type="abbrev">Bioconjugate Chem.</title>
<idno type="acspubs">bc</idno>
<idno type="coden">bcches</idno>
<idno type="pISSN">1043-1802</idno>
<idno type="eISSN">1520-4812</idno>
<imprint>
<publisher>American Chemical Society</publisher>
<date type="e-published">2003</date>
<date type="published">2003</date>
<biblScope unit="vol">14</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="320">320</biblScope>
<biblScope unit="page" to="330">330</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Oligo-2‘-
<hi rend="italic">O</hi>
-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2‘-
<hi rend="italic">O</hi>
-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 °C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2‘-
<hi rend="italic">O</hi>
-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ−oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ−oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates. </p>
</abstract>
<textClass ana="subject">
<keywords scheme="document-type-name">
<term>Article</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus acs not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:document>
<article article-type="research-article" specific-use="acs2jats-1.1.23" dtd-version="1.1d1">
<front>
<journal-meta>
<journal-id journal-id-type="acspubs">bc</journal-id>
<journal-id journal-id-type="coden">bcches</journal-id>
<journal-title-group>
<journal-title>Bioconjugate Chemistry</journal-title>
<abbrev-journal-title>Bioconjugate Chem.</abbrev-journal-title>
</journal-title-group>
<issn pub-type="ppub">1043-1802</issn>
<issn pub-type="epub">1520-4812</issn>
<publisher>
<publisher-name>American Chemical Society</publisher-name>
</publisher>
<self-uri>pubs.acs.org/bc</self-uri>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1021/bc025638+</article-id>
<article-categories>
<subj-group subj-group-type="document-type-name">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<surname>Hamma</surname>
<given-names>Tomoko</given-names>
</name>
<xref rid="bc0256381AF2">
<sup></sup>
</xref>
</contrib>
<contrib contrib-type="author" corresp="yes">
<name name-style="western">
<surname>Miller</surname>
<given-names>Paul S.</given-names>
</name>
<xref rid="bc0256381AF1">*</xref>
</contrib>
<aff>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205 </aff>
</contrib-group>
<author-notes>
<fn id="bc0256381AF2">
<label></label>
<p>  Current address:  Division of Basic Science, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North Mail Stop A3-015, Seattle, WA 98109.</p>
</fn>
<corresp id="bc0256381AF1">  Corresponding author. Phone:  410-955-3489. Fax:  410-955-2926. E-mail:  pmiller@jhsph.edu.</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>6</day>
<month>02</month>
<year>2003</year>
</pub-date>
<pub-date pub-type="ppub">
<day>19</day>
<month>03</month>
<year>2003</year>
</pub-date>
<volume>14</volume>
<issue>2</issue>
<fpage>320</fpage>
<lpage>330</lpage>
<history>
<date date-type="received">
<day>13</day>
<month>11</month>
<year>2002</year>
</date>
<date date-type="rev-recd">
<day>09</day>
<month>01</month>
<year>2003</year>
</date>
<date date-type="asap">
<day>6</day>
<month>02</month>
<year>2003</year>
</date>
<date date-type="issue-pub">
<day>19</day>
<month>03</month>
<year>2003</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2003 American Chemical Society</copyright-statement>
<copyright-year>2003</copyright-year>
<copyright-holder>American Chemical Society</copyright-holder>
</permissions>
<abstract>
<p>Oligo-2‘-
<italic toggle="yes">O</italic>
-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2‘-
<italic toggle="yes">O</italic>
-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 °C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2‘-
<italic toggle="yes">O</italic>
-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ−oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ−oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates. </p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>document-id-old-9</meta-name>
<meta-value>bc025638+</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="d7e121">
<title>Introduction</title>
<p>Recent advances in chemical syntheses of modified oligonucleotides have enabled broad applications of antisense oligonucleotides as research tools in molecular biology; as diagnostic agents; and as potential therapeutics (see recent reviews in refs
<italic toggle="yes">1</italic>
and
<italic toggle="yes"> 2</italic>
). The efficacy of antisense oligonucleotides relies on stable and specific hybridization with their RNA targets and on effective internalization by cells. A considerable amount of research has been devoted to synthesizing oligonucleotides that possess unique sugar, phosphate, or base moieties or with chemically reactive functional groups in an effort to enhance the binding affinities of the oligonucleotides for their targets. Furthermore, efforts have also been made to conjugate antisense oligonucleotides to small ligands, peptides, or proteins to facilitate their uptake by cells. </p>
<p>Chemically reactive functional groups such as psoralen (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00003" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00004" ref-type="bibr"></xref>
</named-content>
</italic>
), dimethylanthraquinone (
<italic toggle="yes">
<xref rid="bc0256381b00005" ref-type="bibr"></xref>
</italic>
), mitomycin (
<italic toggle="yes">
<xref rid="bc0256381b00006" ref-type="bibr"></xref>
</italic>
), and 2-amino-6-vinylpurine (
<italic toggle="yes">
<xref rid="bc0256381b00007" ref-type="bibr"></xref>
</italic>
) have been conjugated to oligonucleotides to achieve oligomer-target cross-linking. However, these agents require photoactivation, reduction, or acidic conditions to trigger the cross-linking reaction. In contrast, groups such as aromatic 2-chloroethylamine (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00008" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00009" ref-type="bibr"></xref>
</named-content>
</italic>
), cyclopropapyrroloindole (
<italic toggle="yes">
<xref rid="bc0256381b00010" ref-type="bibr"></xref>
</italic>
), transplatin (
<italic toggle="yes">
<xref rid="bc0256381b00011" ref-type="bibr"></xref>
</italic>
), and 5-methyl-N
<sup>4</sup>
, N
<sup>4</sup>
-ethanocytosine (
<italic toggle="yes">
<xref rid="bc0256381b00012" ref-type="bibr"></xref>
</italic>
), when incorporated into oligonucleotides, can carry out alkylation when the oligonucleotide hybridizes to its target. Efficient covalent bond formation between an oligonucleotide and its target has been shown to correlate with the antisense efficacy in the cell (
<italic toggle="yes">6</italic>
,
<italic toggle="yes"> 11</italic>
,
<italic toggle="yes"> 13</italic>
). </p>
<p>The aminooxy group reacts readily with a variety of electrophiles. The high nucleophilicity of this group is attributed to the unshared pair of electrons on the oxygen atom adjacent to the amino nucleophilic center, inducing the so-called alpha effect (
<italic toggle="yes">
<xref rid="bc0256381b00014" ref-type="bibr"></xref>
</italic>
). The high reactivity of the aminooxy group toward aldehydes and ketones (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00015" ref-type="bibr"></xref>
<xref rid="bc0256381b00016" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00017" ref-type="bibr"></xref>
</named-content>
</italic>
) has been utilized for chemoselective conjugation of peptides (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00018" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00019" ref-type="bibr"></xref>
</named-content>
</italic>
), proteins (
<italic toggle="yes">
<xref rid="bc0256381b00020" ref-type="bibr"></xref>
</italic>
), carbohydrates (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00021" ref-type="bibr"></xref>
<xref rid="bc0256381b00022" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00023" ref-type="bibr"></xref>
</named-content>
</italic>
), and oligonucleotides (
<italic toggle="yes">15</italic>
,
<italic toggle="yes"> 23−26</italic>
), resulting in formation of a highly stable oxime linkage (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00015" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00027" ref-type="bibr"></xref>
</named-content>
</italic>
). Alkoxyamines have also been shown to react with the 5−6 double bonds of cytosine and uracil to form covalent Michael adducts (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00028" ref-type="bibr"></xref>
<xref rid="bc0256381b00029" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00030" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00031" ref-type="bibr"></xref>
</named-content>
</italic>
). It thus appeared possible that an aminooxy group, when appended to an oligonucleotide, might increase the binding affinity between the oligomer and its target as a result of covalent Michael adduct formation with a cytosine residue in the target. </p>
<p>To explore these possibilities, we have designed an antisense oligonucleotide bearing a 5‘-4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) group. The interactions between this AOQ-derivatized oligonucleotide and complementary RNA and 2‘-
<italic toggle="yes">O</italic>
-methyl-RNA targets were characterized by gel mobility shift assays and steady state fluorescence measurements. In addition, a novel, simple method was developed to conjugate the AOQ-derivatized oligonucleotide with small peptides. The increased binding of the AOQ-derivatized oligonucleotide to its target and its successful conjugation with biologically active peptides suggests that the AOQ group may be a useful modification for enhancing the efficacy of antisense oligonucleotides. </p>
</sec>
<sec id="d7e236">
<title>Experimental Procedures</title>
<p>
<bold>Materials.</bold>
2-Amino-4-hydroxyquinoline hydrate (97%,Lancaster), 2-cyanoethyl diisopropyl chlorophosphoramidite (Chemgenes Corp.), bromoethane (98%,Acros Organics), and bromoacetone (1-bromo-2-propanone) (95%, Chem Service Inc.) were commercial products. Protected 2‘-
<italic toggle="yes">O</italic>
-methylribonucleoside-3‘-
<italic toggle="yes">O</italic>
-(β-cyanoethyl-
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropyl)phosphoramidites, ribonucleoside-3‘-
<italic toggle="yes">O</italic>
-(β-cyanoethyl-
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropyl)-phosphoramidites, controlled pore glass supports, 4,5-dicyanoimidazole, 5-ethylthio-1
<italic toggle="yes">H</italic>
-tetrazole, and oligonucleotide synthesis reagents were purchased from Glen Research, Inc. Protected 2‘-
<italic toggle="yes">O</italic>
-methylribonucleoside-3‘-
<italic toggle="yes">O</italic>
-(
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropyl)methylphosphonamidites were obtained from Chemgenes Corp. Ethyl acetate, dichloromethane, diisopropylethylamine, and triethylamine were stored over calcium hydride, whereas pyridine, chloroform, and
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-dimethylformamide were stored over Linde-type 4 Å molecular sieves. Silica gel thin-layer chromatography (TLC) was carried out using Whatman aluminum-backed sheets that contained fluorescent indicator. Column chromatography was performed on Davisil-grade 634-type 60 Å silica gel, 100−200 mesh, obtained from Fisher Scientific. DEAE Sephadex A-25 columns were purchased from Sigma. Snake venom phosphodiesterase (SVP) from
<italic toggle="yes">Crotalus durissus</italic>
was purchased from Boehringer Mannheim, and calf intestinal alkaline phosphatase (CIP) and T4 polynucleotide kinase (PNK) were obtained from New England Biolabs. Synthetic leupeptin, H-Leu-Leu-Arg-H and synthetic tetrapeptide, H-Arg-Gly-Asp-Cys-OH, were obtained from Alexis Biochemicals and American Peptide Company, respectively. The derivative of HIV Tat peptide H-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln-Cys-OH was synthesized and purified by the Protein/Peptide Sequencing Core Facility at Johns Hopkins University. </p>
<p>
<bold>General Methods.</bold>
<sup>1</sup>
H NMR spectra were acquired on a Bruker AMX 300 MHz spectrometer. Samples were prepared in dimethyl sulfoxide, and the chemical shifts were reported in ppm relative to the internal residual solvent peaks (DMSO:  2.5 ppm). MALDI-TOF mass spectrometry was carried out at the Johns Hopkins University Mass Spectrometry Facility and ESI mass spectrometry by the Scripps Research Institute. Reversed-phase (RP) HPLC was carried out on a Microsorb C-18 column (0.46 × 15 cm, C18, 10 μm) purchased from Varian Analytical using a flow rate of 1.0 mL/min. Strong anion exchange (SAX) HPLC was carried out on a Dynamax II column (0.46 × 25 cm) purchased from Rainin Instruments Co. using a flow rate of 0.6 mL/min. For the oligonucleotides, the columns were monitored at 260 and 290 nm for analytical runs and preparative runs, respectively. Peptides were analyzed and purified on the Microsorb C-18 column, monitored at 215 nm. Polyacrylamide gel electrophoresis was performed on 20 × 20 × 0.75 cm gels containing either 8% or 20% acrylamide in 1x TBE. Urea, 7 M, was added for denaturing gels. The gels were run in 1× TBE buffer, which contained 89 mM Tris, 89 mM boric acid, and 0.2 mM ethylendiaminetetraacetate (EDTA) at pH 8.0. </p>
<p>
<bold>Oligonucleotides</bold>
<italic toggle="yes">.</italic>
The sequences of the oligonucleotides are shown in Figure
<xref rid="bc0256381f00001"></xref>
. They were synthesized on an Applied Biosystems Model 392 DNA/RNA synthesizer using commercially available phosphoramidites and phosphonamidites as described previously (
<italic toggle="yes">
<xref rid="bc0256381b00032" ref-type="bibr"></xref>
</italic>
). The oligonucleotides were removed from the support and deprotected as described previously (
<italic toggle="yes">
<xref rid="bc0256381b00032" ref-type="bibr"></xref>
</italic>
). Twenty
<italic toggle="yes">A</italic>
<sub>260</sub>
units of each crude oligomer, 1676, 1843, 1855, 1856, 1885, 1886, 1887, or 2016 were purified by SAX HPLC using a 30 min linear gradient of 0−0.4 M ammonium sulfate. RNA oligomer 1960 was purified on 20% polyacrylamide gels run under denaturing conditions (
<italic toggle="yes">
<xref rid="bc0256381b00032" ref-type="bibr"></xref>
</italic>
). The oligomers were desalted using SEP PAK C-18 cartridges. The compositions of the oligomers were assessed by enzymatic digestion using SVP and CIP (
<italic toggle="yes">
<xref rid="bc0256381b00033" ref-type="bibr"></xref>
</italic>
), and/or their molecular weights were determined by MALDI-TOF mass spectrometry. The extinction coefficients of the oligonucleotides were determined as described previously (
<italic toggle="yes">
<xref rid="bc0256381b00033" ref-type="bibr"></xref>
</italic>
):  1676, 1.3 × 10
<sup>5</sup>
; 1843, AOQ-1843, EOQ-1843, 6.23 × 10
<sup>4</sup>
; 1855, 1856, 1885, 1886, 1887, 7.67 × 10
<sup>4</sup>
; 1960, 1.0 × 10
<sup>5</sup>
; and 2016, 5.2 × 10
<sup>4</sup>
. HIV TAR RNA was prepared by in vitro transcription of a plasmid carrying a TAR RNA template (
<italic toggle="yes">
<xref rid="bc0256381b00032" ref-type="bibr"></xref>
</italic>
). The 73 nucleotide run off transcript contained the 59 nucleotide TAR RNA sequence (underlined) 5‘GAAUACUCAAGCU
<underline>GGGUCUCUCUGGUUAGAUUAGAUCUGAGCCUGGGAGCUCUCUGGCUAACUAGGGAACCC</underline>
G.
<fig id="bc0256381f00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Sequences of antisense oligonucleotides and their targets.
<bold>X</bold>
is AOQ, EOQ, or no modification. The symbols mr and r indicate 2‘-
<italic toggle="yes">O</italic>
-methylribonucleoside or ribonucleotide respectively; p is a phosphodiester linkage, and
<underline>p</underline>
a methylphosphonate linkage.</p>
</caption>
<graphic xlink:href="bc0256381f00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>2-(2-Hydroxyethylureido)-4-hydroxyquinoline (2)</bold>
<italic toggle="yes">.</italic>
2-Amino-4-hydroxyquinoline hydrate (
<bold>1</bold>
) (640 mg, 4 mmol, see Scheme 1) was coevaporated with anhydrous pyridine and dissolved in 40 mL of dry pyridine. To this stirred solution was added 10 equiv of 4-nitrophenylchloroformate (8.1 g, 40 mmol) dissolved in 20 mL dry chloroform (20 mL), and the reaction was allowed to stir for 60 min at room temperature. A thick orange suspension was obtained that was treated with 41 equiv of ethanolamine (10 mL, 164 mmol) and further stirred for 2 h at room temperature. The reaction was complete as determined by silica gel TLC [chloroform/methanol (4:1, v/v)], with conversion of the starting material (
<italic toggle="yes">R
<sub>f</sub>
</italic>
= 0.25) to a faster-moving product (
<italic toggle="yes">R
<sub>f</sub>
</italic>
= 0.34). The suspension was filtered through a 60 mL coarse sintered glass funnel, and the residue was washed briefly with 20% methanol in chloroform. The filtrate was concentrated under vacuum on a rotary evaporator to a syrup that was dissolved in a minimum amount of chloroform and applied to a column packed with a Davisil-grade 634-type 60 Å silica gel. The column was eluted using a gradient from 10% to 20% methanol in chloroform. Fractions containing the desired product were combined and concentrated to yield
<bold>2</bold>
as a brown syrup (1.2 g or 4 mmol, quantitative yield).
<sup>1</sup>
H NMR (
<italic toggle="yes">d
<sub>6</sub>
</italic>
- DMSO) δ (ppm):  4.82 (s; 1H, ureido-N
<underline>H</underline>
), 4.64 (s; 1H, ureido-N
<underline>H</underline>
), 7.98−7.24 (m; 4H, quinoline H5−8), 7.00 (t; 1H, quinoline H3), 5.44 (s; 1H, quinoline −OH), 3.91−3.87 (t; 1H, −NHCH
<sub>2</sub>
CH
<sub>2</sub>
O
<underline>H</underline>
), 3.54−3−3.48 (t; 2H, −NHC
<underline>H
<sub>2</sub>
</underline>
C
<underline>H
<sub>2</sub>
</underline>
OH), 3.20−3.16 (t; 2H, −NHC
<underline>H
<sub>2</sub>
</underline>
C
<underline>H
<sub>2</sub>
</underline>
OH).
<fig id="bc0256381h00001" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="bc0256381h00001.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>
<bold>2-(2-</bold>
<bold>
<italic toggle="yes">O</italic>
</bold>
<bold>-Monomethoxytritylethylureido)-4-hydroxyquinoline (3)</bold>
. A solution of compound
<bold>2</bold>
(1.2 g, 4 mmol) in 40 mL of dry pyridine was treated with 5 equiv of monomethoxytrityl chloride (6.2 g, 20 mmol) for 4 h at room temperature. The clear orange solution was cooled in an ice bath, diluted with 10 mL of methanol and 2 mL of triethylamine, and then concentrated under vacuum on a rotary evaporator. The product,
<bold>3</bold>
, which was purified by silica gel column chromatography using a gradient of 0−10% methanol in chloroform, was obtained as a brown syrup (1.4 g or 2.69 mmol, 67%).
<italic toggle="yes">R
<sub>f</sub>
</italic>
:  0.54 [chloroform/methanol (9:1, v/v)]. </p>
<p>
<bold>2-(2-</bold>
<bold>
<italic toggle="yes">O</italic>
</bold>
<bold>-Monomethoxyltritylethylureido)-4-(2-phthalimidooxyethoxy)quinoli</bold>
<bold>ne (4)</bold>
<italic toggle="yes">.</italic>
Compound
<bold>3</bold>
(1.4 g, 2.7 mmol) and 3 equiv of 2-phthalimidooxyethyl bromide (2.2 g, 8.1 mmol) were dissolved in dry
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-dimethylformamide (10.8 mL), and the solution was treated with 3 equiv of dry powdered potassium carbonate (1.1 g, 8.1 mmol) overnight at room temperature. The potassium carbonate was removed by filtration, and the filtrate was concentrated under vacuum. The product,
<bold>4</bold>
, which was purified by silica gel column chromatography using a gradient of 0−5% methanol in chloroform, was obtained as a yellow syrup (1.4 g or 1.8 mmol, 67%).
<italic toggle="yes">R
<sub>f</sub>
</italic>
:  0.28 [methanol:chloroform (1:19, v/v)]. </p>
<p>
<bold>2-(2-Hydroxyethylureido)-4-(2-phthalimidooxyethoxy)quinoline (5)</bold>
<italic toggle="yes">. </italic>
Compound
<bold>4</bold>
(1.4 g, 1.8 mmol) was dissolved in 80% aqueous acetic acid (46 mL), and the solution was incubated at 37 °C for 45 min. The acetic acid was removed by coevaporation with 95% ethanol, and the product,
<bold>5</bold>
, was precipitated by addition of absolute ethanol. The precipitate was collected on a fine porosity sintered glass funnel and dried under vacuum in a desiccator overnight to yield a light yellow powder (483 mg or 0.90 mmol, 50%).
<italic toggle="yes">R
<sub>f</sub>
</italic>
:  0.1 [methanol:chloroform (1:4 v/v)]. The overall yield starting from
<bold>1</bold>
was 22%. The molecular weight of
<bold>5</bold>
was confirmed by ESI mass spectrometry (MH
<sup>+</sup>
:  calcd 437.4, found 437).
<sup>1</sup>
H NMR (
<italic toggle="yes">d
<sub>6</sub>
</italic>
- DMSO) δ (ppm):  9.60 (s; 1H, ureido-N
<underline>H</underline>
), 9.53 (s; 1H, ureido-N
<underline>H</underline>
), 7.83 (s; 4H, phthalimide), 7.78−7.14 (m; 4H, quinoline H5−8), 6.77 (s; 1H, quinoline H3), 4.86−4.83 (t; 1H, −NHCH
<sub>2</sub>
CH
<sub>2</sub>
O
<underline>H</underline>
), 4.67−4.45 (t; 4H, −OC
<underline>H
<sub>2</sub>
</underline>
C
<underline>H
<sub>2</sub>
</underline>
O−), 3.58−3−3.30 (m; 4H, −NHC
<underline>H
<sub>2</sub>
</underline>
C
<underline>H
<sub>2</sub>
</underline>
OH). </p>
<p>
<bold>2-[(2-Ureido)-4-(2-phthalimidooxyethoxy)quinoline]-ethyl-1-</bold>
<bold>
<italic toggle="yes">O</italic>
</bold>
<bold>-</bold>
<bold>β</bold>
<bold>-cyanoethyl-</bold>
<bold>
<italic toggle="yes">N</italic>
</bold>
,
<bold>
<italic toggle="yes">N</italic>
</bold>
<bold>-diisopropylphosphoramidite (6)</bold>
<italic toggle="yes">.</italic>
Compound
<bold>5</bold>
(15 mg, 0.03 mmol) was dissolved in dry dichloromethane (600 μL). Diisopropylethylamine (104.5 μL, 0.60 mmol) and 2-cyanoethyl diisopropyl chlorophosphoramidite (41.7 μL, 0.19 mmol) were added via syringe to the stirred solution, and the reaction was allowed to proceed at room temperature for 1 h. The product
<bold>6</bold>
, whose
<italic toggle="yes">R
<sub>f</sub>
</italic>
was 0.21 on silica gel TLC [ethyl acetate:triethylamine, (95.5:0.5, v/v)], was purified by silica gel column chromatography using ethyl acetate/triethylamine (95.5:0.5, v/v). Fractions containing
<bold>6</bold>
were combined and evaporated under vacuum to yield a clear light yellow syrup, which was dissolved in a minimum volume of dry dichloromethane (∼300 μL), and the solution was added dropwise with stirring to hexane at room temperature. The resulting precipitate was collected by centrifugation and dried under vacuum to yield a white solid (10.9 mg or 0.017 mmol, 57%).
<sup>1</sup>
H NMR (
<italic toggle="yes">d
<sub>6</sub>
</italic>
-DMSO) δ (ppm):  9.70 (s; 1H, ureido-N
<underline>H</underline>
), 9.58 (s; 1H, ureido-N
<underline>H</underline>
), 7.83 (s; 4H, phthalimide), 7.79−7.15 (m, 4H; quinoline H5−8), 6.73 (s; 1H, quinoline H3), 4.68−4.46 (m, 4H, −OC
<underline>H
<sub>2</sub>
</underline>
C
<underline>H
<sub>2</sub>
</underline>
O−), 4.03−3.40 (m; −NHC
<underline>H
<sub>2</sub>
</underline>
C
<underline>H
<sub>2</sub>
</underline>
O−), 2.91−2.73 (t; 4H, cyanoethyl), 1.23−1.12 (m; 24H, diisopropyl), 1.09−1.05 (m; 14H, diisopropyl). The MALDI-TOF mass spectrum was consistent for C
<sub>25</sub>
H
<sub>24</sub>
N
<sub>5</sub>
O
<sub>8</sub>
P (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calc. 553.5, found 554.4), indicating that
<bold>6</bold>
had converted to its H-phosphonate derivative during analysis. </p>
<p>
<bold>2-(2-Hydroxyethylureido)-4-ethoxyquinoline (7)</bold>
. Compound
<bold>3</bold>
(1.52 g, 2.9 mmol) and bromoethane (873 μL, 12 mmol) were dissolved in 11.7 mL of dry dimethylformamide, and the solution was treated with dry, powdered potassium carbonate (1.6 g, 12 mmol) for 14 h at room temperature to give a new product whose
<italic toggle="yes">R
<sub>f</sub>
</italic>
was 0.75 [methanol:  chloroform, (1:19 v/v)] on silica gel TLC. The potassium carbonate was removed by filtration and washed with several portions of dichloromethane. The filtrate was evaporated under vacuum, and the residue was treated with 58 mL of 80% aqueous acetic acid at 37 °C for 90 min. The acetic acid was removed by coevaporation with 95% ethanol, and the resulting compound
<bold>7 </bold>
was purified by silica gel column chromatography using 0−5% methanol in chloroform. Fractions containing
<bold>7</bold>
were combined and concentrated under vacuum to give an oil,
<italic toggle="yes">R</italic>
<sub>f</sub>
= 0.18 [methanol:  chloroform, (1:19 v/v)]. The oil was dissolved in a minimum volume of methanol, and heated water (50 °C) was added dropwise with stirring until the solution became turbid. This solution was heated until everything dissolved. The solution was then cooled slowly to 4 °C. The resulting solid was collected by filtration, washed several times with ice-cold water, and dried under vacuum. The product was obtained as a white powder (18 mg or 0.67 mmol, 17%),
<italic toggle="yes">R
<sub>f</sub>
</italic>
:  0.32 [ethyl acetate:triethylamine, (99.5:0.5, v/v)]. MALDI-TOF mass spectrometry (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd 275.3, found 276.1). </p>
<p>
<bold>2-[(2-Ureido)-4-ethoxyquinoline]-ethyl-1-</bold>
<bold>
<italic toggle="yes">O</italic>
</bold>
<bold>-</bold>
<bold>β</bold>
<bold>-cyanoethy-</bold>
<bold>
<italic toggle="yes">N</italic>
</bold>
,
<bold>
<italic toggle="yes">N</italic>
</bold>
<bold>-diisopropyl-phosphoramidite (8)</bold>
<italic toggle="yes">. </italic>
The synthesis of phosphoramidite
<bold>8</bold>
was identical to that of phosphoramidite
<bold>6</bold>
described above with the following modifications. After phosphitylation, the crude phosphoramidite was applied to a silica gel column using a mixture of petroleum ether and ethyl acetate (2:1 v/v), and the column was eluted with 0.5% triethylamine in ethyl acetate. The purified phosphoramidite was not precipitated in hexane. Rather, the oily product was transferred to an autosampler vial, evaporated under vacuum for 30 min, and the resulting oily residue was used immediately for conjugation to the oligonucleotide as described below. </p>
<p>
<bold>Preparation of AOQ- and EOQ-Conjugated Oligonucleotides. </bold>
AOQ-1843, AOQ-2106, EOQ-1843, and EOQ-1676 were synthesized as follows. The oligo 2‘-
<italic toggle="yes">O</italic>
-methylribonucleotides were synthesized as described above, and the 5‘-DMT group was removed on the synthesizer. The oligonucleotide−CPG (10 mg) was mixed with AOQ phosphoramidite
<bold>6</bold>
in a 1.5 mL centrifuge tube or EOQ phosphoramidite
<bold>8</bold>
in a 4 mL autosampler vial. A 0.4 M solution of tetrazole in anhydrous acetonitrile was added, and the final concentration of the phosphoramidite was adjusted to 0.2 M by addition of anhydrous acetonitrile. The reaction mixture was incubated for 10 min at room temperature. The CPG was transferred to a synthesis cartridge and washed with 10 mL of acetonitrile, after which the oxidation and capping reactions were performed on the DNA synthesizer. </p>
<p>AOQ-1843 and AOQ-2106 were deprotected and purified as follows. The oligonucleotide−CPG, 10 mg, was treated with 30 μL of a solution containing ethylenediamine, acetonitrile, 95% ethanol, and water (20:9:9:2 v/v) for 6 h at room temperature. The reaction mixture was cooled in an ice−water bath and neutralized by addition of 120 μL of ice-cold 2 N hydrochloric acid. The deprotected oligomer was purified immediately by C-18 reversed phase HPLC using a 20 mL linear gradient of 0−50% acetonitrile in 50 mM sodium phosphate, pH 5.8. The oligomer was then desalted using a C-18 SEP PAK cartridge. The 50% aqueous acetonitrile solution containing the oligomer (9.9
<italic toggle="yes">A</italic>
<sub>260</sub>
units AOQ-1843; 0.34
<italic toggle="yes">A</italic>
<sub>260</sub>
units of AOQ-2106) was evaporated to dryness, and the dry residue was stored at −20 °C. The oligomers were analyzed by MALDI-TOF mass spectrometry:  AOQ-1843 (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd + K
<sup>+</sup>
3001.8, found 3006.1); AOQ-2106 (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd 1966.8, found 1967.1). </p>
<p>The EOQ-derivatized oligonucleotides were each deprotected and purified as follows. The oligonucleotide−CPG was treated with 400 μL of concentrated ammonium hydroxide at 65 °C for 5 h. After evaporation of solvents, the EOQ−oligonucleotide was purified by C-18 reversed-phase HPLC using a 20 mL linear gradient of 2−50% acetonitrile in 50 mM sodium phosphate, pH 7.8. Each purified EOQ−oligonucleotide was desalted on a C-18 SEP PAK cartridge and stored as a solution in 50% aqueous acetonitrile at 4 °C. The oligonucleotides were analyzed by MALDI-TOF mass spectrometry:  EOQ-1843 (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd 2934.1, found 2935); EOQ-1676 (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd + K
<sup>+</sup>
5283.8, found 5279.0). </p>
<p>
<bold>Gel Mobility Shift Experiments.</bold>
Electrophoretic gel mobility shift assays were carried out as described previously (
<italic toggle="yes">
<xref rid="bc0256381b00032" ref-type="bibr"></xref>
</italic>
). Oligonucleotide solutions with concentrations ranging from 0.5 nM to 100 μM were prepared in binding buffer that contained 100 mM sodium chloride, 10 mM Tris, pH 7.5, and 0.5 mM EDTA in diethylpyrocarbonate treated water. Solutions containing 0.2 nM of 5‘-[
<sup>32</sup>
P]-end-labeled 1855, 1856, 1885, 1886, 1887, 1960, or TAR RNA (specific activity, 1000 Ci/mmol) were prepared in the same buffer. Equal volumes of oligomer and target solution (total volume, 10 μL) were mixed in 0.5 mL centrifuge tubes, and 1 μL of autoclaved 80% glycerol was added. Duplexes formed between 10-mer targets 1855, 1856, 1885, 1886, 1887, 1960, and 8-mer oligomers 1843, AOQ-1843, EOQ-1843, were incubated at 37 °C for 1 h. Duplexes formed between TAR RNA and 15-mer oligomers 1676 or EOQ-1676 were incubated for 24 h at 37 °C. The solutions were loaded onto a polyacrylamide gel using a 20 μL syringe. Complexes formed with the short targets 1855, 1856, 1885, 1856, 1857, or 1960 were separated on a 20% nondenaturing acrylamide gel run at 500−600 V for 1.5 h at the same temperature at which the sample was incubated. In the case of the TAR RNA target, electrophoresis was carried out in a similar manner on an 8% nondenaturing polyacrylamide gel at 200−300 V for 2 h. The wet gels were visualized by phosphorimaging and quantitated using the phosphorimager software package. The apparent dissociation constants were determined as the half-maximal point on a plot of percent complex versus the log of oligomer concentration. Averages were obtained from at least three separate experiments. </p>
<p>
<bold>AOQ-1843</bold>
<bold></bold>
<bold>Leupeptin Conjugate.</bold>
Leupeptin (1.25 μmol) was mixed with 5
<italic toggle="yes">A</italic>
<sub>260</sub>
units (0.8 μmol) of AOQ-1843 in 54 μL of 50% aqueous acetonitrile solution, and the solution was incubated for 60 min at room temperature. The AOQ-1843−leupeptin conjugate was purified by C-18 reversed-phase HPLC using a 20 mL linear gradient of 2−50% acetonitrile in 50 mM sodium phosphate, pH 5.8. The conjugate, which was obtained in quantitative yield, was desalted on a SEP PAK C-18 cartridge and analyzed by MALDI-TOF mass spectrometry (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd 3373.4, found 3372.4). </p>
<p>
<bold>AOQ-2106</bold>
<bold></bold>
<bold>RGDC or </bold>
<bold></bold>
<bold>Tat Conjugate.</bold>
A 0.2 M solution of bromoacetone in 50 μL of 50% aqueous acetonitrile was added to either RGDC peptide (0.5 mg, 1.0 μmol) or Tat peptide (0.5 mg, 0.3 μmol) in a 1.5 mL centrifuge tube and the solution incubated for 1 h at room temperature. The reaction was shielded from light by covering the tube with aluminum foil during the incubation period. The resulting keto-peptide was purified by C-18 reversed phase HPLC using a 20 mL linear gradient of 2−50% acetonitrile in 0.1% trifluoroacetic acid. The fraction containing the keto-peptide was evaporated to dryness and redissolved in 50% aqueous acetonitrile. The keto-peptides were analyzed by MALDI-TOF mass spectrometry:  keto-RDGC (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd 506, found 506); keto-tat (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
:  calcd 1879, found 1880). </p>
<p>Keto-RDGC (19.5 nmol) was reacted with 0.1
<italic toggle="yes">A</italic>
<sub>260</sub>
unit (1.95 nmol) of AOQ-2106 in 53 μL of 50% aqueous acetonitrile 1 h at room temperature. The resulting AOQ-2106−RDGC conjugate was purified by C-18 reversed-phase HPLC using a 20 mL linear gradient of 2−50% acetonitrile in 0.1% trifluoroacetic acid. Two peaks were observed that corresponded to the two oxime isomers. The conjugate was analyzed by MALDI-TOF mass spectrometry (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
, calcd 2455, found 2457 for peaks 1 and 2, see Figure
<xref rid="bc0256381f00006"></xref>
). </p>
<p>Keto−tat peptide (2.5 nmol) and 1.0
<italic toggle="yes">A</italic>
<sub>260</sub>
unit of AOQ-2106 (19.5 nmol) were incubated in 25 μL of 50% aqueous acetonitrile for 1 h at room temperature. The resulting AOQ-2106−tat conjugate was separated from the unreacted AOQ-2106 by ion exchange chromatography. The reaction mixture was diluted with 75 μL of 50% aqueous acetonitrile, and the solution was applied to a small (0.6 × 1.2 cm) DEAE Sephadex A-25 column which had been preequilibrated with 50% aqueous acetonitrile. The column was washed with 50% aqueous acetonitrile, and the AOQ-2106−tat conjugate (1 nmol) was collected. The conjugate was analyzed by MALDI-TOF mass spectrometry:  (
<italic toggle="yes">m</italic>
/
<italic toggle="yes">z</italic>
, calcd 3828, found 3829). </p>
</sec>
<sec id="d7e868">
<title>Results and Discussion</title>
<p>
<bold>AOQ- and EOQ-Conjugated Oligonucleotides.</bold>
The structures of the 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) groups are shown in Figure
<xref rid="bc0256381f00001"></xref>
. EOQ lacks an aminooxy group and thus is a nonreactive analogue of AOQ. When bound to its target, the quinoline ring of an AOQ- or EOQ-conjugated oligonucleotide can potentially stack on the last base pair formed between the oligomer and the target as shown in Figure
<xref rid="bc0256381f00002"></xref>
A. In this binding mode, the aminooxy group of the AOQ−oligomer could form a Michael adduct by reacting with the 5,6 double bond of a cytosine residue in the target as shown schematically in Figure
<xref rid="bc0256381f00002"></xref>
B. Although such adduct formation would be expected to be transient, it could decrease the dissociation rate of the duplex, and consequently enhance the binding affinity of the AOQ−oligomer. In addition, the highly reactive aminooxy group can serve as a site for conjugation with other molecules that bear an aldehyde or ketone function.
<fig id="bc0256381f00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Binding model. (A) The oval indicates either the AOQ or the EOQ group. (B) Possible stacking interaction between quinoline ring and neighboring bases. Left, target strand; right, antisense oligonucleotide strand.</p>
</caption>
<graphic xlink:href="bc0256381f00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>To test these possibilities, AOQ or EOQ was conjugated via a phosphodiester linkage to the 5‘-ends of oligo-2‘-
<italic toggle="yes">O</italic>
-methylribonucleotides as shown in Figure
<xref rid="bc0256381f00001"></xref>
. The sequences of these oligomers, with the exception of oligomer 2106, are complementary to the apical stem loop of HIV TAR RNA. Oligomer 1843 is complementary to nucleotides 31−38 of TAR RNA. Oligomer 1676, which contains alternating methylphosphonate/phosphodiester internucleotide linkages, is complementary to nucleotides 21−38 of TAR RNA. </p>
<p>AOQ− and EOQ−phosphoramidites were prepared as shown in Scheme 1. 2-Amino-4-hydroxyquinoline,
<bold>1</bold>
, was converted to its
<italic toggle="yes">p</italic>
-nitrophenylcarbamate derivative,
<bold>1a</bold>
, by reaction with
<italic toggle="yes">p</italic>
-nitrophenylchloroformate. Compound
<bold>1a</bold>
was not isolated but was converted to the hydroxyethylureido derivative,
<bold>2</bold>
, by treatment with ethanolamine. The primary hydroxyl group of
<bold>2</bold>
was selectively protected by reaction with monomethoxytrityl chloride to give
<bold>3</bold>
. The 4-hydroxy group of
<bold>3</bold>
was then alkylated with 2-phthalimidooxyethyl bromide in the presence of potassium carbonate to give the protected AOQ derivative
<bold>4</bold>
. Treatment of
<bold>4</bold>
with 80% acetic acid removed the monomethoxytrityl group to produce compound
<bold>5</bold>
. The corresponding EOQ derivative
<bold>7</bold>
was prepared by alkylation of
<bold>3</bold>
with bromoethane in the presence of potassium carbonate followed by removal of the monomethoxytrityl group. AOQ and EOQ derivatives
<bold>5</bold>
and
<bold>7</bold>
were each converted to their phosphoramidite derivatives,
<bold>6</bold>
and
<bold>8</bold>
, respectively, by reaction with 2-cyanoethyl chlorodiisopropylphosphoramidite. The phosphoramidites were purified by silica gel column chromatography. The AOQ phosphoramidite,
<bold>6</bold>
, was precipitated from hexane and was obtained as a white powder. In contrast the EOQ phosphoramidite,
<bold>8</bold>
, failed to precipitate and was obtained as an oil. </p>
<p>Both phosphoramidites were very reactive and under some conditions appeared to be susceptible to conversion to their H-phosphonate derivatives. For example, mass spectrometric analysis of AOQ phosphoramidite
<bold>6</bold>
gave a mass consistent with that of the H-phosphonate of AOQ (
<bold>6b</bold>
). This species most likely arose from intramolecular displacement of the phosphorus
<italic toggle="yes">N</italic>
,
<italic toggle="yes">N</italic>
-diisopropylamino group by the nitrogen of the ureido linkage to produce a five-member cyclic phosphoramidite (
<bold>6a</bold>
). The cyclic phosphoramidite would be expected to be very reactive and readily react with traces of water in the solvent to give the H-phosphonate derivative. Consistent with this explanation is the observation that acetonitrile solutions of the AOQ or EOQ phosphoramidite showed conversion to a slower migrating product when monitored by silica gel TLC. The formation of this new compound correlated with a decrease in coupling efficiency to the oligonucleotides, indicating the formation of an inactive species. </p>
<p>The AOQ- and EOQ-conjugated oligonucleotides were prepared by first synthesizing the oligomers on controlled pore glass supports and removing the 5‘-terminal dimethoxytrityl group. The supports were then transferred to an eppendorf tube or a glass autosampler vial that contained the dry phosphoramidite. A solution of tetrazole in dry acetonitrile was then added via a syringe and the coupling reaction was allowed to proceed for 10 min. The support was then returned to the DNA synthesis column, and capping and oxidation were carried out on the DNA synthesizer. </p>
<p>We initially tried deprotecting the AOQ-conjugated oligonucleotide by standard treatment with concentrated ammonium hydroxide solution at 65 °C for 5 h. However, a multitude of peaks were observed when the reaction mixture was analyzed by reversed phase HPLC (data not shown). Many of these peaks were detected at both 260 and 320 nm, indicating the presence of the AOQ group. However, among the AOQ containing peaks, only one possessed a reactive aminooxy group, as assessed by its ability to react with acetone to form the dimethyloxime derivative. Thus, it appeared that most of the AOQ-containing oligomers represented species where the aminooxy group had reacted with some component in the deprotection reaction solution. This observation is in agreement with that of Salo et al., who reported that attempts to purify aminooxy containing oligomers were unsuccessful when concentrated ammonium hydroxide was used for deprotection (
<italic toggle="yes">
<xref rid="bc0256381b00016" ref-type="bibr"></xref>
</italic>
). To circumvent this problem, an alternate deprotection method was developed which involved treatment of the oligonucleotide with ethylenediamine (EDA) at room temperature (
<italic toggle="yes">
<xref rid="bc0256381b00034" ref-type="bibr"></xref>
</italic>
). To preclude generation of side products resulting from transamination of C by EDA during deprotection, N
<sup>4</sup>
-acetyl-C or N
<sup>4</sup>
-isobutryl-C protected phosphoramidite and methylphosphonamidite, respectively, were used to synthesize the oligonucleotides (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00034" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00035" ref-type="bibr"></xref>
</named-content>
</italic>
). In separate experiments, we confirmed that no transamination occurred when acetyl- or isobutryl-protected C was treated with ethylenediamine under these conditions. </p>
<p>The AOQ−oligo was cleaved from the support, and all the protecting groups, including the phthalimide group, were completely removed after treatment with ethylenediamine for 6 h at room temperature. For example, as shown in Figure
<xref rid="bc0256381f00003"></xref>
B for AOQ-1843, essentially a single peak was observed when the reaction mixture was analyzed by C-18 reversed phase HPLC. This peak, which adsorbed at both 260 and 320 nm, had a longer retention time than that of nonconjugated oligomer, 1843, which did not absorb at 320 nm. As shown in Figure
<xref rid="bc0256381f00003"></xref>
D, AOQ-1843 reacted readily with acetone to give the dimethyloxime derivative, whose retention time was greater than that of AOQ-1843. The deprotected AOQ−oligo was immediately purified by C-18 reversed-phase HPLC. Storage of the purified AOQ−oligo in aqueous acetonitrile over time resulted in the generation of additional compounds as observed by C-18 reversed phase HPLC (data not shown). These compounds most likely result from reaction of the aminooxy group with minute amounts of aldehydes and/or ketones present in the solution as previously observed by others (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00015" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00017" ref-type="bibr"></xref>
</named-content>
</italic>
). To prevent these unwanted reactions, the solution containing the AOQ−oligo after desalting was immediately evaporated to dryness and stored at −20 °C. Under these conditions, the dry AOQ−oligo proved to be stable, and the aminooxy function remained active.
<fig id="bc0256381f00003" position="float" orientation="portrait">
<label>3</label>
<caption>
<p>Reverse-phase HPLC profile of (A) unmodified oligomer 1843, (B) AOQ-1843, (C) EOQ-1843, (D) dimethyloxime derivative of AOQ-1843, (E) leupeptin conjugated AOQ-1843. A 20 mL linear gradient of 2−50% acetonitrile (1 mL/min) in 50 mM sodium phosphate buffer (pH 5.8) was used.</p>
</caption>
<graphic xlink:href="bc0256381f00003.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>In contrast to the AOQ−oligomers, the EOQ−oligonucleotides were successfully deprotected by treatment with concentrated ammonium hydroxide at 65 °C. As shown in Figure
<xref rid="bc0256381f00003"></xref>
C, EOQ-1843 gave a single peak whose retention time on C-18 reversed phase HPLC was approximately 6 min longer than that of unconjugated 1843. As was the case for the AOQ−oligomers, the EOQ−oligonucleotides absorbed at both 260 and 320 nm. MALDI-TOF mass spectrometric analyses of both the AOQ- and EOQ oligomers gave molecular weights consistent with the structures of the derivatized oligomers. </p>
<p>
<bold>Interactions of AOQ- and EOQ-Conjugated Oligonucleotides with </bold>
<bold>Complementary Oligonucleotide Targets.</bold>
The interactions of AOQ-1843 and EOQ-1843 with oligo-2‘-
<italic toggle="yes">O</italic>
-methylribonucleotides 1855, 1856, 1885, 1886, and 1887 and with oligoribonucleotide 1960 were studied by gel electrophoretic mobility shift assays at 37 °C. The sequences of the target oligonucleotides are shown Figure
<xref rid="bc0256381f00001"></xref>
. AOQ- and EOQ-1843 are each complementary to nucleotides 2−9 of the target oligomers. Hybridization of AOQ- or EOQ-1843 to targets 1855, 1856, 1885, 1886, or 1960 gives a duplex with a 3‘-overhanging end, whereas hybridization to 1887 produces a duplex that lacks a 3‘-overhanging base. Most of the binding studies were carried out using the oligo-2‘-
<italic toggle="yes">O</italic>
-methylribonucleotide targets because these oligomers are easier to synthesize and handle than are RNA targets. Duplexes formed between AOQ- or EOQ-1843 and either the 2‘-
<italic toggle="yes">O</italic>
-methylribonucleotide or RNA target are predicted to be in the A-type conformation, and thus the binding affinities of the oligomers for either target were expected to be the same. </p>
<p>As shown in Table
<xref rid="bc0256381t00001"></xref>
, conjugation of oligomer 1843 with either AOQ or EOQ dramatically increased its binding affinity to all the targets studied at 37 °C. Thus, the dissociation constants,
<italic toggle="yes">K</italic>
<sub>d</sub>
, of AOQ- or EOQ-1843 to these targets are in the low nanomolar range, whereas no binding was observed between 1843 and any of the targets, even at a concentration of 500 nM, which was the highest concentration of oligomer tested. As expected, the
<italic toggle="yes">K</italic>
<sub>d</sub>
values of duplexes formed with 2‘-
<italic toggle="yes">O</italic>
-methylribonucleotide target 1856 or RNA target 1960, which have identical sequences, are almost identical. This result confirms that the 2‘-
<italic toggle="yes">O</italic>
-methylribonucleotide targets are good models for the RNA target in these binding studies.
<table-wrap id="bc0256381t00001" position="float" orientation="portrait">
<label>1</label>
<caption>
<p>Apparent Dissociation Constant of Duplexes Formed between AOQ- or EOQ-1843 and Various Targets</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="6">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:colspec colnum="3" colname="3"></oasis:colspec>
<oasis:colspec colnum="4" colname="4"></oasis:colspec>
<oasis:colspec colnum="5" colname="5"></oasis:colspec>
<oasis:colspec colnum="6" colname="6"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2"></oasis:entry>
<oasis:entry colname="3"></oasis:entry>
<oasis:entry namest="4" nameend="6">
<italic toggle="yes">K</italic>
<sub>d</sub>
 (nM)
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry namest="1" nameend="1"></oasis:entry>
<oasis:entry namest="2" nameend="2">target</oasis:entry>
<oasis:entry namest="3" nameend="3"></oasis:entry>
<oasis:entry namest="4" nameend="4">1843</oasis:entry>
<oasis:entry namest="5" nameend="5">EOQ-1843</oasis:entry>
<oasis:entry namest="6" nameend="6">AOQ-1843 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">2‘-
<italic toggle="yes">O</italic>
-Me </oasis:entry>
<oasis:entry colname="2">1855 </oasis:entry>
<oasis:entry colname="3">mrACUGGGAGCU </oasis:entry>
<oasis:entry colname="4">>500
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
</oasis:entry>
<oasis:entry colname="5">4.6 ± 2.5 </oasis:entry>
<oasis:entry colname="6">9.2 ± 1.0 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">1856 </oasis:entry>
<oasis:entry colname="3">mrACUGGGAGCC </oasis:entry>
<oasis:entry colname="4">>500 </oasis:entry>
<oasis:entry colname="5">5.8 ± 1.7 </oasis:entry>
<oasis:entry colname="6">8.2 ± 2.4 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">1885 </oasis:entry>
<oasis:entry colname="3">mrACUGGGAGCG </oasis:entry>
<oasis:entry colname="4">>500 </oasis:entry>
<oasis:entry colname="5">1.9 ± 0.4 </oasis:entry>
<oasis:entry colname="6">5.5 ± 4.1 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">1886 </oasis:entry>
<oasis:entry colname="3">mrACUGGGAGCA </oasis:entry>
<oasis:entry colname="4">>500 </oasis:entry>
<oasis:entry colname="5">1.6 ± 0.4 </oasis:entry>
<oasis:entry colname="6">5.2 ± 0.9 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1"></oasis:entry>
<oasis:entry colname="2">1887 </oasis:entry>
<oasis:entry colname="3">mrACUGGGAGC </oasis:entry>
<oasis:entry colname="4">>500 </oasis:entry>
<oasis:entry colname="5">15.3 ± 0.1 </oasis:entry>
<oasis:entry colname="6">19.6 ± 3.5 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">RNA </oasis:entry>
<oasis:entry colname="2">1960 </oasis:entry>
<oasis:entry colname="3">rACUGGGAGCC </oasis:entry>
<oasis:entry colname="4">>500 </oasis:entry>
<oasis:entry colname="5">5.7 ± 1.2 </oasis:entry>
<oasis:entry colname="6">7.1 ± 1.6</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Apparent dissociation constants were determined at 37 °C in a buffer containing 100 mM sodium chloride, 10 mM Tris pH 7.5, 0.5 mM EDTA.
<italic toggle="yes">
<sup>b</sup>
</italic>
<sup></sup>
The highest concentration used for the measurements.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>Targets 1855, 1856, 1885, 1886, and 1960 each have a 3‘-overhanging base adjacent to the oligomer binding site. Removal of this base to give target 1887 results in approximately 3−10 times increase in the
<italic toggle="yes">K</italic>
<sub>d</sub>
of the duplex. This suggests that to some extent binding involves the 3‘-base residue. Saito et al. have demonstrated that 2-amino-1,8-naphthyridine can bind to guanine via formation of specific hydrogen bonds (
<italic toggle="yes">
<xref rid="bc0256381b00036" ref-type="bibr"></xref>
</italic>
). The ureidoquinoline moiety of AOQ or EOQ is structurally similar to 2-amino-1,8-naphthyridine and thus could potentially form similar hydrogen bonds with the 3‘-C residue of targets 1856 or 1960, as illustrated in Figure
<xref rid="bc0256381f00004"></xref>
. However, as shown in Table
<xref rid="bc0256381t00001"></xref>
, the
<italic toggle="yes">K</italic>
<sub>d</sub>
s of the duplexes formed with 1855, 1856, 1885, or 1886, each of which has a different 3‘-base residue, are very similar, and thus it is unlikely that such hydrogen bonding interactions are the source of enhanced binding exhibited by AOQ- or EOQ-1843.
<fig id="bc0256381f00004" position="float" orientation="portrait">
<label>4</label>
<caption>
<p>Potential hydrogen bond formation between the AOQ or EOQ group and a cytosine in the target strand.</p>
</caption>
<graphic xlink:href="bc0256381f00004.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Both AOQ- and EOQ-1843 showed increased binding affinities compared to that of 1843, suggesting that the common aromatic quinoline ring of AOQ and EOQ contributes significantly to the binding interaction. Steady-state fluorescence experiments at room temperature were used to further investigate the binding mode. Because there were no significant differences in the
<italic toggle="yes">K</italic>
<sub>d</sub>
s of AOQ- or EOQ-1843, EOQ-1843 was used in these studies. The quinoline ring of the EOQ group absorbs UV light at 310 and 322 nm and fluoresces at 351 nm when excited at 314 nm. This fluorescence was used to study the interaction of the quinoline fluorophore with neighboring bases in the duplexes. Strong quenching and a concomitant red shift of the emission maximum have been observed upon the intercalative binding of polycyclic aromatic hydrocarbon-derivatized oligonucleotides with complementary targets (
<italic toggle="yes">37</italic>
,
<italic toggle="yes"> 38</italic>
, and references therein). On the other hand, moderate quenching and very little or no red shift of the emission maximum has been interpreted as pi-stacking of the fluorophore to the exterior of the last base pair of the duplex (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00038" ref-type="bibr"></xref>
<xref rid="bc0256381b00039" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00040" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>As shown in Figure
<xref rid="bc0256381f00005"></xref>
, the emission maximum of EOQ-1843 was clearly observed at 351 nm when excited at 314 nm, whereas 1843 did not show such emission. Duplexes formed between EOQ-1843 and targets 1855, 1856, 1885, 1886, or 1887 all showed a moderate decrease in fluorescence intensity and no shift in the emission maximum. As expected, there was no change in fluorescence intensity when equal amounts of EOQ-1843 and 1843 were mixed because these two oligomers do not form a duplex. These results are consistent with stacking of the quinoline ring on the end of the duplex rather than full intercalation between the last two base pairs of the duplex. In this binding mode, further stabilization could occur if the quinoline ring interacts with a 3‘-overhanging base as shown in Figure
<xref rid="bc0256381f00002"></xref>
A. The observation that 1855 and 1856, which have a pyrimidine overhang, have slightly higher
<italic toggle="yes">K</italic>
<sub>d</sub>
s than 1885 and 1886, which have a purine overhang, is consistent with this model. Thus, the quinoline ring may stack more effectively with the purine overhang leading to a lower
<italic toggle="yes">K</italic>
<sub>d</sub>
. In essence, the AOQ and EOQ groups may serve as “caps” to prevent fraying of terminal bases on the duplexes (
<italic toggle="yes">39</italic>
,
<italic toggle="yes"> 41−43</italic>
).
<fig id="bc0256381f00005" position="float" orientation="portrait">
<label>5</label>
<caption>
<p>Emission spectra of EOQ-1843 with its complementary target. Emission spectra were measured in a buffer containing 100 mM sodium chloride, 10 mM Tris pH 7.5, and 0.5 mM ethylenediaminetetraacetate at room temperature. 1843 only (+), EOQ-1843 only (○), EOQ-1843:1843 duplex (·), and EOQ-1843:1855 duplex (□).</p>
</caption>
<graphic xlink:href="bc0256381f00005.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>The
<italic toggle="yes">K</italic>
<sub>d</sub>
s of duplexes formed by EOQ-1843 are 1.2−3.2 times lower than those of duplexes formed by AOQ-1843. This result suggests that Michael adduct formation by AOQ-1843 either does not take place, or if it does, that such formation does not contribute to the overall stability of the duplex. Deuterium exchange experiments were carried out to directly investigate the possible formation of Michael adducts. Equal amounts of AOQ-1843 and RNA target 1960 were incubated at room temperature overnight in buffer prepared with deuterated water. RNA 1960, which contains two cytosines in proximity to the AOQ binding site, was then digested with a combination of snake venom phosphodiesterase and calf intestinal phosphatase, and the resulting cytidine was isolated by C-18 reversed phase HPLC. The molecular weight of the cytidine was then determined by EIS mass spectrometry. If a Michael adduct formed, deuterium from the buffer would be incorporated at the 5 position of cytidine, resulting in a 1 mass unit increase in the molecular weight. No mass increase was observed for the recovered cytidine, suggesting that the aminooxy group of AOQ-1843 does not participate to any significant extent in Michael adduct formation with the C residues of target RNA. A control experiment using 1-(2-aminooxyethyl) cytosine, which undergoes intramolecular Michael adduct formation (
<italic toggle="yes">
<xref rid="bc0256381b00044" ref-type="bibr"></xref>
</italic>
), showed that adduct formation could be detected by both NMR and mass spectrometry (data not shown). The inability of AOQ-1843 to form a Michael adduct may be due to unfavorable positioning of the aminooxy group when AOQ-1843 is bound to its target. </p>
<p>AOQ- or EOQ-1843 shows at least a 2 orders of magnitude increased binding affinity for the short, linear RNA target, 1960, compared to the nonconjugated oligomer, 1843. To determine if an EOQ-conjugated oligomer could also bind to a longer, structured RNA target, we studied the interaction between EOQ-1676 and HIV TAR RNA. This RNA target, whose sequence and secondary structure are shown in Figure
<xref rid="bc0256381f00001"></xref>
, consists of two stems, 20 base pairs and 4 base pairs in length, joined by a 3 base bulge and capped with a 6 base loop. We have shown previously that 1676, which contains a nuclease resistant alternating methylphosphonate/phosphodiester backbone, binds with high affinity to this target at 37 °C (
<italic toggle="yes">
<xref rid="bc0256381b00032" ref-type="bibr"></xref>
</italic>
). The interactions of 1676 and EOQ-1676 with TAR RNA were analyzed by gel mobility shift experiments. As shown in Table
<xref rid="bc0256381t00002"></xref>
, EOQ-conjugated 1676 forms a duplex with TAR RNA whose apparent
<italic toggle="yes">K</italic>
<sub>d</sub>
is approximately 2.3 times less than that of the duplex formed by nonconjugated 1676. These results demonstrate that conjugation with EOQ can also enhance the binding affinity of oligonucleotides for targets with extensive secondary structure.
<table-wrap id="bc0256381t00002" position="float" orientation="portrait">
<label>2</label>
<caption>
<p>Apparent Dissociation Constants of TAR RNA Duplexes</p>
</caption>
<oasis:table colsep="2" rowsep="2">
<oasis:tgroup cols="2">
<oasis:colspec colnum="1" colname="1"></oasis:colspec>
<oasis:colspec colnum="2" colname="2"></oasis:colspec>
<oasis:tbody>
<oasis:row>
<oasis:entry namest="1" nameend="1">oligomer</oasis:entry>
<oasis:entry namest="2" nameend="2">
<italic toggle="yes">K</italic>
<sub>d</sub>
 (nM)
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
</oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">1676 </oasis:entry>
<oasis:entry colname="2">101 ± 19 </oasis:entry>
</oasis:row>
<oasis:row>
<oasis:entry colname="1">EOQ-1676 </oasis:entry>
<oasis:entry colname="2">43 ± 7.4</oasis:entry>
</oasis:row>
</oasis:tbody>
</oasis:tgroup>
</oasis:table>
<table-wrap-foot>
<p>
<italic toggle="yes">
<sup>a</sup>
</italic>
<sup></sup>
 Apparent dissociation constants were determined at 37 °C in a buffer containing 100 mM sodium chloride, 10 mM Tris pH 7.5, 0.5 mM EDTA.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>
<bold>Conjugation of AOQ-Derivatized Oligonucleotide with Peptides.</bold>
The aminooxy group reacts readily with aldehydes and ketones (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00015" ref-type="bibr"></xref>
<xref rid="bc0256381b00016" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00017" ref-type="bibr"></xref>
</named-content>
</italic>
), and the resulting oxime linkage is very stable under physiological conditions (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00015" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00027" ref-type="bibr"></xref>
</named-content>
</italic>
). This chemistry has been widely utilized for chemoselective ligation of a variety of compounds. In particular, Forget et al. have recently reported the successful preparation of peptide−oligonucleotide conjugates in which aldehyde containing peptides are conjugated with aminooxy-derivatized oligonucleotides or vice versa (
<italic toggle="yes">
<xref rid="bc0256381b00015" ref-type="bibr"></xref>
</italic>
). </p>
<p>We have explored oxime formation to conjugate AOQ−oligonucleotides to small peptides. The AOQ group may be advantageous for this purpose because as shown above, AOQ-derivatized oligonucleotides have increased binding affinity for their RNA targets. Thus, the AOQ group could provide a duplex-stabilizing platform for chemoselective ligation of AOQ−oligonucleotides to a variety of compounds. </p>
<p>Initially, we conjugated commercially available, synthetic leupeptin to AOQ-1843. This tripeptide has a unique aldehyde group at its C-terminus that can react selectively with the aminooxy group of AOQ-1843 to form an oxime. As shown in the chromatogram in Figure
<xref rid="bc0256381f00002"></xref>
E, the conjugation reaction was complete within 60 min at room temperature when carried out in 50% aqueous acetonitrile. The peptide−oligo conjugate was purified by C-18 reversed phase HPLC and its structure was confirmed by MALDI-TOF mass spectrometry analysis. </p>
<p>Conjugations between an oligonucleotide aminooxy group and a peptide aldehyde group are very efficient. Introduction of aldehyde groups into peptides can be accomplished by periodate oxidation of an N-terminus serine or threonine (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00027" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00045" ref-type="bibr"></xref>
</named-content>
</italic>
), or by use of specific linker resins during solid-phase peptide synthesis (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00046" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00047" ref-type="bibr"></xref>
</named-content>
</italic>
). An alternative approach would be to introduce into the peptide postsynthetically, a reactive functional group that could be conjugated with an aminooxy group of the oligonucleotide. To this end we developed a method to introduce a ketone functional group into a peptide by alkylating a cysteine residue in the peptide with bromoacetone, as illustrated in Scheme 2. The ketone functionality could be introduced anywhere in a peptide that already contains a cysteine residue or the peptide could be synthesized with a cysteine residue at its N terminus. The carbonyl group of the resulting keto-peptide then serves as a reactive site for conjugation with the aminooxy group of the oligonucleotide. This procedure is in some ways analogous to the recently reported procedure in which ketone modified DNA is conjugated with aminooxy-derivatized compounds (
<italic toggle="yes">
<xref rid="bc0256381b00048" ref-type="bibr"></xref>
</italic>
).
<fig id="bc0256381h00002" position="float" orientation="portrait">
<label></label>
<graphic xlink:href="bc0256381h00002.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>We tested this procedure on a commercially available tetrapeptide, RGDC, and on a cysteine-modified 14 amino acid peptide derived from the transduction domain of HIV Tat protein. The RGD peptide motif has been used for cell targeting and gene delivery (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00049" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00050" ref-type="bibr"></xref>
</named-content>
</italic>
), and the Tat peptide has been shown to promote the delivery of macromolecules into cells (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00051" ref-type="bibr"></xref>
<xref rid="bc0256381b00052" specific-use="suppress-in-print" ref-type="bibr"></xref>
<xref rid="bc0256381b00053" ref-type="bibr"></xref>
</named-content>
</italic>
). </p>
<p>The C-terminus cysteine residue of each peptide was first reacted with a 10−33-fold excess of bromoacetone to give the keto-peptide. The reaction was complete within 1 h as assayed by C-18 reversed phase HPLC. Three major peaks were observed in the chromatogram. The first peak was the unreacted bromoacetone, the second peak was the desired keto-peptide, and the third peak was the disulfide-linked peptide dimer. The keto-peptide was obtained in 50% yield for each peptide after purification by HPLC. </p>
<p>The keto-peptides were then reacted with the short oligo-2‘-
<italic toggle="yes">O</italic>
-methylribonucleotide, AOQ-2106. As shown by the chromatograms in Figure
<xref rid="bc0256381f00006"></xref>
, the conjugation reaction between keto-RGD and AOQ-2106 was complete within 1 h at room temperature. The peptide−oligonucleotide conjugate appeared as two peaks in the chromatogram. Subsequent characterization of each peak by MALDI-TOF mass spectrometry showed that they had identical molecular weights. Thus these two peaks are attributed to the two isomeric oximes shown in Scheme 2.
<fig id="bc0256381f00006" position="float" orientation="portrait">
<label>6</label>
<caption>
<p>Reversed-phase (RP) HPLC profile of the reaction of keto-RGDC peptide and AOQ-2106 in 50% acetonitrile/water at room temperature. A 20 min linear gradient of 2−50% acetonitrile in 50 mM sodium phosphate (pH 5.8) was used. (A)
<italic toggle="yes">T</italic>
= 0 h, (B)
<italic toggle="yes">T</italic>
= 1 h.</p>
</caption>
<graphic xlink:href="bc0256381f00006.tif" position="float" orientation="portrait"></graphic>
</fig>
</p>
<p>Keto-derivatized Tat peptide was reacted with AOQ-2016 in 50% acetonitrile/water at room temperature. Reactions were run using a 5-fold excess of keto-peptide to oligonucleotide or with a 8-fold excess of oligonucleotide to keto-peptide. Examination of the reaction mixtures by MALDI-TOF mass spectrometry showed the presence of a compound whose molecular weight was consistent with the composition of the AOQ-2016-Tat conjugate. In addition to the conjugate, AOQ-2106 or keto-Tat peptide was also detected in the mass spectrum, depending on whether the reaction was run using an excess of oligonucleotide or an excess of keto-peptide. </p>
<p>Although we were able to detect the oligonucleotide−peptide conjugate by mass spectrometry, we were unable to detect the conjugate by C-18 reversed phase HPLC. A variety of solvent systems and columns were tested including those previously reported to be effective in eluting oligonucleotide−Tat conjugates (
<italic toggle="yes">
<named-content content-type="bibref-group">
<xref rid="bc0256381b00054" ref-type="bibr"></xref>
,
<xref rid="bc0256381b00055" ref-type="bibr"></xref>
</named-content>
</italic>
). This apparent irreversible absorption to the C-18 column appears to be a property of the conjugate because when unmodified 2106 and Tat peptide were mixed, both compounds could be detected by C-18 reversed phase HPLC. </p>
<p>We found that the Tat-2106 conjugate could be purified by DEAE Sephadex chromatography. The keto-Tat peptide has a net positive charge of +9, whereas AOQ-2106 has net negative charge of −4. Thus, the AOQ-2106−Tat conjugate would be expected to have a net positive charge of +5. We exploited this charge difference to purify the conjugate. Mass spectrometry showed that all of the keto-Tat could be converted to conjugate by carrying out the reaction in the presence of excess AOQ-2106. The excess AOQ-2106 was removed by simply passing the reaction mixture through a DEAE Sephadex column. The negatively charged AOQ-2106 was retained on the column, while the AOQ-2106−Tat conjugate, which is positively charged, passed through the column. The molecular weight of the purified oligo−Tat conjugate was confirmed by MALDI-TOF mass spectrometry analysis. Using this procedure, pure AOQ-2106−Tat conjugate was obtained at 39% yield. </p>
</sec>
<sec id="d7e1402">
<title>Conclusions</title>
<p>AOQ- and EOQ-conjugated oligo-2‘-
<italic toggle="yes">O</italic>
-methylribonucleotides show enhanced binding affinities for complementary RNA targets. This most likely results from favorable stacking interactions between the quinoline ring and the terminal base pair of the duplex formed by the oligomer and the target. Although we could find no evidence that the aminooxy group of AOQ reacts with 5,6 double bond of cytosines in the target RNA, this functional group does provide a site for efficient conjugation of AOQ−oligonucleotides to peptides or other moieties that bear an aldehyde or ketone group. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggest that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates. </p>
</sec>
</body>
<back>
<ack>
<title>Acknowledgments</title>
<p>The authors thank Dr. Eric Hildebrand for assistance with the fluorescence experiments, Dr. Anne Noronha for help obtaining the mass spectra, and Dr. David Noll for helpful comments and suggestions. This research was supported by a grant from the National Institutes of Health (GM57140). </p>
</ack>
<ref-list>
<title>References</title>
<ref id="bc0256381b00001">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Gewirtz</surname>
<given-names>A. M.</given-names>
</name>
<name name-style="western">
<surname>Sokol</surname>
<given-names>D. L.</given-names>
</name>
<name name-style="western">
<surname>Ratajczak</surname>
<given-names>M. Z.</given-names>
</name>
<article-title>Nucleic acid therapeutics: state of the art and future prospects</article-title>
<source>Blood</source>
<year>1998</year>
<volume>92</volume>
<fpage>712</fpage>
<lpage>736</lpage>
</element-citation>
</ref>
<ref id="bc0256381b00002">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bennett</surname>
<given-names>C. F.</given-names>
</name>
<name name-style="western">
<surname>Cowsert</surname>
<given-names>L. M.</given-names>
</name>
<article-title>Application of antisense oligonucleotides for gene functionalization and target validation</article-title>
<source>Curr. Opin. Mol. Ther.</source>
<year>1999</year>
<volume>1</volume>
<fpage>359</fpage>
<lpage>371</lpage>
</element-citation>
</ref>
<ref id="bc0256381b00003">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bhan</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>P. S.</given-names>
</name>
<article-title>Photo-cross-linking of psoralen-derivatized oligonucleoside methylphosphonates to single-stranded DNA</article-title>
<source>Bioconjugate Chem.</source>
<year>1990</year>
<volume>1</volume>
<fpage>82</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="doi">10.1021/bc00001a011</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00004">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Pieles</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Englisch</surname>
<given-names>U.</given-names>
</name>
<article-title>Psoralen covalently linked to oligodeoxyribonucleotides: synthesis, sequence specific recognition of DNA and photo-cross-linking to pyrimidine residues of DNA</article-title>
<source>Nucleic Acids Res.</source>
<year>1989</year>
<volume>17</volume>
<fpage>285</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="doi">10.1093/nar/17.1.285</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00005">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kang</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Rokita</surname>
<given-names>S. E.</given-names>
</name>
<article-title>Site-specific and photo-induced alkylation of DNA by a dimethylanthraquinone-oligodeoxynucleotide conjugate</article-title>
<source>Nucleic Acids Res.</source>
<year>1996</year>
<volume>24</volume>
<fpage>3896</fpage>
<lpage>3902</lpage>
<pub-id pub-id-type="doi">10.1093/nar/24.20.3896</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00006">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Huh</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Rege</surname>
<given-names>A. A.</given-names>
</name>
<name name-style="western">
<surname>Yoo</surname>
<given-names>B.</given-names>
</name>
<name name-style="western">
<surname>Kogan</surname>
<given-names>T. P.</given-names>
</name>
<name name-style="western">
<surname>Kohn</surname>
<given-names>H.</given-names>
</name>
<article-title>Design, synthesis, and evaluation of mitomycin-tethered phosphorothioate oligodeoxynucleotides</article-title>
<source>Bioconjugate Chem.</source>
<year>1996</year>
<volume>7</volume>
<fpage>659</fpage>
<lpage>669</lpage>
<pub-id pub-id-type="doi">10.1021/bc960060n</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00007">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nagatsugi</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Kawasaki</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Tokuda</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Maeda</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Sasaki</surname>
<given-names>S.</given-names>
</name>
<article-title>Site-directed alkylation to cytidine within duplex by the oligonucleotides containing functional nucleobases</article-title>
<source>Nucleosides Nucleotides Nucleic Acids</source>
<year>2001</year>
<volume>20</volume>
<fpage>915</fpage>
<lpage>919</lpage>
<pub-id pub-id-type="doi">10.1081/NCN-100002458</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00008">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Knorre</surname>
<given-names>D. G.</given-names>
</name>
<name name-style="western">
<surname>Vlassov</surname>
<given-names>V. V.</given-names>
</name>
<article-title>Complementary-addressed (sequence-specific) modification of nucleic acids</article-title>
<source>Prog. Nucleic Acid Res. Mol. Biol.</source>
<year>1985</year>
<volume>32</volume>
<fpage>291</fpage>
<lpage>320</lpage>
<pub-id pub-id-type="doi">10.1016/S0079-6603(08)60352-9</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00009">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Tabone</surname>
<given-names>J. C.</given-names>
</name>
<name name-style="western">
<surname>Stamm</surname>
<given-names>M. R.</given-names>
</name>
<name name-style="western">
<surname>Gamper</surname>
<given-names>H. B.</given-names>
</name>
<name name-style="western">
<surname>Meyer</surname>
<given-names>R. B.</given-names>
<suffix>Jr.</suffix>
</name>
<article-title>Factors influencing the extent and regiospecificity of cross-link formation between single-stranded DNA and reactive complementary oligodeoxynucleotides</article-title>
<source>Biochemistry</source>
<year>1994</year>
<volume>33</volume>
<fpage>375</fpage>
<lpage>383</lpage>
<pub-id pub-id-type="doi">10.1021/bi00167a048</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00010">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lukhtanov</surname>
<given-names>E. A.</given-names>
</name>
<name name-style="western">
<surname>Podyminogin</surname>
<given-names>M. A.</given-names>
</name>
<name name-style="western">
<surname>Kutyavin</surname>
<given-names>I. V.</given-names>
</name>
<name name-style="western">
<surname>Meyer</surname>
<given-names>R. B.</given-names>
</name>
<name name-style="western">
<surname>Gamper</surname>
<given-names>H. B.</given-names>
</name>
<article-title>Rapid and efficient hybridization-triggered cross-linking within a DNA duplex by an oligodeoxyribonucleotide bearing a conjugated cyclopropapyrroloindole</article-title>
<source>Nucleic Acids Res.</source>
<year>1996</year>
<volume>24</volume>
<fpage>683</fpage>
<lpage>687</lpage>
<pub-id pub-id-type="doi">10.1093/nar/24.4.683</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00011">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Boudvillain</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Guerin</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Dalbies</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Saison-Behmoaras</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Leng</surname>
<given-names>M.</given-names>
</name>
<article-title>Transplatin-modified oligo(2‘-O-methyl ribonucleotide)s: a new tool for selective modulation of gene expression</article-title>
<source>Biochemistry</source>
<year>1997</year>
<volume>36</volume>
<fpage>2925</fpage>
<lpage>2931</lpage>
<pub-id pub-id-type="doi">10.1021/bi962695f</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00012">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Webb</surname>
<given-names>T. R.</given-names>
</name>
<name name-style="western">
<surname>Matteucci</surname>
<given-names>M. D.</given-names>
</name>
<article-title>Hybridization triggered cross-linking of deoxyoligonucleotides</article-title>
<source>Nucleic Acids Res.</source>
<year>1986</year>
<volume>14</volume>
<fpage>7661</fpage>
<lpage>7674</lpage>
<pub-id pub-id-type="doi">10.1093/nar/14.19.7661</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00013">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Kulka</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Wachsman</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Miura</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Fishelevich</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>P. S.</given-names>
</name>
<name name-style="western">
<surname>Ts’o</surname>
<given-names>P. O.</given-names>
</name>
<name name-style="western">
<surname>Aurelian</surname>
<given-names>L.</given-names>
</name>
<article-title>Antiviral effect of oligo(nucleoside methylphosphonates) complementary to the herpes simplex virus type 1 immediate early mRNAs 4 and 5</article-title>
<source>Antiviral Res.</source>
<year>1993</year>
<volume>20</volume>
<fpage>115</fpage>
<lpage>130</lpage>
<pub-id pub-id-type="doi">10.1016/0166-3542(93)90002-Z</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00014">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Um</surname>
<given-names>I. H.</given-names>
</name>
<name name-style="western">
<surname>Buncel</surname>
<given-names>E.</given-names>
</name>
<article-title>The origin of the alpha-effect: dissection of ground-state and transition-state contributions</article-title>
<source>J. Org. Chem.</source>
<year>2000</year>
<volume>65</volume>
<fpage>577</fpage>
<lpage>582</lpage>
<pub-id pub-id-type="doi">10.1021/jo9915776</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00015">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Forget</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Boturyn</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Defrancq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Lhomme</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Dumy</surname>
<given-names>P.</given-names>
</name>
<article-title>Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation</article-title>
<source>Chemistry</source>
<year>2001</year>
<volume>7</volume>
<fpage>3976</fpage>
<lpage>3984</lpage>
<pub-id pub-id-type="doi">10.1002/1521-3765(20010917)7:18%3C3976::AID-CHEM3976%3E3.0.CO;2-X</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00016">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Salo</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Virta</surname>
<given-names>P.</given-names>
</name>
<name name-style="western">
<surname>Hakala</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Prakash</surname>
<given-names>T. P.</given-names>
</name>
<name name-style="western">
<surname>Kawasaki</surname>
<given-names>A. M.</given-names>
</name>
<name name-style="western">
<surname>Manoharan</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Lonnberg</surname>
<given-names>H.</given-names>
</name>
<article-title>Aminooxy functionalized oligonucleotides: preparation, on-support derivatization, and postsynthetic attachment to polymer support</article-title>
<source>Bioconjugate Chem.</source>
<year>1999</year>
<volume>10</volume>
<fpage>815</fpage>
<lpage>823</lpage>
<pub-id pub-id-type="doi">10.1021/bc990021m</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00017">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Bure</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Lelievre</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Delmas</surname>
<given-names>A.</given-names>
</name>
<article-title>Identification of by-products from an orthogonal peptide ligation by oxime bonds using mass spectrometry and tandem mass spectrometry</article-title>
<source>Rapid Commun. Mass. Spectrom.</source>
<year>2000</year>
<volume>14</volume>
<fpage>2158</fpage>
<lpage>2164</lpage>
<pub-id pub-id-type="doi">10.1002/1097-0231(20001215)14:23%3C2158::AID-RCM147%3E3.0.CO;2-C</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00018">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Shao</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Tam</surname>
<given-names>J. P.</given-names>
</name>
<article-title>Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1995</year>
<volume>117</volume>
<fpage>3893</fpage>
<lpage>3899</lpage>
<pub-id pub-id-type="doi">10.1021/ja00119a001</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00019">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Adamczyk</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Gebler</surname>
<given-names>J. C.</given-names>
</name>
<name name-style="western">
<surname>Reddy</surname>
<given-names>R. E.</given-names>
</name>
<name name-style="western">
<surname>Yu</surname>
<given-names>Z.</given-names>
</name>
<article-title>A chemoselective method for site-specific immobilization of peptides via aminooxy group</article-title>
<source>Bioconjugate Chem.</source>
<year>2001</year>
<volume>12</volume>
<fpage>139</fpage>
<lpage>142</lpage>
<pub-id pub-id-type="doi">10.1021/bc0001239</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00020">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Canne</surname>
<given-names>L. E.</given-names>
</name>
<name name-style="western">
<surname>Feeré-D'Amaré</surname>
<given-names>A. R.</given-names>
</name>
<name name-style="western">
<surname>Burley</surname>
<given-names>S. K.</given-names>
</name>
<name name-style="western">
<surname>Kent</surname>
<given-names>S. B. H.</given-names>
</name>
<article-title>Total chemical synthesis of a unique transcription factor-related protein: cmyc-max</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1995</year>
<volume>117</volume>
<fpage>2998</fpage>
<lpage>3007</lpage>
<pub-id pub-id-type="doi">10.1021/ja00116a005</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00021">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Rodriguez</surname>
<given-names>E. C.</given-names>
</name>
<name name-style="western">
<surname>Marcaurelle</surname>
<given-names>L. A.</given-names>
</name>
<name name-style="western">
<surname>Bertozzi</surname>
<given-names>C. R.</given-names>
</name>
<article-title>Aminooxy-, hydrazide-, and thiosemicarbazide-functionalized saccharides: versatile reagents for glycoconjugate synthesis</article-title>
<source>J. Org. Chem.</source>
<year>1998</year>
<volume>63</volume>
<fpage>7134</fpage>
<lpage>7135</lpage>
<pub-id pub-id-type="doi">10.1021/jo981351n</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00022">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brask</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Jensen</surname>
<given-names>K. J.</given-names>
</name>
<article-title>Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy-functionalized d-galactose template</article-title>
<source>J. Pept. Sci.</source>
<year>2000</year>
<volume>6</volume>
<fpage>290</fpage>
<lpage>299</lpage>
<pub-id pub-id-type="doi">10.1002/1099-1387(200006)6:6%3C290::AID-PSC257%3E3.0.CO;2-L</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00023">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Forget</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Renaudet</surname>
<given-names>O.</given-names>
</name>
<name name-style="western">
<surname>Defrancq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Dumy</surname>
<given-names>P.</given-names>
</name>
<article-title>Efficient preparation of carbohydrate-oligonucleotide conjugates (COCs) using oxime bond formation</article-title>
<source>Tetrahedron Lett.</source>
<year>2001</year>
<volume>42</volume>
<fpage>7829</fpage>
<lpage>7832</lpage>
<pub-id pub-id-type="doi">10.1016/S0040-4039(01)01682-3</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00024">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Trevisiol</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Renard</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Defrancq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Lhomme</surname>
<given-names>J.</given-names>
</name>
<article-title>The oxyamino-aldehyde coupling reactions: an efficient method for the derivatization of oligonucleotides</article-title>
<source>Tetrahedron Lett.</source>
<year>1997</year>
<volume>38</volume>
<fpage>8687</fpage>
<lpage>8690</lpage>
<pub-id pub-id-type="doi">10.1016/S0040-4039(97)10335-5</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00025">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Trevisiol</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Renard</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Defrancq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Lhomme</surname>
<given-names>J.</given-names>
</name>
<article-title>Fluorescent labeling of oligodeoxyribonucleotides by the oxyamino-aldehyde coupling reaction</article-title>
<source>Nucleosides Nucleotides Nucleic Acids</source>
<year>2000</year>
<volume>19</volume>
<fpage>1427</fpage>
<lpage>1439</lpage>
<pub-id pub-id-type="doi">10.1080/15257770008033852</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00026">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Defrancq</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Lhomme</surname>
<given-names>J.</given-names>
</name>
<article-title>Use of an aminooxy linker for the functionalization of oligodeoxyribonucleotides</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2001</year>
<volume>11</volume>
<fpage>931</fpage>
<lpage>933</lpage>
<pub-id pub-id-type="doi">10.1016/S0960-894X(01)00108-1</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00027">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Rose</surname>
<given-names>K.</given-names>
</name>
<article-title>Facile synthesis of homogeneous artificial proteins</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1994</year>
<volume>116</volume>
<fpage>30</fpage>
<lpage>33</lpage>
<pub-id pub-id-type="doi">10.1021/ja00080a004</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00028">
<mixed-citation>
<name name-style="western">
<surname>Brown</surname>
<given-names>D. M.</given-names>
</name>
(1974) in
<italic toggle="yes">Basic Principles in Nucleic Acid Chemistry</italic>
(P. O. P. Ts'o, Ed.) pp 2−90, Academic Press, New York.</mixed-citation>
</ref>
<ref id="bc0256381b00029">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brown</surname>
<given-names>D. M.</given-names>
</name>
<name name-style="western">
<surname>Schell</surname>
<given-names>P.</given-names>
</name>
<article-title>Nucleotides. Part XLVIII. The reaction of hydroxylamine with cytosine and related compounds</article-title>
<source>J. Chem. Soc.</source>
<year>1965</year>
<fpage>208</fpage>
<lpage>215</lpage>
<pub-id pub-id-type="doi">10.1039/jr9650000208</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00030">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brown</surname>
<given-names>D. M.</given-names>
</name>
<name name-style="western">
<surname>Schell</surname>
<given-names>P.</given-names>
</name>
<article-title>The reaction of hydroxyamine with cytosine and related compounds</article-title>
<source>J. Mol. Biol.</source>
<year>1961</year>
<volume>3</volume>
<fpage>709</fpage>
<lpage>710</lpage>
<pub-id pub-id-type="doi">10.1016/S0022-2836(61)80038-7</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00031">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Schalke</surname>
<given-names>P. M.</given-names>
</name>
<name name-style="western">
<surname>Hall</surname>
<given-names>C. D.</given-names>
</name>
<article-title>Reactions of cytosine and cytidine with O-substituted hydroxylamines</article-title>
<source>J. Chem. Soc., Perkin Trans.</source>
<year>1975</year>
<volume>1</volume>
<fpage>2417</fpage>
<lpage>2422</lpage>
<pub-id pub-id-type="doi">10.1039/p19750002417</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00032">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Hamma</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Miller</surname>
<given-names>P. S.</given-names>
</name>
<article-title>Syntheses of alternating oligo-2‘-O-methylribonucleoside methylphosphonates and their interactions with HIV TAR RNA</article-title>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>15333</fpage>
<lpage>15342</lpage>
<pub-id pub-id-type="doi">10.1021/bi991962p</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00033">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Miller</surname>
<given-names>P. S.</given-names>
</name>
<name name-style="western">
<surname>Cushman</surname>
<given-names>C. D.</given-names>
</name>
<article-title>Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A. triads</article-title>
<source>Biochemistry</source>
<year>1993</year>
<volume>32</volume>
<fpage>2999</fpage>
<lpage>3004</lpage>
<pub-id pub-id-type="doi">10.1021/bi00063a010</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00034">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Miller</surname>
<given-names>P. S.</given-names>
</name>
<name name-style="western">
<surname>Reddy</surname>
<given-names>M. P.</given-names>
</name>
<name name-style="western">
<surname>Murakami</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Blake</surname>
<given-names>K. R.</given-names>
</name>
<name name-style="western">
<surname>Lin</surname>
<given-names>S. B.</given-names>
</name>
<name name-style="western">
<surname>Agris</surname>
<given-names>C. H.</given-names>
</name>
<article-title>Solid-phase syntheses of oligodeoxyribonucleoside methylphosphonates</article-title>
<source>Biochemistry</source>
<year>1986</year>
<volume>25</volume>
<fpage>5092</fpage>
<lpage>5097</lpage>
<pub-id pub-id-type="doi">10.1021/bi00366a017</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00035">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Reddy</surname>
<given-names>M. P.</given-names>
</name>
<name name-style="western">
<surname>Hanna</surname>
<given-names>N. B.</given-names>
</name>
<name name-style="western">
<surname>Farroqui</surname>
<given-names>F.</given-names>
</name>
<article-title>Fast cleavage and deprotection of oligonucleotides</article-title>
<source>Tetrahedron Lett.</source>
<year>1994</year>
<volume>35</volume>
<fpage>4311</fpage>
<lpage>4314</lpage>
<pub-id pub-id-type="doi">10.1016/S0040-4039(00)73341-7</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00036">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nakatani</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Sando</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Kumasawa</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Kikuchi</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Saito</surname>
<given-names>I.</given-names>
</name>
<article-title>Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine</article-title>
<source>J. Am. Chem. Soc.</source>
<year>2001</year>
<volume>123</volume>
<fpage>12650</fpage>
<lpage>12657</lpage>
<pub-id pub-id-type="doi">10.1021/ja0109186</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00037">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Asseline</surname>
<given-names>U.</given-names>
</name>
<name name-style="western">
<surname>Toulme</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Thuong</surname>
<given-names>N. T.</given-names>
</name>
<name name-style="western">
<surname>Delarue</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Montenay-Garestier</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Helene</surname>
<given-names>C.</given-names>
</name>
<article-title>Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site</article-title>
<source>Embo. J.</source>
<year>1984</year>
<volume>3</volume>
<fpage>795</fpage>
<lpage>800</lpage>
</element-citation>
</ref>
<ref id="bc0256381b00038">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Casale</surname>
<given-names>R.</given-names>
</name>
<name name-style="western">
<surname>McLaughlin</surname>
<given-names>L. W.</given-names>
</name>
<article-title>Synthesis and properties of an oligodeoxynucleotide containing a polycyclic aromatic hydrocarbon site specifically bound to the N2 amino group of a 2‘-deoxyguanosine residue</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1990</year>
<volume>112</volume>
<fpage>5264</fpage>
<lpage>5271</lpage>
<pub-id pub-id-type="doi">10.1021/ja00169a039</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00039">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Okamoto</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Tanabe</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Saito</surname>
<given-names>I.</given-names>
</name>
<article-title>Synthesis and properties of peptide nucleic acids containing a psoralen unit</article-title>
<source>Org. Lett.</source>
<year>2001</year>
<volume>3</volume>
<fpage>925</fpage>
<lpage>927</lpage>
<pub-id pub-id-type="doi">10.1021/ol015549x</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00040">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Nishimura</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Takahashi</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Yamamoto</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Tsuboi</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Hattori</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Miura</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Yamaguchi</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Ohtani</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Hata</surname>
<given-names>T.</given-names>
</name>
<article-title>On the base-stacking in the 5‘-terminal cap structure of mRNA: a fluorescence study</article-title>
<source>Nucleic Acids Res.</source>
<year>1980</year>
<volume>8</volume>
<fpage>1107</fpage>
<lpage>1119</lpage>
<pub-id pub-id-type="doi">10.1093/nar/8.5.1107</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00041">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Guckian</surname>
<given-names>K. M.</given-names>
</name>
<name name-style="western">
<surname>Schweitzer</surname>
<given-names>B. A.</given-names>
</name>
<name name-style="western">
<surname>Ren</surname>
<given-names>R. X.-F.</given-names>
</name>
<name name-style="western">
<surname>Sheils</surname>
<given-names>C. J.</given-names>
</name>
<name name-style="western">
<surname>Paris</surname>
<given-names>P. L.</given-names>
</name>
<name name-style="western">
<surname>Tahmassebi</surname>
<given-names>D. C.</given-names>
</name>
<name name-style="western">
<surname>Kool</surname>
<given-names>E. T.</given-names>
</name>
<article-title>Experimental measurement of aromatic stacking affinities in the context of duplex DNA</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1996</year>
<volume>118</volume>
<fpage>8182</fpage>
<lpage>8183</lpage>
<pub-id pub-id-type="doi">10.1021/ja961733f</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00042">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Ho</surname>
<given-names>W. C.</given-names>
</name>
<name name-style="western">
<surname>Steinbeck</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Richert</surname>
<given-names>C.</given-names>
</name>
<article-title>Solution structure of the aminoacyl-capped oligodeoxyribonucleotide duplex (W-TGCGCAC)(2)</article-title>
<source>Biochemistry</source>
<year>1999</year>
<volume>38</volume>
<fpage>12597</fpage>
<lpage>12606</lpage>
<pub-id pub-id-type="doi">10.1021/bi991169w</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00043">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Okamoto</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Tanabe</surname>
<given-names>K.</given-names>
</name>
<name name-style="western">
<surname>Dohno</surname>
<given-names>C.</given-names>
</name>
<name name-style="western">
<surname>Saito</surname>
<given-names>I.</given-names>
</name>
<article-title>Modulation of remote DNA oxidation by hybridization with peptide nucleic acids (PNA)</article-title>
<source>Bioorg. Med. Chem.</source>
<year>2002</year>
<volume>10</volume>
<fpage>713</fpage>
<lpage>718</lpage>
<pub-id pub-id-type="doi">10.1016/S0968-0896(01)00320-0</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00044">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Brown</surname>
<given-names>D. M.</given-names>
</name>
<name name-style="western">
<surname>Coe</surname>
<given-names>P. F.</given-names>
</name>
<name name-style="western">
<surname>Green</surname>
<given-names>D. P. L.</given-names>
</name>
<article-title>The synthesis and some properties of 1-(2-amino-oxyethyl)cytosines</article-title>
<source>J. Chem. Soc.</source>
<year>1971</year>
<fpage>867</fpage>
<lpage>869</lpage>
</element-citation>
</ref>
<ref id="bc0256381b00045">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Geoghegan</surname>
<given-names>K. F.</given-names>
</name>
<name name-style="western">
<surname>Stroh</surname>
<given-names>J. G.</given-names>
</name>
<article-title>Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine</article-title>
<source>Bioconjugate Chem.</source>
<year>1992</year>
<volume>3</volume>
<fpage>138</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="doi">10.1021/bc00014a008</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00046">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Fehrentz</surname>
<given-names>J. A.</given-names>
</name>
<name name-style="western">
<surname>Paris</surname>
<given-names>M.</given-names>
</name>
<name name-style="western">
<surname>Heitz</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Velek</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Winternitz</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Martinez</surname>
<given-names>J.</given-names>
</name>
<article-title>Solid-phase synthesis of C-terminal peptide aldehydes</article-title>
<source>J. Org. Chem.</source>
<year>1997</year>
<volume>62</volume>
<fpage>6792</fpage>
<lpage>6796</lpage>
<pub-id pub-id-type="doi">10.1021/jo962408d</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00047">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Lelievre</surname>
<given-names>D.</given-names>
</name>
<name name-style="western">
<surname>Chabane</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Delmas</surname>
<given-names>A.</given-names>
</name>
<article-title>Simple and efficient solid-phase synthesis of unprotected peptide aldehyde for peptide segment ligation</article-title>
<source>Tetrahedron Lett.</source>
<year>1998</year>
<volume>39</volume>
<fpage>9675</fpage>
<lpage>9678</lpage>
<pub-id pub-id-type="doi">10.1016/S0040-4039(98)02267-9</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00048">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Dey</surname>
<given-names>S.</given-names>
</name>
<name name-style="western">
<surname>Sheppard</surname>
<given-names>T. L.</given-names>
</name>
<article-title>Ketone-DNA: a versatile postsynthetic DNA decoration platform</article-title>
<source>Org. Lett.</source>
<year>2001</year>
<volume>3</volume>
<fpage>3983</fpage>
<lpage>3986</lpage>
<pub-id pub-id-type="doi">10.1021/ol016626r</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00049">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Aris</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Villaverde</surname>
<given-names>A.</given-names>
</name>
<article-title>Molecular organization of protein-DNA complexes for cell-targeted DNA delivery</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<year>2000</year>
<volume>278</volume>
<fpage>455</fpage>
<lpage>461</lpage>
<pub-id pub-id-type="doi">10.1006/bbrc.2000.3824</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00050">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Koizumi</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Mizuguchi</surname>
<given-names>H.</given-names>
</name>
<name name-style="western">
<surname>Hosono</surname>
<given-names>T.</given-names>
</name>
<name name-style="western">
<surname>Ishii-Watabe</surname>
<given-names>A.</given-names>
</name>
<name name-style="western">
<surname>Uchida</surname>
<given-names>E.</given-names>
</name>
<name name-style="western">
<surname>Utoguchi</surname>
<given-names>N.</given-names>
</name>
<name name-style="western">
<surname>Watanabe</surname>
<given-names>Y.</given-names>
</name>
<name name-style="western">
<surname>Hayakawa</surname>
<given-names>T.</given-names>
</name>
<article-title>Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide</article-title>
<source>Biochim. Biophys. Acta</source>
<year>2001</year>
<volume>1568</volume>
<fpage>13</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="bc0256381b00051">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Snyder</surname>
<given-names>E. L.</given-names>
</name>
<name name-style="western">
<surname>Dowdy</surname>
<given-names>S. F.</given-names>
</name>
<article-title>Protein/peptide transduction domains: potential to deliver large DNA molecules into cells</article-title>
<source>Curr. Opin. Mol. Ther.</source>
<year>2001</year>
<volume>3</volume>
<fpage>147</fpage>
<lpage>152</lpage>
</element-citation>
</ref>
<ref id="bc0256381b00052">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Morris</surname>
<given-names>M. C.</given-names>
</name>
<name name-style="western">
<surname>Depollier</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Mery</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Heitz</surname>
<given-names>F.</given-names>
</name>
<name name-style="western">
<surname>Divita</surname>
<given-names>G.</given-names>
</name>
<article-title>A peptide carrier for the delivery of biologically active proteins into mammalian cells</article-title>
<source>Nat. Biotechnol.</source>
<year>2001</year>
<volume>19</volume>
<fpage>1173</fpage>
<lpage>1176</lpage>
<pub-id pub-id-type="doi">10.1038/nbt1201-1173</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00053">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Schwarze</surname>
<given-names>S. R.</given-names>
</name>
<name name-style="western">
<surname>Dowdy</surname>
<given-names>S. F.</given-names>
</name>
<article-title>In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA</article-title>
<source>Trends Pharmacol. Sci.</source>
<year>2000</year>
<volume>21</volume>
<fpage>45</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1016/S0165-6147(99)01429-7</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00054">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Stetsenko</surname>
<given-names>D. A.</given-names>
</name>
<name name-style="western">
<surname>Gait</surname>
<given-names>M. J.</given-names>
</name>
<article-title>Efficient conjugation of peptides to oligonucleotides by “native ligation</article-title>
<source>J. Org. Chem.</source>
<year>2000</year>
<volume>65</volume>
<fpage>4900</fpage>
<lpage>4908</lpage>
<pub-id pub-id-type="doi">10.1021/jo000214z</pub-id>
</element-citation>
</ref>
<ref id="bc0256381b00055">
<element-citation publication-type="journal">
<name name-style="western">
<surname>Tung</surname>
<given-names>C. H.</given-names>
</name>
<name name-style="western">
<surname>Wang</surname>
<given-names>J.</given-names>
</name>
<name name-style="western">
<surname>Leibowitz</surname>
<given-names>M. J.</given-names>
</name>
<name name-style="western">
<surname>Stein</surname>
<given-names>S.</given-names>
</name>
<article-title>Dual-specificity interaction of HIV-1 TAR RNA with Tat peptide-oligonucleotide conjugates</article-title>
<source>Bioconjugate Chem.</source>
<year>1995</year>
<volume>6</volume>
<fpage>292</fpage>
<lpage>295</lpage>
<pub-id pub-id-type="doi">10.1021/bc00033a009</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides</title>
</titleInfo>
<name type="personal">
<namePart type="family">HAMMA</namePart>
<namePart type="given">Tomoko</namePart>
<affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</affiliation>
<affiliation> Current address:  Division of Basic Science, Fred HutchinsonCancer Research Center, 1100 Fairview Avenue North Mail StopA3-015, Seattle, WA 98109.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal" displayLabel="corresp">
<namePart type="family">MILLER</namePart>
<namePart type="given">Paul S.</namePart>
<affiliation>Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns HopkinsUniversity, 615 North Wolfe Street, Baltimore, Maryland 21205</affiliation>
<affiliation> Corresponding author. Phone:  410-955-3489. Fax:  410-955-2926. E-mail:  pmiller@jhsph.edu.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>American Chemical Society</publisher>
<dateCreated encoding="w3cdtf">2003-02-06</dateCreated>
<dateIssued encoding="w3cdtf">2003-03-19</dateIssued>
<copyrightDate encoding="w3cdtf">2003</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>Oligo-2‘-O-methylribonucleotides conjugated with 4-(2-aminooxyethoxy)-2-(ethylureido)quinoline (AOQ) and 4-ethoxy-2-(ethylureido)quinoline (EOQ) were prepared by reaction of the AOQ or EOQ phosphoramidite with the protected oligonucleotide on a controlled pore glass support. Deprotection with ethylenediamine enabled successful isolation and purification of the highly reactive AOQ-conjugated oligomer. Polyacrylamide gel electrophoresis mobility shift experiments showed that the dissociation constants of complexes formed between an AOQ- or EOQ-conjugated 8-mer and complementary RNA or 2‘-O-methyl-RNA targets (9- and 10-mers) were in the low nM concentration range at 37 °C, whereas no binding was observed for the corresponding nonconjugated oligomer, even at a concentration of 500 nM. Fluorescence studies suggested that this enhanced affinity is most likely due to the ability of the quinoline ring of the AOQ or EOQ group to stack on the last base pair formed between the oligomer and target, thus stabilizing the duplex. The binding affinity of a 2‘-O-methyl RNA 15-mer, which contained an alternating methylphosphonate/phosphodiester backbone, for a 59-nucleotide stem-loop HIV TAR RNA target, increased 2.3 times as a consequence of conjugation with EOQ. The aminooxy group of AOQ-conjugated oligomers is a highly reactive nucleophile, which reacts readily with aldehydes and ketones to form stable oxime derivatives. This feature was used to couple an AOQ−oligomer with leupeptin, a tripeptide that contains a C-terminus aldehyde group. A simple method was developed to introduce a ketone functionality into peptides that contain a cysteine residue by reacting the peptide with bromoacetone. The resulting keto-peptide was then coupled to the AOQ−oligomer. This procedure was used to prepare oligonucleotide conjugates of a tetrapeptide, RGDC, and a derivative of HIV tat peptide having a C-terminus cysteine. The combination of the unique reactivity of the aminooxy group and enhanced binding affinity conferred by its quinoline ring suggests that AOQ may serve as a useful platform for the preparation of novel oligonucleotide conjugates.</abstract>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<identifier type="ISSN">1043-1802</identifier>
<identifier type="eISSN">1520-4812</identifier>
<identifier type="acspubs">bc</identifier>
<identifier type="coden">BCCHES</identifier>
<identifier type="uri">pubs.acs.org/bc</identifier>
<part>
<date>2003</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>320</start>
<end>330</end>
</extent>
</part>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00001" displayLabel="bibbc0256381b00001">
<titleInfo>
<title>Nucleic acid therapeutics: state of the art and future prospects</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Nucleic acid therapeutics: state of the art and future prospects</title>
</titleInfo>
<name type="personal">
<namePart type="family">GEWIRTZ</namePart>
<namePart type="given">A. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SOKOL</namePart>
<namePart type="given">D. L.</namePart>
</name>
<name type="personal">
<namePart type="family">RATAJCZAK</namePart>
<namePart type="given">M. Z.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Blood</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>92</number>
</detail>
<extent unit="pages">
<start>712</start>
<end>736</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00002" displayLabel="bibbc0256381b00002">
<titleInfo>
<title>Application of antisense oligonucleotides for gene functionalization and target validation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Application of antisense oligonucleotides for gene functionalization and target validation</title>
</titleInfo>
<name type="personal">
<namePart type="family">BENNETT</namePart>
<namePart type="given">C. F.</namePart>
</name>
<name type="personal">
<namePart type="family">COWSERT</namePart>
<namePart type="given">L. M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Curr. Opin. Mol. Ther.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>359</start>
<end>371</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00003" displayLabel="bibbc0256381b00003">
<titleInfo>
<title>Photo-cross-linking of psoralen-derivatized oligonucleoside methylphosphonates to single-stranded DNA</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Photo-cross-linking of psoralen-derivatized oligonucleoside methylphosphonates to single-stranded DNA</title>
</titleInfo>
<name type="personal">
<namePart type="family">BHAN</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">P. S.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>82</start>
<end>88</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00004" displayLabel="bibbc0256381b00004">
<titleInfo>
<title>Psoralen covalently linked to oligodeoxyribonucleotides: synthesis, sequence specific recognition of DNA and photo-cross-linking to pyrimidine residues of DNA</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Psoralen covalently linked to oligodeoxyribonucleotides: synthesis, sequence specific recognition of DNA and photo-cross-linking to pyrimidine residues of DNA</title>
</titleInfo>
<name type="personal">
<namePart type="family">PIELES</namePart>
<namePart type="given">U.</namePart>
</name>
<name type="personal">
<namePart type="family">ENGLISCH</namePart>
<namePart type="given">U.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1989</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>285</start>
<end>299</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00005" displayLabel="bibbc0256381b00005">
<titleInfo>
<title>Site-specific and photo-induced alkylation of DNA by a dimethylanthraquinone-oligodeoxynucleotide conjugate</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Site-specific and photo-induced alkylation of DNA by a dimethylanthraquinone-oligodeoxynucleotide conjugate</title>
</titleInfo>
<name type="personal">
<namePart type="family">KANG</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">ROKITA</namePart>
<namePart type="given">S. E.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<extent unit="pages">
<start>3896</start>
<end>3902</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00006" displayLabel="bibbc0256381b00006">
<titleInfo>
<title>Design, synthesis, and evaluation of mitomycin-tethered phosphorothioate oligodeoxynucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Design, synthesis, and evaluation of mitomycin-tethered phosphorothioate oligodeoxynucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">HUH</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">REGE</namePart>
<namePart type="given">A. A.</namePart>
</name>
<name type="personal">
<namePart type="family">YOO</namePart>
<namePart type="given">B.</namePart>
</name>
<name type="personal">
<namePart type="family">KOGAN</namePart>
<namePart type="given">T. P.</namePart>
</name>
<name type="personal">
<namePart type="family">KOHN</namePart>
<namePart type="given">H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>659</start>
<end>669</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00007" displayLabel="bibbc0256381b00007">
<titleInfo>
<title>Site-directed alkylation to cytidine within duplex by the oligonucleotides containing functional nucleobases</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Site-directed alkylation to cytidine within duplex by the oligonucleotides containing functional nucleobases</title>
</titleInfo>
<name type="personal">
<namePart type="family">NAGATSUGI</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">KAWASAKI</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">TOKUDA</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">MAEDA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">SASAKI</namePart>
<namePart type="given">S.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleosides Nucleotides Nucleic Acids</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>915</start>
<end>919</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00008" displayLabel="bibbc0256381b00008">
<titleInfo>
<title>Complementary-addressed (sequence-specific) modification of nucleic acids</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Complementary-addressed (sequence-specific) modification of nucleic acids</title>
</titleInfo>
<name type="personal">
<namePart type="family">KNORRE</namePart>
<namePart type="given">D. G.</namePart>
</name>
<name type="personal">
<namePart type="family">VLASSOV</namePart>
<namePart type="given">V. V.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Prog. Nucleic Acid Res. Mol. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1985</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>291</start>
<end>320</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00009" displayLabel="bibbc0256381b00009">
<titleInfo>
<title>Factors influencing the extent and regiospecificity of cross-link formation between single-stranded DNA and reactive complementary oligodeoxynucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Factors influencing the extent and regiospecificity of cross-link formation between single-stranded DNA and reactive complementary oligodeoxynucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">TABONE</namePart>
<namePart type="given">J. C.</namePart>
</name>
<name type="personal">
<namePart type="family">STAMM</namePart>
<namePart type="given">M. R.</namePart>
</name>
<name type="personal">
<namePart type="family">GAMPER</namePart>
<namePart type="given">H. B.</namePart>
</name>
<name type="personal">
<namePart type="family">MEYER</namePart>
<namePart type="given">R. B.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<extent unit="pages">
<start>375</start>
<end>383</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00010" displayLabel="bibbc0256381b00010">
<titleInfo>
<title>Rapid and efficient hybridization-triggered cross-linking within a DNA duplex by an oligodeoxyribonucleotide bearing a conjugated cyclopropapyrroloindole</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Rapid and efficient hybridization-triggered cross-linking within a DNA duplex by an oligodeoxyribonucleotide bearing a conjugated cyclopropapyrroloindole</title>
</titleInfo>
<name type="personal">
<namePart type="family">LUKHTANOV</namePart>
<namePart type="given">E. A.</namePart>
</name>
<name type="personal">
<namePart type="family">PODYMINOGIN</namePart>
<namePart type="given">M. A.</namePart>
</name>
<name type="personal">
<namePart type="family">KUTYAVIN</namePart>
<namePart type="given">I. V.</namePart>
</name>
<name type="personal">
<namePart type="family">MEYER</namePart>
<namePart type="given">R. B.</namePart>
</name>
<name type="personal">
<namePart type="family">GAMPER</namePart>
<namePart type="given">H. B.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>24</number>
</detail>
<extent unit="pages">
<start>683</start>
<end>687</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00011" displayLabel="bibbc0256381b00011">
<titleInfo>
<title>Transplatin-modified oligo(2‘-O-methyl ribonucleotide)s: a new tool for selective modulation of gene expression</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Transplatin-modified oligo(2‘-O-methyl ribonucleotide)s: a new tool for selective modulation of gene expression</title>
</titleInfo>
<name type="personal">
<namePart type="family">BOUDVILLAIN</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GUERIN</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">DALBIES</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">SAISON-BEHMOARAS</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">LENG</namePart>
<namePart type="given">M.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<extent unit="pages">
<start>2925</start>
<end>2931</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00012" displayLabel="bibbc0256381b00012">
<titleInfo>
<title>Hybridization triggered cross-linking of deoxyoligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Hybridization triggered cross-linking of deoxyoligonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">WEBB</namePart>
<namePart type="given">T. R.</namePart>
</name>
<name type="personal">
<namePart type="family">MATTEUCCI</namePart>
<namePart type="given">M. D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>7661</start>
<end>7674</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00013" displayLabel="bibbc0256381b00013">
<titleInfo>
<title>Antiviral effect of oligo(nucleoside methylphosphonates) complementary to the herpes simplex virus type 1 immediate early mRNAs 4 and 5</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Antiviral effect of oligo(nucleoside methylphosphonates) complementary to the herpes simplex virus type 1 immediate early mRNAs 4 and 5</title>
</titleInfo>
<name type="personal">
<namePart type="family">KULKA</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">WACHSMAN</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">MIURA</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">FISHELEVICH</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">P. S.</namePart>
</name>
<name type="personal">
<namePart type="family">TS’O</namePart>
<namePart type="given">P. O.</namePart>
</name>
<name type="personal">
<namePart type="family">AURELIAN</namePart>
<namePart type="given">L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Antiviral Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>115</start>
<end>130</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00014" displayLabel="bibbc0256381b00014">
<titleInfo>
<title>The origin of the alpha-effect: dissection of ground-state and transition-state contributions</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The origin of the alpha-effect: dissection of ground-state and transition-state contributions</title>
</titleInfo>
<name type="personal">
<namePart type="family">UM</namePart>
<namePart type="given">I. H.</namePart>
</name>
<name type="personal">
<namePart type="family">BUNCEL</namePart>
<namePart type="given">E.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Org. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>65</number>
</detail>
<extent unit="pages">
<start>577</start>
<end>582</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00015" displayLabel="bibbc0256381b00015">
<titleInfo>
<title>Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Highly efficient synthesis of peptide-oligonucleotide conjugates: chemoselective oxime and thiazolidine formation</title>
</titleInfo>
<name type="personal">
<namePart type="family">FORGET</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">BOTURYN</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">DEFRANCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">LHOMME</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">DUMY</namePart>
<namePart type="given">P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Chemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>3976</start>
<end>3984</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00016" displayLabel="bibbc0256381b00016">
<titleInfo>
<title>Aminooxy functionalized oligonucleotides: preparation, on-support derivatization, and postsynthetic attachment to polymer support</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Aminooxy functionalized oligonucleotides: preparation, on-support derivatization, and postsynthetic attachment to polymer support</title>
</titleInfo>
<name type="personal">
<namePart type="family">SALO</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">VIRTA</namePart>
<namePart type="given">P.</namePart>
</name>
<name type="personal">
<namePart type="family">HAKALA</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">PRAKASH</namePart>
<namePart type="given">T. P.</namePart>
</name>
<name type="personal">
<namePart type="family">KAWASAKI</namePart>
<namePart type="given">A. M.</namePart>
</name>
<name type="personal">
<namePart type="family">MANOHARAN</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">LONNBERG</namePart>
<namePart type="given">H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>815</start>
<end>823</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00017" displayLabel="bibbc0256381b00017">
<titleInfo>
<title>Identification of by-products from an orthogonal peptide ligation by oxime bonds using mass spectrometry and tandem mass spectrometry</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Identification of by-products from an orthogonal peptide ligation by oxime bonds using mass spectrometry and tandem mass spectrometry</title>
</titleInfo>
<name type="personal">
<namePart type="family">BURE</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">LELIEVRE</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">DELMAS</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Rapid Commun. Mass. Spectrom.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>2158</start>
<end>2164</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00018" displayLabel="bibbc0256381b00018">
<titleInfo>
<title>Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Unprotected peptides as building blocks for the synthesis of peptide dendrimers with oxime, hydrazone, and thiazolidine linkages</title>
</titleInfo>
<name type="personal">
<namePart type="family">SHAO</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">TAM</namePart>
<namePart type="given">J. P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>3893</start>
<end>3899</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00019" displayLabel="bibbc0256381b00019">
<titleInfo>
<title>A chemoselective method for site-specific immobilization of peptides via aminooxy group</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>A chemoselective method for site-specific immobilization of peptides via aminooxy group</title>
</titleInfo>
<name type="personal">
<namePart type="family">ADAMCZYK</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">GEBLER</namePart>
<namePart type="given">J. C.</namePart>
</name>
<name type="personal">
<namePart type="family">REDDY</namePart>
<namePart type="given">R. E.</namePart>
</name>
<name type="personal">
<namePart type="family">YU</namePart>
<namePart type="given">Z.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>139</start>
<end>142</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00020" displayLabel="bibbc0256381b00020">
<titleInfo>
<title>Total chemical synthesis of a unique transcription factor-related protein: cmyc-max</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Total chemical synthesis of a unique transcription factor-related protein: cmyc-max</title>
</titleInfo>
<name type="personal">
<namePart type="family">CANNE</namePart>
<namePart type="given">L. E.</namePart>
</name>
<name type="personal">
<namePart type="family">FEERé-D'AMARé</namePart>
<namePart type="given">A. R.</namePart>
</name>
<name type="personal">
<namePart type="family">BURLEY</namePart>
<namePart type="given">S. K.</namePart>
</name>
<name type="personal">
<namePart type="family">KENT</namePart>
<namePart type="given">S. B. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>117</number>
</detail>
<extent unit="pages">
<start>2998</start>
<end>3007</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00021" displayLabel="bibbc0256381b00021">
<titleInfo>
<title>Aminooxy-, hydrazide-, and thiosemicarbazide-functionalized saccharides: versatile reagents for glycoconjugate synthesis</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Aminooxy-, hydrazide-, and thiosemicarbazide-functionalized saccharides: versatile reagents for glycoconjugate synthesis</title>
</titleInfo>
<name type="personal">
<namePart type="family">RODRIGUEZ</namePart>
<namePart type="given">E. C.</namePart>
</name>
<name type="personal">
<namePart type="family">MARCAURELLE</namePart>
<namePart type="given">L. A.</namePart>
</name>
<name type="personal">
<namePart type="family">BERTOZZI</namePart>
<namePart type="given">C. R.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Org. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>7134</start>
<end>7135</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00022" displayLabel="bibbc0256381b00022">
<titleInfo>
<title>Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy-functionalized d-galactose template</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy-functionalized d-galactose template</title>
</titleInfo>
<name type="personal">
<namePart type="family">BRASK</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">JENSEN</namePart>
<namePart type="given">K. J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Pept. Sci.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>290</start>
<end>299</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00023" displayLabel="bibbc0256381b00023">
<titleInfo>
<title>Efficient preparation of carbohydrate-oligonucleotide conjugates (COCs) using oxime bond formation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Efficient preparation of carbohydrate-oligonucleotide conjugates (COCs) using oxime bond formation</title>
</titleInfo>
<name type="personal">
<namePart type="family">FORGET</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">RENAUDET</namePart>
<namePart type="given">O.</namePart>
</name>
<name type="personal">
<namePart type="family">DEFRANCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">DUMY</namePart>
<namePart type="given">P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>42</number>
</detail>
<extent unit="pages">
<start>7829</start>
<end>7832</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00024" displayLabel="bibbc0256381b00024">
<titleInfo>
<title>The oxyamino-aldehyde coupling reactions: an efficient method for the derivatization of oligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The oxyamino-aldehyde coupling reactions: an efficient method for the derivatization of oligonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">TREVISIOL</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">RENARD</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">DEFRANCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">LHOMME</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>8687</start>
<end>8690</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00025" displayLabel="bibbc0256381b00025">
<titleInfo>
<title>Fluorescent labeling of oligodeoxyribonucleotides by the oxyamino-aldehyde coupling reaction</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Fluorescent labeling of oligodeoxyribonucleotides by the oxyamino-aldehyde coupling reaction</title>
</titleInfo>
<name type="personal">
<namePart type="family">TREVISIOL</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">RENARD</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">DEFRANCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">LHOMME</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleosides Nucleotides Nucleic Acids</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>1427</start>
<end>1439</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00026" displayLabel="bibbc0256381b00026">
<titleInfo>
<title>Use of an aminooxy linker for the functionalization of oligodeoxyribonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Use of an aminooxy linker for the functionalization of oligodeoxyribonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">DEFRANCQ</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">LHOMME</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioorg. Med. Chem. Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>931</start>
<end>933</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00027" displayLabel="bibbc0256381b00027">
<titleInfo>
<title>Facile synthesis of homogeneous artificial proteins</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Facile synthesis of homogeneous artificial proteins</title>
</titleInfo>
<name type="personal">
<namePart type="family">ROSE</namePart>
<namePart type="given">K.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>116</number>
</detail>
<extent unit="pages">
<start>30</start>
<end>33</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00028" displayLabel="bibbc0256381b00028">
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. M.</namePart>
</name>
<titleInfo>
<title>Basic Principles in Nucleic Acid Chemistry</title>
</titleInfo>
<note type="content-in-line">BrownD. M. (1974) in Basic Principles in Nucleic Acid Chemistry (P. O. P. Ts'o, Ed.) pp 2−90, Academic Press, New York.</note>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00029" displayLabel="bibbc0256381b00029">
<titleInfo>
<title>Nucleotides. Part XLVIII. The reaction of hydroxylamine with cytosine and related compounds</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Nucleotides. Part XLVIII. The reaction of hydroxylamine with cytosine and related compounds</title>
</titleInfo>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHELL</namePart>
<namePart type="given">P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1965</date>
<extent unit="pages">
<start>208</start>
<end>215</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00030" displayLabel="bibbc0256381b00030">
<titleInfo>
<title>The reaction of hydroxyamine with cytosine and related compounds</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The reaction of hydroxyamine with cytosine and related compounds</title>
</titleInfo>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHELL</namePart>
<namePart type="given">P.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1961</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>709</start>
<end>710</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00031" displayLabel="bibbc0256381b00031">
<titleInfo>
<title>Reactions of cytosine and cytidine with O-substituted hydroxylamines</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Reactions of cytosine and cytidine with O-substituted hydroxylamines</title>
</titleInfo>
<name type="personal">
<namePart type="family">SCHALKE</namePart>
<namePart type="given">P. M.</namePart>
</name>
<name type="personal">
<namePart type="family">HALL</namePart>
<namePart type="given">C. D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Chem. Soc., Perkin Trans.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1975</date>
<detail type="volume">
<caption>vol.</caption>
<number>1</number>
</detail>
<extent unit="pages">
<start>2417</start>
<end>2422</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00032" displayLabel="bibbc0256381b00032">
<titleInfo>
<title>Syntheses of alternating oligo-2‘-O-methylribonucleoside methylphosphonates and their interactions with HIV TAR RNA</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Syntheses of alternating oligo-2‘-O-methylribonucleoside methylphosphonates and their interactions with HIV TAR RNA</title>
</titleInfo>
<name type="personal">
<namePart type="family">HAMMA</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">P. S.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>15333</start>
<end>15342</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00033" displayLabel="bibbc0256381b00033">
<titleInfo>
<title>Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A. triads</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Triplex formation by oligodeoxyribonucleotides involving the formation of X.U.A. triads</title>
</titleInfo>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">P. S.</namePart>
</name>
<name type="personal">
<namePart type="family">CUSHMAN</namePart>
<namePart type="given">C. D.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>32</number>
</detail>
<extent unit="pages">
<start>2999</start>
<end>3004</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00034" displayLabel="bibbc0256381b00034">
<titleInfo>
<title>Solid-phase syntheses of oligodeoxyribonucleoside methylphosphonates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Solid-phase syntheses of oligodeoxyribonucleoside methylphosphonates</title>
</titleInfo>
<name type="personal">
<namePart type="family">MILLER</namePart>
<namePart type="given">P. S.</namePart>
</name>
<name type="personal">
<namePart type="family">REDDY</namePart>
<namePart type="given">M. P.</namePart>
</name>
<name type="personal">
<namePart type="family">MURAKAMI</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">BLAKE</namePart>
<namePart type="given">K. R.</namePart>
</name>
<name type="personal">
<namePart type="family">LIN</namePart>
<namePart type="given">S. B.</namePart>
</name>
<name type="personal">
<namePart type="family">AGRIS</namePart>
<namePart type="given">C. H.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>25</number>
</detail>
<extent unit="pages">
<start>5092</start>
<end>5097</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00035" displayLabel="bibbc0256381b00035">
<titleInfo>
<title>Fast cleavage and deprotection of oligonucleotides</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Fast cleavage and deprotection of oligonucleotides</title>
</titleInfo>
<name type="personal">
<namePart type="family">REDDY</namePart>
<namePart type="given">M. P.</namePart>
</name>
<name type="personal">
<namePart type="family">HANNA</namePart>
<namePart type="given">N. B.</namePart>
</name>
<name type="personal">
<namePart type="family">FARROQUI</namePart>
<namePart type="given">F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>4311</start>
<end>4314</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00036" displayLabel="bibbc0256381b00036">
<titleInfo>
<title>Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine</title>
</titleInfo>
<name type="personal">
<namePart type="family">NAKATANI</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">SANDO</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">KUMASAWA</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">KIKUCHI</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">SAITO</namePart>
<namePart type="given">I.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>123</number>
</detail>
<extent unit="pages">
<start>12650</start>
<end>12657</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00037" displayLabel="bibbc0256381b00037">
<titleInfo>
<title>Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site</title>
</titleInfo>
<name type="personal">
<namePart type="family">ASSELINE</namePart>
<namePart type="given">U.</namePart>
</name>
<name type="personal">
<namePart type="family">TOULME</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">THUONG</namePart>
<namePart type="given">N. T.</namePart>
</name>
<name type="personal">
<namePart type="family">DELARUE</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">MONTENAY-GARESTIER</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">HELENE</namePart>
<namePart type="given">C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Embo. J.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1984</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>795</start>
<end>800</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00038" displayLabel="bibbc0256381b00038">
<titleInfo>
<title>Synthesis and properties of an oligodeoxynucleotide containing a polycyclic aromatic hydrocarbon site specifically bound to the N2 amino group of a 2‘-deoxyguanosine residue</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Synthesis and properties of an oligodeoxynucleotide containing a polycyclic aromatic hydrocarbon site specifically bound to the N2 amino group of a 2‘-deoxyguanosine residue</title>
</titleInfo>
<name type="personal">
<namePart type="family">CASALE</namePart>
<namePart type="given">R.</namePart>
</name>
<name type="personal">
<namePart type="family">MCLAUGHLIN</namePart>
<namePart type="given">L. W.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>112</number>
</detail>
<extent unit="pages">
<start>5264</start>
<end>5271</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00039" displayLabel="bibbc0256381b00039">
<titleInfo>
<title>Synthesis and properties of peptide nucleic acids containing a psoralen unit</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Synthesis and properties of peptide nucleic acids containing a psoralen unit</title>
</titleInfo>
<name type="personal">
<namePart type="family">OKAMOTO</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">TANABE</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">SAITO</namePart>
<namePart type="given">I.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Org. Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>925</start>
<end>927</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00040" displayLabel="bibbc0256381b00040">
<titleInfo>
<title>On the base-stacking in the 5‘-terminal cap structure of mRNA: a fluorescence study</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>On the base-stacking in the 5‘-terminal cap structure of mRNA: a fluorescence study</title>
</titleInfo>
<name type="personal">
<namePart type="family">NISHIMURA</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">TAKAHASHI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">YAMAMOTO</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">TSUBOI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">HATTORI</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">MIURA</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">YAMAGUCHI</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">OHTANI</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">HATA</namePart>
<namePart type="given">T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1980</date>
<detail type="volume">
<caption>vol.</caption>
<number>8</number>
</detail>
<extent unit="pages">
<start>1107</start>
<end>1119</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00041" displayLabel="bibbc0256381b00041">
<titleInfo>
<title>Experimental measurement of aromatic stacking affinities in the context of duplex DNA</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Experimental measurement of aromatic stacking affinities in the context of duplex DNA</title>
</titleInfo>
<name type="personal">
<namePart type="family">GUCKIAN</namePart>
<namePart type="given">K. M.</namePart>
</name>
<name type="personal">
<namePart type="family">SCHWEITZER</namePart>
<namePart type="given">B. A.</namePart>
</name>
<name type="personal">
<namePart type="family">REN</namePart>
<namePart type="given">R. X.-F.</namePart>
</name>
<name type="personal">
<namePart type="family">SHEILS</namePart>
<namePart type="given">C. J.</namePart>
</name>
<name type="personal">
<namePart type="family">PARIS</namePart>
<namePart type="given">P. L.</namePart>
</name>
<name type="personal">
<namePart type="family">TAHMASSEBI</namePart>
<namePart type="given">D. C.</namePart>
</name>
<name type="personal">
<namePart type="family">KOOL</namePart>
<namePart type="given">E. T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Am. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>118</number>
</detail>
<extent unit="pages">
<start>8182</start>
<end>8183</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00042" displayLabel="bibbc0256381b00042">
<titleInfo>
<title>Solution structure of the aminoacyl-capped oligodeoxyribonucleotide duplex (W-TGCGCAC)(2)</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Solution structure of the aminoacyl-capped oligodeoxyribonucleotide duplex (W-TGCGCAC)(2)</title>
</titleInfo>
<name type="personal">
<namePart type="family">HO</namePart>
<namePart type="given">W. C.</namePart>
</name>
<name type="personal">
<namePart type="family">STEINBECK</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">RICHERT</namePart>
<namePart type="given">C.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochemistry</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>12597</start>
<end>12606</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00043" displayLabel="bibbc0256381b00043">
<titleInfo>
<title>Modulation of remote DNA oxidation by hybridization with peptide nucleic acids (PNA)</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Modulation of remote DNA oxidation by hybridization with peptide nucleic acids (PNA)</title>
</titleInfo>
<name type="personal">
<namePart type="family">OKAMOTO</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">TANABE</namePart>
<namePart type="given">K.</namePart>
</name>
<name type="personal">
<namePart type="family">DOHNO</namePart>
<namePart type="given">C.</namePart>
</name>
<name type="personal">
<namePart type="family">SAITO</namePart>
<namePart type="given">I.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioorg. Med. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>10</number>
</detail>
<extent unit="pages">
<start>713</start>
<end>718</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00044" displayLabel="bibbc0256381b00044">
<titleInfo>
<title>The synthesis and some properties of 1-(2-amino-oxyethyl)cytosines</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>The synthesis and some properties of 1-(2-amino-oxyethyl)cytosines</title>
</titleInfo>
<name type="personal">
<namePart type="family">BROWN</namePart>
<namePart type="given">D. M.</namePart>
</name>
<name type="personal">
<namePart type="family">COE</namePart>
<namePart type="given">P. F.</namePart>
</name>
<name type="personal">
<namePart type="family">GREEN</namePart>
<namePart type="given">D. P. L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Chem. Soc.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1971</date>
<extent unit="pages">
<start>867</start>
<end>869</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00045" displayLabel="bibbc0256381b00045">
<titleInfo>
<title>Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Site-directed conjugation of nonpeptide groups to peptides and proteins via periodate oxidation of a 2-amino alcohol. Application to modification at N-terminal serine</title>
</titleInfo>
<name type="personal">
<namePart type="family">GEOGHEGAN</namePart>
<namePart type="given">K. F.</namePart>
</name>
<name type="personal">
<namePart type="family">STROH</namePart>
<namePart type="given">J. G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1992</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>138</start>
<end>146</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00046" displayLabel="bibbc0256381b00046">
<titleInfo>
<title>Solid-phase synthesis of C-terminal peptide aldehydes</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Solid-phase synthesis of C-terminal peptide aldehydes</title>
</titleInfo>
<name type="personal">
<namePart type="family">FEHRENTZ</namePart>
<namePart type="given">J. A.</namePart>
</name>
<name type="personal">
<namePart type="family">PARIS</namePart>
<namePart type="given">M.</namePart>
</name>
<name type="personal">
<namePart type="family">HEITZ</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">VELEK</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">WINTERNITZ</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">MARTINEZ</namePart>
<namePart type="given">J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Org. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>6792</start>
<end>6796</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00047" displayLabel="bibbc0256381b00047">
<titleInfo>
<title>Simple and efficient solid-phase synthesis of unprotected peptide aldehyde for peptide segment ligation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Simple and efficient solid-phase synthesis of unprotected peptide aldehyde for peptide segment ligation</title>
</titleInfo>
<name type="personal">
<namePart type="family">LELIEVRE</namePart>
<namePart type="given">D.</namePart>
</name>
<name type="personal">
<namePart type="family">CHABANE</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">DELMAS</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Tetrahedron Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>39</number>
</detail>
<extent unit="pages">
<start>9675</start>
<end>9678</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00048" displayLabel="bibbc0256381b00048">
<titleInfo>
<title>Ketone-DNA: a versatile postsynthetic DNA decoration platform</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Ketone-DNA: a versatile postsynthetic DNA decoration platform</title>
</titleInfo>
<name type="personal">
<namePart type="family">DEY</namePart>
<namePart type="given">S.</namePart>
</name>
<name type="personal">
<namePart type="family">SHEPPARD</namePart>
<namePart type="given">T. L.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Org. Lett.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>3983</start>
<end>3986</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00049" displayLabel="bibbc0256381b00049">
<titleInfo>
<title>Molecular organization of protein-DNA complexes for cell-targeted DNA delivery</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Molecular organization of protein-DNA complexes for cell-targeted DNA delivery</title>
</titleInfo>
<name type="personal">
<namePart type="family">ARIS</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">VILLAVERDE</namePart>
<namePart type="given">A.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochem. Biophys. Res. Commun.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>278</number>
</detail>
<extent unit="pages">
<start>455</start>
<end>461</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00050" displayLabel="bibbc0256381b00050">
<titleInfo>
<title>Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Efficient gene transfer by fiber-mutant adenoviral vectors containing RGD peptide</title>
</titleInfo>
<name type="personal">
<namePart type="family">KOIZUMI</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">MIZUGUCHI</namePart>
<namePart type="given">H.</namePart>
</name>
<name type="personal">
<namePart type="family">HOSONO</namePart>
<namePart type="given">T.</namePart>
</name>
<name type="personal">
<namePart type="family">ISHII-WATABE</namePart>
<namePart type="given">A.</namePart>
</name>
<name type="personal">
<namePart type="family">UCHIDA</namePart>
<namePart type="given">E.</namePart>
</name>
<name type="personal">
<namePart type="family">UTOGUCHI</namePart>
<namePart type="given">N.</namePart>
</name>
<name type="personal">
<namePart type="family">WATANABE</namePart>
<namePart type="given">Y.</namePart>
</name>
<name type="personal">
<namePart type="family">HAYAKAWA</namePart>
<namePart type="given">T.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Biochim. Biophys. Acta</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>1568</number>
</detail>
<extent unit="pages">
<start>13</start>
<end>20</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00051" displayLabel="bibbc0256381b00051">
<titleInfo>
<title>Protein/peptide transduction domains: potential to deliver large DNA molecules into cells</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Protein/peptide transduction domains: potential to deliver large DNA molecules into cells</title>
</titleInfo>
<name type="personal">
<namePart type="family">SNYDER</namePart>
<namePart type="given">E. L.</namePart>
</name>
<name type="personal">
<namePart type="family">DOWDY</namePart>
<namePart type="given">S. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Curr. Opin. Mol. Ther.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>147</start>
<end>152</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00052" displayLabel="bibbc0256381b00052">
<titleInfo>
<title>A peptide carrier for the delivery of biologically active proteins into mammalian cells</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>A peptide carrier for the delivery of biologically active proteins into mammalian cells</title>
</titleInfo>
<name type="personal">
<namePart type="family">MORRIS</namePart>
<namePart type="given">M. C.</namePart>
</name>
<name type="personal">
<namePart type="family">DEPOLLIER</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">MERY</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">HEITZ</namePart>
<namePart type="given">F.</namePart>
</name>
<name type="personal">
<namePart type="family">DIVITA</namePart>
<namePart type="given">G.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Nat. Biotechnol.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2001</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>1173</start>
<end>1176</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00053" displayLabel="bibbc0256381b00053">
<titleInfo>
<title>In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA</title>
</titleInfo>
<name type="personal">
<namePart type="family">SCHWARZE</namePart>
<namePart type="given">S. R.</namePart>
</name>
<name type="personal">
<namePart type="family">DOWDY</namePart>
<namePart type="given">S. F.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Trends Pharmacol. Sci.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>21</number>
</detail>
<extent unit="pages">
<start>45</start>
<end>48</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00054" displayLabel="bibbc0256381b00054">
<titleInfo>
<title>Efficient conjugation of peptides to oligonucleotides by “native ligation</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Efficient conjugation of peptides to oligonucleotides by “native ligation</title>
</titleInfo>
<name type="personal">
<namePart type="family">STETSENKO</namePart>
<namePart type="given">D. A.</namePart>
</name>
<name type="personal">
<namePart type="family">GAIT</namePart>
<namePart type="given">M. J.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>J. Org. Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>65</number>
</detail>
<extent unit="pages">
<start>4900</start>
<end>4908</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" ID="bc0256381b00055" displayLabel="bibbc0256381b00055">
<titleInfo>
<title>Dual-specificity interaction of HIV-1 TAR RNA with Tat peptide-oligonucleotide conjugates</title>
</titleInfo>
<titleInfo contentType="CDATA">
<title>Dual-specificity interaction of HIV-1 TAR RNA with Tat peptide-oligonucleotide conjugates</title>
</titleInfo>
<name type="personal">
<namePart type="family">TUNG</namePart>
<namePart type="given">C. H.</namePart>
</name>
<name type="personal">
<namePart type="family">WANG</namePart>
<namePart type="given">J.</namePart>
</name>
<name type="personal">
<namePart type="family">LEIBOWITZ</namePart>
<namePart type="given">M. J.</namePart>
</name>
<name type="personal">
<namePart type="family">STEIN</namePart>
<namePart type="given">S.</namePart>
</name>
<relatedItem type="host">
<titleInfo>
<title>Bioconjugate Chem.</title>
</titleInfo>
<genre>journal</genre>
<part>
<date>1995</date>
<detail type="volume">
<caption>vol.</caption>
<number>6</number>
</detail>
<extent unit="pages">
<start>292</start>
<end>295</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<identifier type="istex">D22D50DF700312506B9A74AAE89CFC7812D22C6D</identifier>
<identifier type="ark">ark:/67375/TPS-P7LNH6TZ-J</identifier>
<identifier type="DOI">10.1021/bc025638+</identifier>
<accessCondition type="use and reproduction" contentType="restricted">Copyright © 2003 American Chemical Society</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-X5HBJWF8-J">acs</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-10</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/TPS-P7LNH6TZ-J/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/D22D50DF700312506B9A74AAE89CFC7812D22C6D/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001A94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:D22D50DF700312506B9A74AAE89CFC7812D22C6D
   |texte=   4-(2-Aminooxyethoxy)-2-(ethylureido)quinoline−Oligonucleotide Conjugates:  Synthesis, Binding Interactions, and Derivatization with Peptides
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021