Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein-specific glycosylation: signal patches and cis-controlling peptidic elements

Identifieur interne : 001865 ( Istex/Corpus ); précédent : 001864; suivant : 001866

Protein-specific glycosylation: signal patches and cis-controlling peptidic elements

Auteurs : Franz-Georg Hanisch ; Isabelle Breloy

Source :

RBID : ISTEX:38F5B79FADC833554B361885A6814430224A208F

English descriptors

Abstract

The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as cis-regulatory elements. Another example of such a cis-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such cis-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.

Url:
DOI: 10.1515/BC.2009.043

Links to Exploration step

ISTEX:38F5B79FADC833554B361885A6814430224A208F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein-specific glycosylation: signal patches and cis-controlling peptidic elements</title>
<author>
<name sortKey="Hanisch, Franz Georg" sort="Hanisch, Franz Georg" uniqKey="Hanisch F" first="Franz-Georg" last="Hanisch">Franz-Georg Hanisch</name>
</author>
<author>
<name sortKey="Breloy, Isabelle" sort="Breloy, Isabelle" uniqKey="Breloy I" first="Isabelle" last="Breloy">Isabelle Breloy</name>
<affiliation>
<mods:affiliation>Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Köln, Germany</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:38F5B79FADC833554B361885A6814430224A208F</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1515/BC.2009.043</idno>
<idno type="url">https://api.istex.fr/ark:/67375/QT4-NBLDDR8J-7/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001865</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001865</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Protein-specific glycosylation: signal patches and
<hi rend="italic">cis</hi>
-controlling peptidic elements</title>
<author>
<name sortKey="Hanisch, Franz Georg" sort="Hanisch, Franz Georg" uniqKey="Hanisch F" first="Franz-Georg" last="Hanisch">Franz-Georg Hanisch</name>
</author>
<author>
<name sortKey="Breloy, Isabelle" sort="Breloy, Isabelle" uniqKey="Breloy I" first="Isabelle" last="Breloy">Isabelle Breloy</name>
<affiliation>
<mods:affiliation>Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Köln, Germany</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="abbrev">Biological Chemistry</title>
<idno type="eISSN">1437-4315</idno>
<idno type="ISSN">1431-6730</idno>
<imprint>
<publisher>Walter de Gruyter</publisher>
<date type="published">2009</date>
<date type="e-published">2009</date>
<biblScope unit="vol">390</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="619">619</biblScope>
<biblScope unit="page" to="626">626</biblScope>
<biblScope unit="ref-count">67</biblScope>
<biblScope unit="fig-count">1</biblScope>
<biblScope unit="table-count">0</biblScope>
</imprint>
<idno type="ISSN">1431-6730</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1431-6730</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acceptor site</term>
<term>Acid residues</term>
<term>Acidic surface patch</term>
<term>Adhesion</term>
<term>Amino</term>
<term>Amino acid</term>
<term>Amino acids</term>
<term>Baenziger</term>
<term>Biol</term>
<term>Brain development</term>
<term>Breloy</term>
<term>Carbonic anhydrase</term>
<term>Cellular receptor</term>
<term>Chem</term>
<term>Consensus sequence</term>
<term>Current state</term>
<term>Determinant</term>
<term>Double control</term>
<term>Endo</term>
<term>Enzymatic activity</term>
<term>First fibronectin type</term>
<term>Functional implications</term>
<term>Gamete binding</term>
<term>Glycans</term>
<term>Glycoprotein</term>
<term>Glycosylation</term>
<term>Glycosylation variant</term>
<term>Haltiwanger</term>
<term>Higher level</term>
<term>Human zona pellucida</term>
<term>Hydrolases</term>
<term>Igg2 light chain</term>
<term>Lacdinac</term>
<term>Local peptide environment</term>
<term>Lunatic fringe</term>
<term>Lysosomal</term>
<term>Lysosomal hydrolases</term>
<term>Mammalian glycoproteins</term>
<term>Manic fringe</term>
<term>Mannose</term>
<term>Mannose phosphorylation</term>
<term>Mass spectrometry</term>
<term>Modification</term>
<term>Mouse dnase</term>
<term>Mouse notch1</term>
<term>Mucin</term>
<term>Mucin domain</term>
<term>Ncam</term>
<term>Ncam functions</term>
<term>Neural cell adhesion molecule</term>
<term>Notch receptors</term>
<term>Oligosaccharide</term>
<term>Peptide</term>
<term>Peptide sequence</term>
<term>Peptide stretch</term>
<term>Peptidic elements</term>
<term>Peripheral modification</term>
<term>Polysialic</term>
<term>Polysialic acid</term>
<term>Polysialylation</term>
<term>Proof glycosylation</term>
<term>Protein glycosylation</term>
<term>Protein mannosyltransferases</term>
<term>Protein modification</term>
<term>Protein specificity</term>
<term>Putative glycosylation site</term>
<term>Radical fringe</term>
<term>Receptor</term>
<term>Recognition determinants</term>
<term>Same glycoprotein</term>
<term>Structural analysis</term>
<term>Structural features</term>
<term>Structural properties</term>
<term>Structural studies</term>
<term>Substrate position</term>
<term>Substrate positions</term>
<term>Substrate sites</term>
<term>Target protein</term>
<term>Yeast cells</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as cis-regulatory elements. Another example of such a cis-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such cis-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.</div>
</front>
</TEI>
<istex>
<corpusName>degruyter-journals</corpusName>
<keywords>
<teeft>
<json:string>glycosylation</json:string>
<json:string>biol</json:string>
<json:string>chem</json:string>
<json:string>glycoprotein</json:string>
<json:string>mucin</json:string>
<json:string>glycans</json:string>
<json:string>mannose</json:string>
<json:string>polysialylation</json:string>
<json:string>ncam</json:string>
<json:string>peptide</json:string>
<json:string>breloy</json:string>
<json:string>lacdinac</json:string>
<json:string>lysosomal</json:string>
<json:string>oligosaccharide</json:string>
<json:string>receptor</json:string>
<json:string>mucin domain</json:string>
<json:string>baenziger</json:string>
<json:string>endo</json:string>
<json:string>polysialic</json:string>
<json:string>hydrolases</json:string>
<json:string>polysialic acid</json:string>
<json:string>haltiwanger</json:string>
<json:string>determinant</json:string>
<json:string>modification</json:string>
<json:string>mouse notch1</json:string>
<json:string>carbonic anhydrase</json:string>
<json:string>lysosomal hydrolases</json:string>
<json:string>consensus sequence</json:string>
<json:string>amino</json:string>
<json:string>peripheral modification</json:string>
<json:string>neural cell adhesion molecule</json:string>
<json:string>proof glycosylation</json:string>
<json:string>gamete binding</json:string>
<json:string>igg2 light chain</json:string>
<json:string>putative glycosylation site</json:string>
<json:string>structural properties</json:string>
<json:string>peptide stretch</json:string>
<json:string>enzymatic activity</json:string>
<json:string>current state</json:string>
<json:string>protein specificity</json:string>
<json:string>mannose phosphorylation</json:string>
<json:string>substrate sites</json:string>
<json:string>peptidic elements</json:string>
<json:string>protein modification</json:string>
<json:string>human zona pellucida</json:string>
<json:string>protein glycosylation</json:string>
<json:string>first fibronectin type</json:string>
<json:string>acid residues</json:string>
<json:string>acidic surface patch</json:string>
<json:string>ncam functions</json:string>
<json:string>brain development</json:string>
<json:string>glycosylation variant</json:string>
<json:string>substrate positions</json:string>
<json:string>notch receptors</json:string>
<json:string>lunatic fringe</json:string>
<json:string>manic fringe</json:string>
<json:string>radical fringe</json:string>
<json:string>local peptide environment</json:string>
<json:string>structural studies</json:string>
<json:string>acceptor site</json:string>
<json:string>recognition determinants</json:string>
<json:string>mammalian glycoproteins</json:string>
<json:string>structural features</json:string>
<json:string>peptide sequence</json:string>
<json:string>target protein</json:string>
<json:string>amino acids</json:string>
<json:string>functional implications</json:string>
<json:string>amino acid</json:string>
<json:string>same glycoprotein</json:string>
<json:string>yeast cells</json:string>
<json:string>double control</json:string>
<json:string>protein mannosyltransferases</json:string>
<json:string>substrate position</json:string>
<json:string>mass spectrometry</json:string>
<json:string>higher level</json:string>
<json:string>cellular receptor</json:string>
<json:string>structural analysis</json:string>
<json:string>mouse dnase</json:string>
<json:string>adhesion</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Franz-Georg Hanisch</name>
</json:item>
<json:item>
<name>Isabelle Breloy</name>
<affiliations>
<json:string>Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Köln, Germany</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Fringe</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>LacdiNAc</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mannose-6-phosphate</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>O-mannosylation</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>polysialylation</value>
</json:item>
</subject>
<articleId>
<json:string>bc.2009.043</json:string>
</articleId>
<arkIstex>ark:/67375/QT4-NBLDDR8J-7</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>review-article</json:string>
</originalGenre>
<abstract>The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as cis-regulatory elements. Another example of such a cis-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such cis-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.</abstract>
<qualityIndicators>
<score>7.4</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 842 pts (A4)</pdfPageSize>
<refBibsNative>false</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1439</abstractCharCount>
<pdfWordCount>6017</pdfWordCount>
<pdfWordsPerPage>752</pdfWordsPerPage>
<pdfCharCount>40906</pdfCharCount>
<pdfPageCount>8</pdfPageCount>
<abstractWordCount>200</abstractWordCount>
<pdfText>true</pdfText>
</qualityIndicators>
<title>Protein-specific glycosylation: signal patches and cis-controlling peptidic elements</title>
<pmid>
<json:string>19563271</json:string>
</pmid>
<genre>
<json:string>review-article</json:string>
</genre>
<host>
<title>Biological Chemistry</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<issn>
<json:string>1431-6730</json:string>
</issn>
<eissn>
<json:string>1437-4315</json:string>
</eissn>
<publisherId>
<json:string>bchm</json:string>
</publisherId>
<volume>390</volume>
<issue>7</issue>
<pages>
<first>619</first>
<last>626</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<namedEntities>
<unitex>
<date>
<json:string>2009-03-05</json:string>
<json:string>2009</json:string>
</date>
<geogName></geogName>
<orgName>
<json:string>University of Cologne</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>R. Wagener</json:string>
<json:string>Jacques Baenziger</json:string>
<json:string>P. Ottis</json:string>
<json:string>Fringe</json:string>
<json:string>Lfng</json:string>
<json:string>The</json:string>
<json:string>I. Gebauer</json:string>
<json:string>Isabelle Breloy</json:string>
<json:string>Rfng</json:string>
<json:string>G. Hanisch</json:string>
<json:string>T. Braulke</json:string>
<json:string>I. Breloy</json:string>
</persName>
<placeName>
<json:string>Germany</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Colley, 2009</json:string>
<json:string>Bause and Legler, 1981</json:string>
<json:string>Sentandreu and Northcote, 1969</json:string>
<json:string>Do et al., 2000</json:string>
<json:string>Lee et al., 2007</json:string>
<json:string>Breloy et al., 2008</json:string>
<json:string>Skelton et al., 1992</json:string>
<json:string>Haltiwanger and Stanley, 2002</json:string>
<json:string>Chen et al., 2001</json:string>
<json:string>Tarp and Clausen, 2008</json:string>
<json:string>Lehle et al., 2006</json:string>
<json:string>Moloney et al., 2000</json:string>
<json:string>Smalheiser et al., 1998</json:string>
<json:string>Hildebrandt et al., 2009</json:string>
<json:string>Hutzler et al., 2007</json:string>
<json:string>Martinez-Pomares et al., 1999</json:string>
<json:string>Florea et al., 2006</json:string>
<json:string>Rampal et al., 2007</json:string>
<json:string>Cremer et al., 1994</json:string>
<json:string>Mendiratta et al., 2005</json:string>
<json:string>Hooper et al., 1995</json:string>
<json:string>Gosh et al., 2003</json:string>
<json:string>Harris and Spellman, 1993</json:string>
<json:string>Krusius et al., 1986</json:string>
<json:string>Steet et al., 2005</json:string>
<json:string>Van Reeuwijk et al., 2005</json:string>
<json:string>Chiba et al., 1997</json:string>
<json:string>Weinhold et al., 2005</json:string>
<json:string>Manya et al., 2004</json:string>
<json:string>Cuozzo et al., 1998</json:string>
<json:string>Raas-Rothschild et al., 2000</json:string>
<json:string>Dell et al., 2003</json:string>
<json:string>Oehninger et al., 1995</json:string>
<json:string>Huang et al., 2001</json:string>
<json:string>Bao et al., 1996</json:string>
<json:string>Bruckner et al., 2000</json:string>
<json:string>Dell et al., 1995</json:string>
<json:string>Rampal et al., 2005</json:string>
<json:string>Nishikawa et al., 1999</json:string>
<json:string>Manzella et al., 1997</json:string>
<json:string>Lowe and Marth, 2003</json:string>
<json:string>Martinez et al., 2007</json:string>
<json:string>Miller et al., 2008</json:string>
<json:string>Ten Hagen et al., 2003</json:string>
<json:string>Morris et al., 1996</json:string>
<json:string>Akasaka-Manya et al., 2006</json:string>
<json:string>Gallagher et al., 2001</json:string>
<json:string>Willer et al., 2005</json:string>
<json:string>Woodworth et al., 2001</json:string>
<json:string>Lengeler et al., 2008</json:string>
<json:string>Green et al., 1985</json:string>
<json:string>Okamoto et al., 1991</json:string>
<json:string>Endo, 1999</json:string>
<json:string>Manzella et al., 1996</json:string>
<json:string>Bleckmann et al., 2009</json:string>
<json:string>Shao et al., 2003</json:string>
<json:string>Yuen et al., 1997</json:string>
<json:string>Hildebrandt et al. 1998</json:string>
<json:string>Muhlenhoff et al., 2009</json:string>
<json:string>Manya et al., 2007</json:string>
<json:string>Michele and Campbell, 2003</json:string>
<json:string>Kunz et al., 2005</json:string>
<json:string>Braulke et al., 2008</json:string>
<json:string>Suzuki et al., 2003</json:string>
<json:string>Fiete et al., 2007</json:string>
<json:string>Julenius et al., 2005</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/QT4-NBLDDR8J-7</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - biochemistry & molecular biology</json:string>
</wos>
<scienceMetrix>
<json:string>1 - health sciences</json:string>
<json:string>2 - biomedical research</json:string>
<json:string>3 - biochemistry & molecular biology</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Clinical Biochemistry</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Molecular Biology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Biochemistry, Genetics and Molecular Biology</json:string>
<json:string>3 - Biochemistry</json:string>
</scopus>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1515/BC.2009.043</json:string>
</doi>
<id>38F5B79FADC833554B361885A6814430224A208F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/QT4-NBLDDR8J-7/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/QT4-NBLDDR8J-7/bundle.zip</uri>
</json:item>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/QT4-NBLDDR8J-7/fulltext.txt</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/QT4-NBLDDR8J-7/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Protein-specific glycosylation: signal patches and
<hi rend="italic">cis</hi>
-controlling peptidic elements</title>
<respStmt>
<resp>Références bibliographiques récupérées via GROBID</resp>
<name resp="ISTEX-API">ISTEX-API (INIST-CNRS)</name>
</respStmt>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Walter de Gruyter</publisher>
<availability>
<licence>©2009 by Walter de Gruyter Berlin New York</licence>
</availability>
<date type="Copyright" when="2009">2009</date>
<date type="e-published">2009</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="review-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Protein-specific glycosylation: signal patches and
<hi rend="italic">cis</hi>
-controlling peptidic elements</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Franz-Georg</forename>
<surname>Hanisch</surname>
</persName>
<affiliation>
<orgName type="institution">Institute of Biochemistry II</orgName>
<orgName type="department">Medical Faculty</orgName>
<orgName type="institution">University of Cologne</orgName>
<address>
<addrLine>Joseph-Stelzmann-Str. 52</addrLine>
<addrLine>D-50931 Köln</addrLine>
<country key="DE" xml:lang="en">GERMANY</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">Center for Molecular Medicine Cologne</orgName>
<orgName type="institution">University of Cologne</orgName>
<address>
<addrLine>Robert-Koch-Str. 21</addrLine>
<addrLine>D-50931 Köln</addrLine>
<country key="DE" xml:lang="en">GERMANY</country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Isabelle</forename>
<surname>Breloy</surname>
</persName>
<affiliation>
<orgName type="institution">Institute of Biochemistry II</orgName>
<orgName type="department">Medical Faculty</orgName>
<orgName type="institution">University of Cologne</orgName>
<address>
<addrLine>Joseph-Stelzmann-Str. 52</addrLine>
<addrLine>D-50931 Köln</addrLine>
<country key="DE" xml:lang="en">GERMANY</country>
</address>
</affiliation>
</author>
<idno type="istex">38F5B79FADC833554B361885A6814430224A208F</idno>
<idno type="ark">ark:/67375/QT4-NBLDDR8J-7</idno>
<idno type="publisher-id">bc.2009.043</idno>
<idno type="DOI">10.1515/BC.2009.043</idno>
</analytic>
<monogr>
<title level="j" type="abbrev">Biological Chemistry</title>
<idno type="publisher-id">bchm</idno>
<idno type="eISSN">1437-4315</idno>
<idno type="pISSN">1431-6730</idno>
<imprint>
<publisher>Walter de Gruyter</publisher>
<date type="published">2009</date>
<date type="e-published">2009</date>
<biblScope unit="vol">390</biblScope>
<biblScope unit="issue">7</biblScope>
<biblScope unit="page" from="619">619</biblScope>
<biblScope unit="page" to="626">626</biblScope>
<biblScope unit="ref-count">67</biblScope>
<biblScope unit="fig-count">1</biblScope>
<biblScope unit="table-count">0</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.39" when="2020-03-12">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<head>Abstract</head>
<p>The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as
<hi rend="italic">cis</hi>
-regulatory elements. Another example of such a
<hi rend="italic">cis</hi>
-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such
<hi rend="italic">cis</hi>
-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="heading">
<term>Protein-specific glycosylation and its control</term>
</keywords>
</textClass>
<textClass ana="keyword">
<keywords>
<term>Fringe</term>
<term>LacdiNAc</term>
<term>mannose-6-phosphate</term>
<term>O-mannosylation</term>
<term>polysialylation</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-03-12" who="#istex" xml:id="pub2tei">formatting</change>
<change xml:id="refBibs-istex" who="#ISTEX-API" when="2020-04-1">References added</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus degruyter-journals" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//Atypon//DTD Atypon Systems Archival NLM DTD Suite v2.2.0 20090301//EN" URI="nlm-dtd/archivearticle.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="review-article" xml:lang="EN">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">bchm</journal-id>
<abbrev-journal-title abbrev-type="full">Biological Chemistry</abbrev-journal-title>
<issn pub-type="epub">1437-4315</issn>
<issn pub-type="ppub">1431-6730</issn>
<publisher>
<publisher-name>Walter de Gruyter</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="publisher-id">bc.2009.043</article-id>
<article-id pub-id-type="doi">10.1515/BC.2009.043</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Protein-specific glycosylation and its control</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Protein-specific glycosylation: signal patches and
<italic>cis</italic>
-controlling peptidic elements</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name name-style="western">
<given-names>Franz-Georg</given-names>
<x> </x>
<surname>Hanisch</surname>
</name>
<xref ref-type="aff" rid="aff1 aff2">
<sup>1,2</sup>
</xref>
<x>, </x>
</contrib>
<contrib contrib-type="author">
<name name-style="western">
<given-names>Isabelle</given-names>
<x> </x>
<surname>Breloy</surname>
</name>
<xref ref-type="aff" rid="aff1">
<sup>1</sup>
</xref>
<x>, </x>
</contrib>
<aff id="aff1">
<sup>1</sup>
Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Köln, Germany</aff>
<aff id="aff2">
<sup>2</sup>
Center for Molecular Medicine Cologne, University of Cologne, Robert-Koch-Str. 21, D-50931 Köln, Germany</aff>
</contrib-group>
<author-notes>
<corresp>Corresponding author
<email xlink:href="mailto:franz.hanisch@uni-koeln.de">franz.hanisch@uni-koeln.de</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<day>01</day>
<month>07</month>
<year>2009</year>
<string-date>July 2009</string-date>
</pub-date>
<pub-date pub-type="epub">
<day>05</day>
<month>03</month>
<year>2009</year>
</pub-date>
<volume>390</volume>
<issue>7</issue>
<fpage>619</fpage>
<lpage>626</lpage>
<history>
<date date-type="received">
<day>22</day>
<month>12</month>
<year>2008</year>
</date>
<date date-type="accepted">
<day>26</day>
<month>1</month>
<year>2009</year>
</date>
</history>
<copyright-statement>©2009 by Walter de Gruyter Berlin New York</copyright-statement>
<copyright-year>2009</copyright-year>
<related-article related-article-type="pdf" xlink:href="bc.2009.043.pdf"></related-article>
<abstract>
<title>Abstract</title>
<p>The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as
<italic>cis</italic>
-regulatory elements. Another example of such a
<italic>cis</italic>
-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such
<italic>cis</italic>
-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.</p>
</abstract>
<kwd-group>
<title>Keywords</title>
<kwd>Fringe</kwd>
<x>, </x>
<kwd>LacdiNAc</kwd>
<x>, </x>
<kwd>mannose-6-phosphate</kwd>
<x>, </x>
<kwd>O-mannosylation</kwd>
<x>, </x>
<kwd>polysialylation</kwd>
</kwd-group>
<counts>
<fig-count count="1"></fig-count>
<table-count count="0"></table-count>
<ref-count count="67"></ref-count>
</counts>
</article-meta>
</front>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Protein-specific glycosylation: signal patches and cis-controlling peptidic elements</title>
</titleInfo>
<titleInfo type="alternative" lang="en" contentType="CDATA">
<title>Protein-specific glycosylation: signal patches and cis-controlling peptidic elements</title>
</titleInfo>
<name type="personal">
<namePart type="given">Franz-Georg</namePart>
<namePart type="family">Hanisch</namePart>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Breloy</namePart>
<affiliation>Institute of Biochemistry II, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, D-50931 Köln, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="review-article" displayLabel="review-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-L5L7X3NF-P">review-article</genre>
<originInfo>
<publisher>Walter de Gruyter</publisher>
<dateIssued encoding="w3cdtf">2009-07-01</dateIssued>
<dateCreated encoding="w3cdtf">2009-03-05</dateCreated>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">1</extent>
<extent unit="references">67</extent>
</physicalDescription>
<abstract lang="en">The term ‘protein-specific glycosylation’ refers to important functional implications of a subset of glycosylation types that are under direct control of recognition determinants on the protein. Examples of the latter are found in the formation of the mannose-6-phosphate receptor ligand on lysosomal hydrolases, and in polysialylation of NCAM, which are regulated via conformational signal patches on the protein. Distinct from these examples, the β4-GalNAc modification of N-linked glycans on a selected panel of proteins, such as carbonic anhydrase or glycodelin, was demonstrated recently to require specific protein (sequence) determinants proximal to the glycosylation site that function as cis-regulatory elements. Another example of such a cis-regulatory element was described for the control of mammalian O-mannosylation. In this case, the structural features of substrate sites within the mucin domain of α-dystroglycan are necessary, but not sufficient for determining the transfer of mannose to Ser/Thr. Evidence has been provided that an upstream-located peptide is also essential. Such cis-controlling elements provide a higher level of protein specificity, because a putative glycosylation site cannot result from a single point mutation. Here, we highlight recent work on protein-specific glycosylation with particular emphasis on the above-cited examples and we will try to link protein-specific glycosylation to function.</abstract>
<subject>
<genre>Keywords</genre>
<topic>Fringe</topic>
<topic>LacdiNAc</topic>
<topic>mannose-6-phosphate</topic>
<topic>O-mannosylation</topic>
<topic>polysialylation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Biological Chemistry</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Biological Chemistry</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>Walter de Gruyter</publisher>
<dateIssued encoding="w3cdtf">2009-07-01</dateIssued>
<dateCreated encoding="w3cdtf">2009-03-05</dateCreated>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<identifier type="ISSN">1431-6730</identifier>
<identifier type="eISSN">1437-4315</identifier>
<identifier type="PublisherID">bchm</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>390</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>619</start>
<end>626</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">38F5B79FADC833554B361885A6814430224A208F</identifier>
<identifier type="ark">ark:/67375/QT4-NBLDDR8J-7</identifier>
<identifier type="DOI">10.1515/BC.2009.043</identifier>
<identifier type="ArticleID">bc.2009.043</identifier>
<identifier type="pdf">bc.2009.043.pdf</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©2009 by Walter de Gruyter Berlin New York, 2009</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-B4QPMMZB-D">degruyter-journals</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-03</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/QT4-NBLDDR8J-7/record.json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001865 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001865 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:38F5B79FADC833554B361885A6814430224A208F
   |texte=   Protein-specific glycosylation: signal patches and cis-controlling peptidic elements
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021